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1. INTRODUCTION

Each day the various plant, bacterial, Archea and eukaryotic genome
sequencing projects generate additional protein sequence information at an
ever increasing rate [1-10]. These raw data, being devoid of corresponding
information about protein structure or function, are in and of themselves of
extremely limited use [11]. To address the crucial problem of utilizing these
data in the post genomic era, a means of predicting protein structure and/or
function from sequence is required [11, 12]. To date, the most prevalent and
successful methods of protein structure and function prediction are purely
sequence based [13-15]. Unfortunately, these methods, which also include
local sequence motif identification [16-18], are limited by the extent of
sequence similarity between sequences of known and unknown proteins; they
increasingly fail as the sequence identity diverges into and beyond the twilight
zone of sequence identity between two proteins, which is about 30% [19]. In
practice, roughly half of a given genome falls into this category [20, 21].
Alternatively, one might attempt to predict the protein’s structure first, and
then deduce from it the protein’s function [12, 22, 23]. The latter approach is
much more difficult because it is not necessarily based on evolutionary
relationships and is still in its infancy. Nevertheless, a key component of
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structure based approaches to function prediction is the ability to predict
protein structure from sequence. Thus, in this review, we describe the state of
the art of contemporary approaches to protein tertiary structure prediction, and
focus in particular on reduced models.

1.1. Energy Functions and Search Protocols

Any successful tertiary structure prediction algorithm muwst address two
intertwined issues: First, one must have an energy or fitness function that
distinguishes the native conformation from the sea of alternative structures,
which is in principle exponentially large. These energy functions might be
based on first principles (e.g., from fitting to IR data on small molecules or
from quantum mechanics [24-26]). Alternatively, they might incorporate
knowledge about the general and specific features of proteins [27-30] (e.g.
hydrophobic residues prefer to be buried and protein structures have almost all
their hydrogen bonds satisfied), or might be a combination of the two [31].
Second, one must have a conformational search protocol that can find the
native conformation among the possible alternative structures. A large variety
of search schemes have been employed including molecular and Brownian
dynamics simulations [32, 33], classical Metropolis Monte Carlo [34-41],
entropy sampling Monte Carlo [42-45], the diffusion equation method that
deforms the energy landscape [46, 47], and genetic algorithms [48, 49].
Currently, these are very active areas of investigation,

1.2. Protein representation

A key issue that one faces when embarking on a program of protein structure
prediction is deciding on the level of detail of protein representation. At one
extreme, all atoms in the protein including hydrogens are included. The
motivation behind treating the system in such great detail is the hope that this
geometric fidelity will translate into prediction accuracy [50-56]. However,
such calculations are computationally very expensive and even for proteins on
the order of 100 residues or so, at present they are impractical. While very
encouraging results in a single Molecular Dynamics simulation of the folding
of a small protein, the 36-residue villin headpiece, have been recently reported
[57], at present such calculations are the exception rather than the rule.
Furthermore, to ensure reproducibility, multiple independent folding
simulations need to be done. Thus, in the interests of computational
practicality, simplified protein models have been developed both to explore the
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general issues of protein folding thermodynamics and kinetics as well as
prediction of tertiary structure of real proteins [27, 28, 39, 42, 43, 45, 58

In practice, the protein might simply be modeled as a set of 1
described by the Co backbone atom positions [50, 65, 66, 75, 7
representation may be further idealized so that the geometric fidelity
proteins is very limited, as is the case in cubic lattice protein models |
An advantage of reduced models is their computational tractability, w
disadvantage is that they have will have limited geometric accuracy a
not be able to address certain questions that depend on atomic detz
However, even if such atomic detail is the ultimate objective, reduced
could form the basis of a hierarchical approach to structure prediction -
low to moderate resolution model is generated first [63, 83, 84]. Then,
detail is added, and the resulting model is refined to the appropriate
resolution. Such combined approaches retain the advantages of both .
and reduced protein models and if successful would not suffer fro
respective disadvantages. The first step towards this goal dema
development of computational methods that can predict the approximat
structure. Here, a major emphasis is on the use of reduced protein mu
achieve this.

Given a particular choice of reduced protein model, one has to
whether or not to describe a protein in continuous space or in a
representation [33]. The advantage of a lattice is purely comput
Because the protein is confined to a set of grid points, one can preca
many geometric and energetic properties in advance. Thus, a well-d
lattice model is about a factor of 10 to 100 times faster than the corres)
continuous space model [33, 85]. If the folding of a protein on the
requires one CPU day, adequate conformational sampling in the con
space model will not be practical. However, a lattice model also intro
number of effects due to spatial anisotropy. For example, in ve
coordination number lattices along certain lattice directions, the best ge
representation of an o-helix may be achiral [58]. This is not a pe
problem if general aspects of protein folding are to be investigated, bu
be very problematic if one wants to predict the tertiary structure o
proteins. On lattices of intermediate coordination, the best
representation of a protein may be different along different directions,
energy may change as one rotates the protein structure with respec
lattice [85]. If such energetic changes are small, they are not too wo
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but they could preclude selection of the native fold when they are substantial.
Furthermore, assembled elements of secondary structure might be effectively
frozen in space as the collective motion required to move a helix without
hitting any other element in a compact structure might not be possible. As one
goes to high coordination number Jattices, these effects can be minimized, and
in the very latest high coordination lattice models, they are essentially
eliminated [86].

1.3. Use of simplified models to obtain general insights into protein folding

Obviously, even for reduced models, the requisite level of detail changes if
one wishes to obtain insights into the general aspects of protein folding rather
than in predicting the tertiary structure of a specific protein. A simple model
where the exact enumeration of all compact states in short chains [87] can be
done is the square or cubic lattice HP model [77, 88-90]. The polypeptide is
represented as a string of hydrophobic (H) and hydrophilic (P) beads
(residues). Hydrophobic residues attract each other, while the remaining
possible pairwise interactions are equal to zero, except for excluded volume
interactions. The model assumes that hydrophobic interactions play the
predominant role in protein folding. This view was recently questioned by
Honig and Cohen [91]. They argue that interactions involving backbone
hydrogen bonding are also important. Scheraga and coworkers have also
questioned the balance of entropy in these models between the native and
nonnative states [92]. In related studies [38, 78, 79, 81, 93-106], the same
interaction strength was assumed for HH and PP pairs, while interactions for
HP pairs were somewhat weaker. The model has also been generalized to
include all 20 amino acid types.

Using these models, a number of general issues were addressed that include
the origin of the uniqueness of the native state [79, 89, 99]. For some
sequences, the collapse transition was very cooperative, while for others, it was
continuous [107]). The folding pathway(s) changed as well [99, 108].
Uniqueness is facilitated by incorporating a larger number of amino acids [79,
99, 104, 109]. Cubic lattice protein models have been used to search sequence
space and to “design” fast folding optimal sequences [78, 106, 107]. In this
context, a variety of reduced models that stress various aspects of the physical
forces governing protein folding (108, 110-112] and dynamics [34, 40, 108,
113-117] were proposed. These investigations have provided interesting
insights into the protein folding process and have motivated the idea of a

folding funnel and the “new view” of protein folding [113, 114]. Sit
are many excellent papers on this topic, we refer the reac,ler to'the
literature.

_ The HP model assumes that protein folding is driven by lo
!nteractions and that short-range conformational propensities are only
in sltructural fine tuning [80]. Earlier, a different viewpoint emerg
studies of simple diamond lattice systems and the chess knight model
67, 115-1.25]. These studies concluded that the native conformation
from the interplay of secondary structural preferences and tertiary inte
As Go et. Al. found in their very early work [65, 66, 126, 127], folding
cooperative when the long- and short-range interactions are co’nsistenf
native fold. Thus, while some features of protein folding ar
independent, others such as the balance of interactions and confor

entropy d(lapend on the type of model used and the assumed forn
conformational interactions.

1.4. Threading approaches to tertiary structure prediction

The early 1990°s saw the development of threading technique
attempt to assign a sequence to the best structural match in a library o
solve_d protein structures [29, 128-140]. This approach is designed to
proteins having little or no apparent sequence similarity to any of the
in the_structural library. Thus, it is designed to extend classical h
modeling [141, 142]. A fundamental limitation of threading is that ¢
have an example of the native topology already in the structural
otherwise, the method cannot be fully successful. Threading might be
qf as finding the “least worst” match between the probecsequence
library of template structures. Doubtless, its reliability will increas
number of solved protein structures grows [143, 144]. In practice, to 1
problgm computationally tractable, numerous simplified represen;alim
protein .have been developed, e.g., the molecule might be described by
interacting Cas or CPs [129, 133]. In quite a number of cases, these
lmv_c been successful at identifying the native topology. Often, tho
native topology is not the best match but lies amongst the ha:ndfu
scoring sequence structure matches [145]. Interestingly, even when tl
topology is identified, the actual alignment of the probe sequenc
template structure is often quite far from the best structural alignme)
probe and template proteins. This is an unsolved problem that is the s
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intensive investigation [146, 147]. As a result, models whose backbone
coordinate mean square deviation, cRMSD, from native that is on the order of
6-8 A are typically generated. In other words, low-resolution models of the
native structure are produced. Nevertheless, the advantage of threading
approaches is they are quite rapid so that they can be applied on a genomic
scale. In view of the excellent number of reviews available on the threading,
we refer the reader to the literature for a more detailed discussion of this
vibrant and important field [30, 148-153].

1.5. Exact restraint models of proteins

More recently, approaches designed to predict tertiary structure starting from
random conformations and using a small amount of additional restraint
information have been developed [49, 72, 154-159]. We term approaches that
use experimental information “exact restraint models”, a detailed discussion of
explicit realizations of these models is presented in Section 2. Such exact
restraints might include knowledge of secondary structure and/or some tertiary
contacts. Such information could be provided from low-resolution X-ray
crystal structures by NMR or by some biochemical means, e.g. the presence a
disulfide cross-link. However, it is important to recognize that there are
different types of “exact restraints”. Quite often as a prediction exercise
investigators assume that they know the secondary structure at the level of the
exact angles [49, 67]. This can impart unrealistic expectations as to how the
model will behave when restraints at the degree of resolution that can actually
be provided by experiment are used. For example, one might know that a turn
is present but not the chirality of the turn. In such a situation the native
topology and its topological mirror image will be recovered (e.g., where the
chirality of helices is right handed but that of the turns reversed), whereas if
one assumes the chirality of the turns, no topological mirror images are
generated. This might lead one to incorrectly conclude that such topological
mirror images (which have a very similar pattern of side chain contacts, burial
and secondary structure) are irrelevant. On the other hand, if one simply knew
that there are three helices separated by two turns, then the problem of
dismissing this alternative structure immediately emerges.

1.6. Restraint free ab initio protein folding

The most general approach attempts to predict protein tertiary structure from
sequence without any recourse to known protein structures or evolutionary
information. This is the traditional approach to the solution of the protein

folding problem. We term this approach restraint free ab initio protei
In its most pristine form, one uses the laws of physics to fold a prc
scratch [27, 57]. However, due to its inherent difficulty, as a practic
such models might also include some general knowledge based pote:
would not include any evolutionary information [28, 35, 45, 59, 63
161]. Examples of such knowledge-based contributions are an empiri
energy scale [162] and knowledge-based pair potentials [163]. Obvic
is the most difficult means of predicting protein structure, and as o
Section 3.1, it has met with only quite limited success. When successt
pristine approach could not only be applied to the problem of prote:
structure prediction, but also to prediction of the mechanism of prote
and to provide insights in folding thermodynamics. Numerous pr
applications of these ideas are described below.

1.7. Evolutionary-based approaches to protein structure predictio
Midway between the exact restraint models and restraint free
protein folding models are what we term “evolutionary” based appr
protein structure prediction, where no known structure of a protein ho
to the protein of interest has been solved. This class of models uses ¢
and tertiary restraints derived from multiple sequence alignments [84,
Ortiz, 1998 #1069, 166, 167]. Such information might include
secondary structure [168], tertiary contacts extracted from residue cor
[164] or correlated mutations [169, 170], and knowledge-based pair
derived from multiple sequence alignments [171]. Unlike the exaci
models, there are likely to be substantial errors in the restraint inform
example, the average accuracy of predicted secondary structure is at
with comparable prediction accuracy for tertiary restraints within =:
[166, 172]. Thus, evolutionary based approaches have to accommoc
and partially- incorrect information; such models may require s
modifications from their exact restraint counterparts. When exact rest
used, then restraint violations can be used to eliminate a possible st
being relevant; when inexact restraints are employed, then restraint
may occur in the entire set of distinct low energy topologies and cannc
for native topology selection [166, 172]. In Section 3.2, we di
apparent physical origin of correlated mutations and describe the curr
of the field of evolutionary based approaches to protein structure pred
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2. EXACT RESTRAINT MODELS

2.1 Secondary and tertiary restraints in assembly of protein structures

As mentioned above, the present state of the art does not enable a
dependable ab initio prediction of the majority of protein structures [173]. The
most likely reasons are that the existing force fields are not specific enough
and/or the sampling schemes are not sufficiently efficient at finding the native-
like state of a model protein chains. Certainly, many recently designed
interaction schemes for reduced protein models have captured a good part of
the protein physics [28, 35, 39, 42, 43, 45, 59, 75, 85, 174-185]. This may lead
to the conclusion that in a situation where the protein conformational space is
reduced to its more relevant parts and when the sampling process is somehow
guided towards the nativelike state, then the process of structure prediction will
become much easier. This goal could be achieved by building into the protein
model (and the sampling scheme) some secondary and tertiary restraints.
These may come from sources such as CD and NMR spectra [186], protein
crystallography, cross-linking experiments [187] and other experimental
techniques. Approximate restraints of a similar sort could be also derived from
various theoretical considerations. In this section, we focus on the simplest
case, where the restraints (short-range - secondary and long-range - tertiary) are
exact; however, they may be known at various levels of accuracy. Below, we
discuss possible ways of implementing such restraints,

The meaning of the reduced models of protein structures is discussed in
more detail later in this chapter; however, we stress here that the minimal
requirements for a low-resolution structure prediction to be correct are:
(A). The overall topology (the shape of the main chain trace) of the fold is the
same as that seen in the experimental structure; (B). The obtained secondary
structure is very close to that seen in the native structure and the alpha carbon
trace root mean square deviation (RMSD) from the native structure is in the
range of 3-7 A depending on protein size. This level of accuracy may be of
some use for application to protein function annotation [179].

Let us first discuss the short-range restraints, which could be described at
different levels of accuracy. Suppose that the secondary structure is given by a
three-letter code, i.e., helix, beta, loop, where “loop” stands for everything
besides helical or B-type structures. Knowledge of the protein’s secondary
structure could be complete, or only some helical and B—type fragments could
be known. Then, the remaining fragments of the polypeptide chain are treated

as “loop” regions. Such a three-letter secondary structure code
translated into structural restraints in many ways. One possib
constmet a set of potentials that drive the model chains towards z
helix or beta strand. This could be done assuming the ideal target
the ¢, v angles. The target local geometry can also be made amino :
of amino acids is a better choice) specific. Moreover, the target local
may involve all main chain atom types, only alpha carbon atoms, o
side chain center of mass positions. The suitability of a particu
depends on other model features. Local conformational biases
superimposed on distances (and angles) involving pairs of residues,
sequences and even longer fragments. An alternative (which could
as a complementary set of restraints) method of implementation of
structure target involves main chain hydrogen bonding. Known (o
known) secondary structure translates into specific restraints for the r
hydrogen bonding patterns. Helices should have a characteristic

short-range hydrogen bonds; a helical residue within a helix cannot
distance (along the chain) hydrogen bonds. Residues assigned to
cannot form hydrogen bonds with residues assigned to be heli
restrictions immensely suppress the conformational space of the moc
that has to be searched.

Similarly, the long-range restraints could be implemented as
potentials, square well potentials, or combinations of the two. T
involve specific atoms (as alpha carbon atoms) or centers of mass of
atoms (for instance that of side chains in particular rotameric state
appropriate, the long-range restraints could be designed to closely
spatial resolution of various NMR signals. The aforementioned chz
protein hydrogen bond patterns could also serve as a framewm
definition of long-range restraints.

To assemble a nativelike structure at a given resolution, a goc
model with an efficient force field should require fewer restraints th
generic model that relies solely on the driving force derived from the
Obviously, when the number of restraints is small, the resoluti
obtained structures will depend mostly on the quality of the protein :
its force field. In contrast, when the number of restraints is very large
model quality will depend on the restraint representation and th
resolution of the model. Different classes of globular proteins of a s
may require a different number of restraints to achieve models of ¢
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quality. Helical proteins have much less conformational freedom, provided
that the helices have been assembled, than do B-proteins of the same size.
This suggests that in most applications, B—sheet proteins might require a larger
number of long-range restraints. All these suppositions are strongly confirmed
by the studies of different computational models of protein structure assembly
outlined below.

2.2. Models with exact secondary structure but no tertiary restraints

One of the common ways of predicting protein tertiary structure assumes
that the secondary structure has to be known before the prediction of a three-
dimensional fold can be attempted [154-157]. While this view as a paradigm
for protein structure prediction could be challenged, it certainly provides a
straightforward framework that may sometimes prove to be useful. Indeed,
there were a number of early attempts to apply such a methodology to low
resolution protein fold predictions that were quite successful in some specific
cases [154-157]. However, only recently has the problem of protein structure
assembly, given its secondary structure, been more systematically addressed.

A very interesting method of protein fold prediction has been proposed by
Dandeker and Argos [48, 49]. They consider all the backbone atoms and
implicit side chains. The geometry of the main chain has been restricted to a
small set of canonical values of the ¢, y angles for various secondary structure
motifs. A genetic algorithm has been used as the search method for the lowest
energy state. In most of their computational experiments, the exact knowledge
of the secondary structure (taken from known structures) and an idealized
pattern of side chain hydrophobicity along the polypeptide contour has been
assumed. Employing these assumptions, correct low-resolution structures have
been successfully assembled for 19 small proteins that were representative of
various structural classes. However, it has been observed that use of predicted
(inexact) secondary structure led to a significant decrease in prediction
accuracy.

Monge et al. [188] also assumed exact knowledge of the geometry of the
regular secondary structure elements (helices in this case).  Tertiary
interactions have been modeled via a pairwise, knowledge-based potential for
the CP—Cp interactions. Then, the Monte Carlo method employed rotations
within the loop regions to search conformational space. Their search process
assembled only compact conformations. Moderate resolution (4-5 A of RMSD
from native) structures of four highly helical proteins have been obtained as the

lowest energy structures. Subsequently, Gunn et al. [189] and Mc
[177, 190] demonstrated that the exact knowledge of the short-range
of regular secondary structure fragments allows for the low-
assembly of more complex folding motifs. These included the a-helic
myoglobin and the o/p fold of 66 residue C-terminal fragment ¢
ribosomal protein.

A distance geometry approach could be quite efficient in proteir
assembly [191] when the some of the secondary structure is exact|
Mumenthaler and Braun [164] attempted a test prediction on eig
proteins, with the exact distance restraints within the helical fragme
model assumed ideal helix geometry and a single (most probable
representation of the side chains. The long distance restraints !
applied in a very approximate way. First, they used multiple
alignments for the statistical prediction of the buried and somewha
residues. The average distances between pairs of buried, exp
buried/exposed residues of a given type have been extracted from the
database. Consequently, these restraints were rather inaccurate and
filtered via a proper self-correcting distance geometry calculation.
approximate character of these long-range restraints may be consic
kind of long-range, mean force burial potential. Interestingly, ther
some specific protein-like features encoded in these fuzzy lo
correlations since in six test cases, structures with 2-3 A RMSD fr.
(for helical fragments) have been correctly identified. The procedure
two proteins with longer loops in spite of the large number of
restraints.

Chelvanayagam et al. [159] also employed distance geometry.
assumed known secondary structure and applied their approach to ei
disulfide-rich B proteins. When the topology of the P-sheets, the ex
of particular strands and the cross-link patterns were assumed kn
their algorithm rapidly assembled the test structures by a proper filtra
putative distance limits near the cross-links and within the —sheets.
B-sheet topology was assumed unknown, a combinatorial procedure
a small number of possible native structure candidates.

A somewhat similar assumption of exact knowledge of secondary
as employed in the aforementioned continuous space models, was al
an early lattice Monte Carlo model due to Skolnick and Kolinski
Godzik et al. [192]. However, there, the preferred local geometry wa
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for the entire chain, thereby providing a weak bias toward the target, nativelike
secondary structure, A Miyazawa-Jernigan hydrophobicity scale approximated
the long-range interactions [163]. These studies demonstrated that even a
small, but fully consistent with the native structure, secondary bias facilitates
the very rapid structure assembly of plastocyanin and two TIM type o/f
barrels. Similar to the work of Monge et al. [177, 188], further simulations of
idealized folding motifs [125] showed that the target conformation for the
loop/turn regions need not be specified.

All the work outlined in this subsection required exact knowledge of a
substantial part of secondary structure for the successful assembly of three-
dimensional structures. In all cases, where tested, the quality and/or reliability
of these predictions substantially deteriorated when predicted (inexact)
secondary structure data were assumed. This suggests that the tertiary
interactions encoded in these models were not very specific. It appears that the
models of tertiary interactions were good enough to select for the proper
packing of well defined and relatively rigid secondary structure blocks;
however, they have difficulties in correcting any substantial errors in secondary
structure assignments. Indeed, in the latter case, the conformational space of
the given model significantly increases, and the requirements for an interaction
scheme are much greater. In this context, Monge et al. [177] proposed a very
interesting way for evaluation and improvement of the tertiary interaction
schemes for such reduced models. They reconstructed all atom structures from
the predicted low-resolution folds and have shown that after a proper
refinement process with a molecular mechanics potential within a continuum
solvent approximation, it is possible to identify structures that are closer to the
native one. An improved potential for the reduced model has been
subsequently derived that has the form of van der Waals interactions between
entire residues [190]. Whether this and other efforts to improve the tertiary
contributions to the interaction scheme will enable structure prediction given
inaccurate secondary structure remains to be established. At present, these
works increase our understanding of the interactions stabilizing protein
structures and controlling their assembly processes. Moreover, they may have
important applications to protein structure determination from fragmentary
experimental data.

2.3. Models with exact but loose secondary structure and
restraints

Given a small number of distance restraints, several quite
approaches to protein structure prediction have been recently publisl
small number of restraints we mean that the number is small in c
with that required for a standard distance geometry/molecular 1
approach to the determination of protein three-dimensional struct
NMR data [193].

Smith-Brown and co-workers [158] studied the folding of sevi
proteins given their native secondary structure and a number of I
restraints. They used the Monte Carlo sampling method for an all-
chain model. The values of the main chain angles were kept near -
values for the given secondary structure fragments. Side ch:
neglected. The long-range restraints had the form of biharmonic
between the Co atoms. Due to the sequential implementation of the
the long-range restraints, the simulation procedure assembled th
structure in a specific order. First, the secondary structure formec
extended conformation. Then, the long-range restraints were imy
between a pair of adjacent elements of secondary structure to bi
together. Subsequently, the remaining elements of secondary struc
docked to the growing nucleus. The final stage of the simulatior
possible distortions of the secondary structure geometry. The best
structures had 3-5 A RMSD from the native structure for the backbo
Such results have been achieved when quite a large number of restr:
used. For instance, in the case of flavodoxin, 147 restraints were
With a smaller (61) number of restraints, the flavodoxin structure de
12 A from native, yet still satisfied all the restraints. Using predicte
of exact, secondary structure required an even larger number ¢
restraints. These results suggest that these simulations were drive
exclusively by the distance restraints.

Aszodi et al. [165], employed distance geometry and a
polypeptide chain representation.  Their model chain consiste
Ca backbone and the CP positions of the side chains. They also
knowledge of secondary structure and a limited number of exact I
restraints. These have been supplemented by a set of “soft”
somewhat in a similar spirit as those used in the work of Mument
Braun [164]. They found that in order to assemble low-resolution ¢
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more than N/4 exact tertiary restraints were necessary. Unfortunately, the
algorithm generated not only structures of acceptable quality of about 5 A
RMSD from native, but also structures that have a 10 A RMSD from the
native. All satisfy the restraints. No clear method of selecting the proper fold
has been presented. Subsequently, Aszodi and Taylor [194] applied this
method in homology modeling. In this case, a large number of long-range
restraints have been extracted from an alignment of the query sequence to a
homologous sequence of known structure. The resulting restraints were
weighted according to residue conservation criteria deduced from multiple
sequence alignments. Models of quite good quality have been generated for
several test proteins.

Bayley and coworkers [193] applied a combined genetic algorithm (GA)
followed by simulated annealing to build molecular models from full NMR
data for small proteins. A very large number of restraints were used, and the
obtained structures were of very good quality. When the number of restraints
was reduced (to ca. 10 per residue in case of BPTI), the majority of the GA
calculations led to misfolded structures. Interestingly, the correctly folded
structures (25% of all structures) were of similar quality as those generated for
the full set of restraints.

Skolnick and coworkers [72] applied a high coordination lattice model for
protein structure prediction from known secondary structure and a small
number of known tertiary contacts between side chains. The protein
representation assumes a Ca trace restricted to a lattice that allows 90 possible
orientations of the virtual Ca-Co. bonds. The spatial resolution of this model is
1.22 A, and the average cRMSD of the crystal structures fitted to this lattice is
about 0.6-0.7 A. The side chains are represented by a proper set of single
sphere rotamers that mimic closely the rotameric spectra of real side groups. A
knowledge-based force field has been developed for this model that enabled
the ab initio computer folding of several small, topologically simple proteins
[35, 59]. Since the force field of the model captured some essential features of
protein interactions, it was expected that the model’s applicability could be
considerably expanded when a loosely defined secondary structure and a small
number of long range restrains were used to guide the Monte Carlo simulated
annealing process. Indeed, it has been shown that this MONSSTER algorithm
(Modeling of New Structures from Secondary and Tertiary Restraints) enables
efficient structure assembly given as few as N/7 to N/4 long range restraints for
small globular proteins. A larger number of restraints (N/4) were required for

B-proteins. In typical simulations, the resulting structures could |
clustered, with two well-defined clusters of nativelike and topologi
image structures and rare randomly misfolded structures. The
structures had a backbone RMSD from native that ranges from 3-6 A
important is that the proper fold could always be identified from tk
conformational energy obtained from isothermal, low temperature M
simulations of the folded (or misfolded) structures. Very similar re
have been obtained with the same lattice model with a slightl
interaction scheme (more explicit hydrogen bond representation an
pair potential [45, 60, 85]) by Kolinski and Skolnick [85].

While the MONSSTER method seems to compare favorably witl
related work, it still has some disadvantages. Firstly, the assembly
proteins requires a larger number of tertiary restraints than for h
proteins. Secondly, the cost of computation grows rapidly with pro
length. Consequently, the simulation of proteins having more tha
residues becomes computationally expensive when one takes into con
that several simulations are needed to determine the proper structure
fidelity. For these reasons, Kolinski and Skolnick [86] attempted to
much simpler model of comparable accuracy. The model employ
representation of a hypothetical chain connecting the centers of m
side chains in their actual rotameric state. The underlying cubic lat
spacing of 1.45 A, and the length of chain segments varies from 4.8
It covers the main portion of the distribution of distances between adj
chains in real proteins. A cluster of points on the cubic lattice repre:
residue, and which allows for the very rapid and straightforward h:
the model’s excluded volume and detection of side chain contacts.
has built-in knowledge-based potentials for short-range confc
propensities, -a one-body hydrophobic potential, pairwise potential an
of generic (sequence independent) cooperative interactions th
hydrogen bonds. The force field is good enough to drive ab .
resolution folding of very simple, small globular proteins. The
structure is encoded by weak biases in short-range potentials for the
B-fragments, and proper selection rules for main chain hydrogen bon
a P-residue cannot be hydrogen bonded to a helical residue). The |
restraints have the form of harmonic potentials. Additionally, the
pairs of residues have interaction parameters that are modified (by :
constant) with respect to the original statistical pair potential. D
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simplicity of protein representation and the form of the force field, Monte
Carlo sampling is very fast and scales favorably with the chain length.

Using this algorithm, all types of proteins could be folded with the assistance
of N/7 long-range restraints, where N is the number of amino acids in the
polypeptide chain. For example, the 56-residue protein G could be folded with
8 restraints to structures that cluster around 3 A ¢cRMSD from the native. For
the sake of easy comparison with the previous work, the cRMSD is measured
for an approximately reconstructed Co trace. It is worthwhile to mention that
the cRMSD for the side chains is only slightly worse. Some structures could
be reproducibly folded with an even smaller number of restraints (4 in the case
of protein G, while 2 restraints are sufficient only when properly selected).
This model allows for the assembly of much larger structures and has been
tested for proteins containing up to 247 residues. The accuracy of the
assembled structures depends on chain length and the number of tertiary
restraints.  For the 68-residue lctf fragment (10 restraints), the average
structure has a 3.2 A cRMSD from native; for a 108-residue 2trx fragment, the
cRMSD is 3.1 A, with 30 restraints and 3.5 A with 16 restraints. Similarly, for
a 138-residue 3fxn fragment (20 restraints), the cRMSD is 4.1 A and for the
146-residue 1mba protein (20 restraints), the cRMSD is 4.3 A. Finally, for the
247-residue Atim, the backbone cRMSD ranged from 5.1 to 6.7 A, depending
on the number of tertiary restraints. The restraints were generated randomly
(however, very close contacts along the chain were rejected). In many cases,
some adjacent pairs of secondary structure elements did not have even a single
long-range restraint. These results were possible due to the important
contribution from the model interaction scheme. Indeed, when only the
restraints and the secondary structure biases were used, the results from this
model are much worse and comparable to other studies [165]. Some test
(unpublished) simulations show that when the exact secondary structure is
replaced by the predicted ones, the resulting structures are in most cases
essentially the same; however, —proteins in the limit of a low number of
tertiary restraints produce slightly worse structures, and the fraction of
misfolded structures increases. In all cases, the proper fold can be identified
based on reproducibility and the average conformational energy extracted from
low temperature, isothermal Monte Carlo trajectories. Two representative
examples of the structures generated with the smallest number of tertiary
restraints are compared with PDB structures in Figure 1.

Figure 1

Stereo drawings of Imba and lgbl in upper and lower |
respectively. The black lines correspond to alpha carbon trace exi
from PDB files. The models obtained in MC folding simulatio
shown in gray.
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2.4. How can these approaches be integrated with experiment

The outlined methods for assembly of protein models have important
applications to structure determination from sparse experimental data. The
most is to model building from rather complete NMR data. Work by Bayley
and coworkers [193] is a good example of a novel approach to this well-
defined and standard problem.

For some cases, it is easier to experimentally determine the secondary
structure of a native protein without any information about tertiary interactions.
The work described in Section 2.2 is aimed at structure determination from just
knowledge of secondary structure [48, 49, 159, 164, 177, 188-190]. For
regular helical proteins, these methods may provide low-resolution models.
For more complex topologies, the probability of building a good molecular
model just from secondary structure information is rather small.

Perhaps more interesting are those models that allow for structure assembly
from known secondary structure and sparse experimental data on tertiary
restraints [72, 158, 165]. Such situations may arise in the early stages of
protein structure determination via NMR techniques. Some algorithms [86]
described above can build low-to-moderate resolution models from as few as
N/7 (or less in simpler cases) tertiary restraints, where N is the number of
amino acids in the protein. Such a model could be further refined by more
detailed computations. On the other hand, the model provides quite accurate
predictions for all other possible tertiary interactions. Such predictions may be
useful in the process of deconvoluting NMR spectra and may suggest
directions for further experiments that are aimed at structure rectification. The
process may be iterated. Sparse experimental data lead to an approximate
model. Then, the model suggests how to assign (or validate via another
experiment) additional tertiary restraints. The larger set of restraints enables
the assembly of a more accurate model, etc. It is worthwhile noting that
various types of tertiary restraints, which correspond to various NOE signals,
could be easily encoded in most of the reduced models described in the
previous section. Preliminary work based on the Kolinski and Skolnick model
[86] shows that encoding not only signals involving side groups but also other
signals increases the quality of the obtained models for a given number of
tertiary restraints. For example the NOE’s between alpha carbon hydrogen and
amide hydrogen encode not only contact information but also quite rich
directional information. This significantly improves the quality of f and o/p
protein models.

Another interesting possibility opened by these models allows for re
structure assembly based on the predicted secondary structure and a fi
range restraints may be disulfide bonds. Having an approximate mc
may suggest a limited set of plausible point mutations to introduce a
cross-links. This way, the probability of determination of a side cha
chain contact in the protein of interest in a single experiment is
increased in comparison with more random cross-linking experiments,

Future applications may involve chain tracking and model building 1
low resolution X-ray and electron microscopy data. Suppose that an
density map allows one only to assign with a certain level of confid
possible positions of some large amino acids with many possible ma
pathways that satisfy such low-resolution data. Such a restraint set
sufficient for structure assembly, provided the model force field
enough to guide sampling of plausible proteinlike conformations.

3. TERTIARY STRUCTURE PREDICTIONS BY 4B INITIO \
BUILDING

3.1. Predictions by restraint free folding.

Tertiary structure prediction by restraint-free simulation has constit
many years, the classical approach to the Holy Grail of obtaining
structure from sequence information [27]. Because of its intellectual ap)
enormous potential implications, it has been, and still is, an area o
research. However, the advances produced by this approach have bee
modest. The reason is that a full solution to the two convoluted prot
sampling conformational space and generating an energy landscape
global minimum at the native conformation needs to be obtained for
Despite some -progress, such a formidable accomplishment appear
unreachable nowadays for all but some of the most simple protein mo
35, 59, 83, 161, 178, 195]. Still, research in this area is required bec:
one hand, the resulting theoretical models constitute first approximatio
which other more pragmatic structure prediction techniques that incc
knowledge-based information or additional heuristics can be built.
other hand, the lessons obtained from them can teach us general pr
about the kinetics and thermodynamics of protein folding and their rela
with sequence and structure that can be of utility in other areas, such as
engineering [196].



416

The different research groups, using different levels of detail have employed
a range of different models. Models that have only one interaction center per
one, or even per two, residues provide extreme simplification [28, 50, 65, 66,
75-81, 197]. At present, it is unclear whether these models possess sufficient
geometric resolution so that an effective energy function can be constructed
based on them. Nevertheless, they are useful for fast model building when
additional information is available in the form of distance restraints or more
generally, for exploring general aspects of folding kinetics and
thermodynamics. At the next level of complexity, a popular medium
resolution model that achieves substantial reduction in complexity yet retains
substantial geometrical fidelity is based on collapsing the side chain atoms into
a unique pseudoatom, usually located at the center of mass of the
corresponding side chain [35, 69, 160]. Backbone atoms, on the other hand,
can be used in full atomic detail or they can also be collapsed into a unique
pseudoatom located at the Ca position [85]. In this last case, pseudodihedral
angles connecting the backbone pseudoatoms are used as internal coordinates.
More detailed models, used by some groups, are based on an atomic level
description of the protein coupled to continuum models for the description of
the solvent [198]. Very recently, there have been also some impressive
advances in the use of full atomistic description models, including explicit
solvent [57, 199]. In what follows, we give a short review of the latest
advances using each one of the models for globular proteins.

Highly simplified models of protein structure embedded into low
coordination lattices have been used for tertiary structure prediction for almost
20 years [65, 66, 75]. For example, Covell and Jernigan [64] enumerated all
possible conformations of five small proteins restricted to fcc and bece lattices.
They found that the nativelike conformation always has an energy within 2%
of the lowest energy. Virtually simultaneously, Hinds and Levitt [28] used a
diamond lattice model where a single lattice unit represents several residues.
While such a representation cannot reproduce the geometric details of helices
or B-sheets, the topology of native folds could be recovered with moderate
accuracy.

The pioneering work in the use of medium resolution protein models to
predict protein structure ab initio is due to Levitt and Warshel [75]. They were
able to obtain models of BPTI with a cRMSD from native of about 6.5 A. The
significance of these predictions was later called into question by Hagler and
Honig [200], who obtained comparable quality structures using a glycine and

alanine heteropolymer model of the BPTI sequence. Some time latel
and Doniach [160] developed a similar model that, when applied to
yielded low-resolution structures, with several proteinlike features. Th
of a number of other single domain proteins has also been examinec
56- and 90-neighbor lattices using medium resolution models deve
Skolnick and Kolinski [35, 59, 63, 179]. Folding simulations of the I
of protein A [35, 59] yielded structures whose cRMSD from nati
ordered parts of the molecule is 3.3 A. The folding of crambin,
assuming the identity of the disulfide crosslinks, produced low
conformations having an average Ca cRMSD of about 4.0 A.
High-resolution models have also been employed by a number of
but most have involved small peptides. Thus, Pedersen & Moult have
the application of genetic algorithms to the determination of protein
from sequence using a full atom representation of the solute and a ¢«
model for the solute-solvent interaction [201]. Peptide fragments of
residues long were tested, and it was found that, in most cases, the lo
energy structures produced by the GA were similar in conformatic
corresponding experimental structure. Avbelj & Fele using the “ele
screening model” have attempted larger structures [202]. In their appr
free energy of the protein contains two contributions: burial for all af
side chain dependent electrostatic interactions for the backbone a
“hierarchic condensation” algorithm is used based on Monte Carlo sin
in torsional angle space, increasing the range of interactions during tl
of the simulation. The method can predict the local secondary structur
as some supersecondary structure motifs and some small helical prot
the other hand, some encouraging studies using a full atomic descripti
solvent have also been recently reported. Daura er al. have descr
reversible folding in solution of an heptapeptide by using molecular ¢
simulations [199]. But so far, Duan & Kollman give the most in
achievement in structure prediction using detailed models with explici
[57]. They have been able to fold, using molecular dynamics simulat
starting from a random extended conformation immersed in a box
molecules, the villin headpiece subdomain, a 36 residue peptide, to a
having a cRMSD with respect to the experimental structure of 4.5
result is most impressive considering that the simulation contains on 1
of 10000 atoms and simulated 1ps of the folding reaction, a time very
experiment. Such impressive results could be obtained by :
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parallelization of the MD code and a no less impressive use of a massively
parallel Cray T3E with 256 CPU’s during 2 months of computation.

3.2. Prediction by restraint driven folding: Evolutionary based
approaches.

Approaches to structure prediction using different flavors of secondary
structure constraints have been recently reported. This renewed interest in the
use of secondary structure information as a way of reducing conformational
space when building molecular models is the result of the recent improvement
in accuracy of secondary structure prediction methods due to the introduction
of evolutionary information.

A common theme successfully used by some of the authors is the
incorporation, in some way or another, of supersecondary structure constraints.
This is an interesting strategy, as it reduces the conformational space by
eliminating many non protein-like states, and allows the sampling to be
focused on the most relevant regions. For example, Cui et al. have published a
method that assembles, using a genetic algorithm, predicted secondary
structure elements using a library of clustered supersecondary structure motifs
[203]. A second innovation in their method is the application of a fast
algorithm for the computation of the approximate accessible surface area of the
conformation. Thus, a “physical-based” force field is applied that also includes
hydrogen bonds. Tests using several small proteins showed that native like
conformations can be assembled as the lowest energy states. Along similar
lines, Jones has described a method that has been able to successfully predict
blindly the fold of the NK-lysin during the CASP2 contest [204]. The method
is based on the assembly of recognized supersecondary structural fragments by
the application of a Monte Carlo based simulated annealing algorithm. The
force field in this case is knowledge-based and is extracted from a statistical
analysis of the protein database. A slightly modified approach, but similar in
spirit to that of Jones, has been reported by Simons et al [205]. Their method
consists of assembling structures from a library of fragments extracted from a
structural database. The fragments are extracted on the basis of a profile based
similarity measure of the local sequence, and consist of secondary and short
supersecondary structure motifs. A Monte Carlo method using a Bayesian
scoring function extracted from the protein database is used to assemble the
structures. The method has been able to assemble some complicated motifs,

particularly in the case of helical proteins. However, as been noticed
others, selection of the native like topology cannot be reliably done.

A different approximation has been introduced by Samudrala et ¢
Their method blends a combination of approaches, including s
structure predictions, in an interesting fashion. First, using a tetrahedr:
all possible self-avoiding conformations of small proteins are exh:
enumerated. The best scoring 10000 conformations are selected using
based scoring function. Then, for each conformation, using idealized |
sheet values based on the predicted secondary structure, all atom struc
generated by fitting an off-lattice four-state ¢/yy model to th
conformation. The all atom conformations are energy minimized and ¢
using a second hybrid scoring energy function. The best scoring mc
used to generate consensus interresidue distances that are used in a
geometry algorithm to generate the final predicted conformation. The
has been tested on a set of 12 small proteins, giving good results fo
proteins for which accurate secondary structure predictions were availa

3.2.1. Evolutionary approaches based on residue conservation
Secondary structure prediction methods have recently shown con:
improvement when many evolutionary related sequences are avail
analysis [206, 207]. It is natural to ask whether additional informati
the arrangement of the secondary structure elements in space can be
from the analysis of the multiple sequence alignment. This idea then )
leads to trying to predict tertiary contacts from the alignmer
fundamentally different points of view have been applied to this probl
first is based on the analysis of residue conservation and the second is |
the analysis of residue covariation. The study of conservation has
history in sequence analysis and has been applied in different contexts
family classification or to binding site identification [20]. Several auth
also applied this idea to the prediction of tertiary contacts [164, 169, |
basic idea is that totally conserved hydrophobic residues should
important role in determining protein structure, and most probat
residues are found in the protein core. Thus, one could in principle esti
contact distance between two residues under the assumption that the
form part of the protein core. Such distances can be calibrated as a fu
the protein size using a database of known proteins and sequence aligm
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Contact prediction by analysis of sequence conservation has been used by
Aszodi & Taylor [165] and also by Braun and coworkers [164]; both were
previously discussed above in more detail in the context of studies that employ
exact secondary structure assignments. In both cases, the set of restraints are
used in distance geometry based algorithms (metric matrix based in the case of
Aszodi & Taylor and target function optimization in dihedral angle space in the
case of Braun and coworkers) in order to assemble the protein fold. The
problem with this type of approach is the lack of structural specificity in the
contact prediction; i.e., a large contact distance needs to be used in order to
avoid a large number of false positives. Thus, contact prediction on the basis of
conservation can only be used either as a general regularizer (the Aszodi &
Taylor approach [165]), or additional techniques during the simulations are
required to eliminate the false positives if smaller radii are used. For example,
Braun and coworkers [164] have suggested the use of what they call the self-
correcting distance geometry method, in which subsets of restraints are left out
and the impact on the force field energy tested. Restraints for which significant
improvement in the energy function is observed are left out. This
approximation assigns a very important role to the protein force field in the
evaluation of the restraint quality. It is not clear whether with current energy
functions, sampling schemes and errors in the predicted restraints, this is a
feasible strategy. As a result, the best results using residue conservation are
obtained with small helical proteins.

3.2.2. Evolutionary approaches based on correlated residue mutations

The study of variation in the multiple sequence alignment could in principle
provide a more sensitive method for the prediction of specific contacts than the
study of conservation. A technique to perform such a difficult task is to look
for correlated mutations. “The underlying idea being that a significant
correlation above the background in the alignment may imply closeness in
space for the correlated positions. However, the prediction of contacts from
correlated mutations in protein structures is a controversial subject. Several
studies have been made, with evident discrepancies in their conclusions. Jones
[208], in his review of the CASP2 contest in 1997, states that “the consensus
opinion today is that, whilst it is certainly possible to predict specific contacts
in protein structures from multiple aligned sequences, it is difficult to make use
of this information because of the relatively large numbers of false positives
that are thrown up”. Rost & Sander [209] give a similar conclusion in their

1996 review: “So far, none of the methods appears to find a path betw
Scylla of missing too many true contacts and the Charybdis of predi
many false contacts”. An analysis of the methods available indicated 1
effects were mainly responsible for the poor performance of the cont
prediction: the clustering of sequences in subfamilies (the “subfamily
and the presence of indirect, or multiple, correlations among different p
in the alignment.

However, the scenario is different today. Ortiz et al. have been
develop a new method that overcomes these two problems and appea
precise enough in the prediction of a small subset of contacts, which t
comprise about 20 % of the entire contact map [84, 166, 167, 172, 210
contacts are, however, not accurate, and only about 70% of them are
when an error of +3 residues in the local vicinity of the real contact is :
But when they are correctly used as restraints in specialized folding alg
they are of sufficient quality to fold small proteins to low resolution st
in a significant fraction of cases. The method is based on a combin
multivariate statistical analysis and local threading. The algorithm w
two steps: First, a few tertiary contacts (termed seeds), between the se
structure elements are predicted from the multiple sequence alignme
program sequentially applies partial correlation (in order to eliminate
effects) and factor analysis (in order to eliminate the subfamily effect
Pearson correlation matrix derived from the alignment. Typically, for
up to about 100 residues, about 5 seed contacts are selected. Next, the
contacts are then enriched by threading the test sequence through a st
database and then selecting pairs of secondary structure elements pred
be in contact on the basis of the seeds. Then, energy and cRMSD cut
applied to the selected fragments. If the set of fragments survives the
procedure, then additional contacts found in the selected fragme
projected onto the target sequence.

3.2.3. Incorporation of evolutionary information in MONSSTER

In MONSSTER, a secondary structure bias is incorporated using a
function; for those residues having a predicted secondary structur:
energetic biases for the various allowed conformational states are ¢
[211]. Regions predicted as U-turns are assumed to lie at the protein
[212]. For these residues, a penalty is added when they lie at or be
radius of gyration. This term acts to reduce kinetic traps by segrega
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different parts of the protein into its corresponding layers. The hydrogen bond
potential is also modified for those residues assigned to a predicted type of
secondary structure so that the resulting hydrogen bond pattern is compatible
with the secondary structural prediction. In addition, a cooperativity term that
stabilizes and propagates the formation of B-sheets is included in the potential.
Incorporation of predicted contacts as restraints also demands a slightly
different implementation from that used in the case of exact restraints. It is
necessary to take into account the spatial resolution of the restraints, and the
possibility of assigning wrong pairs of contacts. Thus, the restraint function
consists of a simple flat-bottom harmonic potential, operating either between
side-chain centers of mass or between the projection of the residue pair onto
the principal axes of their respective secondary structural elements, an
implementation termed restraint splinning. This implementation is often
needed as a result of shifts in registration in the contact map prediction: most
predicted seeds are shifted by at least one residue with respect to the
experimentally observed contact, and after growth, the different patches of
contacts can have different phases.

Furthermore, in order to have a better sampling of proteinlike regions, it is
convenient to introduce knowledge-based restraints designed to reproduce the
packing of supersecondary structural elements. This knowledge-based
information acts to reduce the number of misfolded structures. Two types of
knowledge-based rules are considered in MONSSTER, namely the chirality of
Bof units and the angle formed in PPo supersecondary structure units.
However, if the number of loop residues is greater than 15 residues, it is
assumed that the secondary structure prediction algorithm has missed an
intervening secondary structure element, and the knowledge-based rules are not
applied at all. 3

In order to obtain enough statistics, a large number of simulations is
required. Normally, a series of up to 1000 independent simulated annealing
runs are performed. Low energy structures are selected, typically the lowest
1% set of the complete pool of structures, and the resulting structures are
clustered on the basis of their pairwise cRMSD. From these, we select
representative structures from each of the families obtained, and proceed to the
native structure selection stage which consists of isothermal runs from which
the putative native topology is chosen on the basis that it has the lowest
average energy.

Table 1.
Results of the structural alignments of some predicted structures with the

experimental conformation using the structure superimposition program
[213]

_PROT HIT? Zur RMS® LaA® STRUCTURAL ALIGNMENT®

lc5a 2abk 2.0 3.0 48 1-8,12-15,20-23,28-38,42-48 49-54,56-65
3-8,10-13,23-26,28-38,42-48,50-55,56-65

lcis 2sec-| 1.0 2.6 40 2.7,8-11,14-19,27-32,36-39,45-48,46-53,56-60
1-6,9-12,13-18,28-33,35-38,44-47,49-53,60-64

lego lgrx 43 3.0 68 1-7,10-26,27-38,40-45,60-65,66-85
2-8,10-26,29-40,48-53,58-63,66-85

Ifas 3ebx 0.4 38 41 5-8,17-28,30-37,40-56
6-9,17-28,32-39,41-57

Iftz b 0.9 32 45 3-6,7-15,16-19,22-37,42-45,47-50,52-55
3.6,8-16,19-22,23-38,42-45,46-49,50-53

lgpt 1sco 0.2 2.9 33 6-12,16-27,28-36,38-42
8-14,16-27,29-37,19-43

1hmd lcei 2hmr) 5.0 4.1 76 1-18,22-28,29-45,46-67,72-83
4-21,22-28,30-46,49-70,72-83

life Ttig (life) 28 37 69 1-20,23-28,31-43,45-63,75-80,83-87
2-21,23-28,30-42,49-67,71-76,83-87

lixa ledm 0.6 3.0 30 6-11,13-22,24-37
6-11,14-23,24-37

Ipoh Irth-A 1.9 32 57 2-5,15-29,31-34,42-45,53-56,58-61,63-69,70-80,82-85
1-4,15-29,33-36,48-51,55-58,59-62,63-69,71-81,82-85

lpou loct-C 5.0 2.3 65 1-24,26-40,42-46,50-59,61-71
2-25,26-40,41-45,51-60,61-71

Ishg labo-A 0.9 40 43 4-7,8-16,25-28,29-32,36-57
5-8,10-18,25-28,30-33,36-57

1ubg 1ubg 2.5 3.4 58 1-7,9-18,21-37,41-46,56-59,61-64,67-76
1-7,11-20,21-37,39-44,45-48,59-62,66-75

3ich lwde 3.7 3.3 64 1-19,25-31,32-36,38-58,64-75
1-19,25-31,33-37,38-58,64-75

Prth ledl 2.7 2.5 42 2-15,17-23
2-15,17-23

*First hit (according to the Z-score value) of the structural alignment of the predicted conformation aj
set of DALI representative folds of the protein data base. Bracketed names correspond to second hits
® Z-score of the structural alignment of the predicted and experimental structures, as defined in the D.
method.

¢ CRMSD of the predicted and experimental structure for the aligned region.

¢ Number of residues used in the structural alignment

* Regions aligned. The residue numbering scheme refers to the sequential numbering from N to C ter
to the actual PDB numbering scheme.

Using a test set of 19 small proteins, we have demonstrated tl
approach can assemble native like topologies. The average cRMSD
lowest average energy structures corresponding to the native topology
from about 3 A for some helical proteins to roughly 6 A for B and a/B p
The relatively high cRMSD between the experimental and predicte
arises from registration shifts of the secondary structure elements cre
errors in predicted restraints, poor positioning of the loop regions, ar
regions where no restraints are predicted. Nativelike conformations
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obtained either as the best average energy in 16 of the 19 cases studied or as
the next best energy structure in the remaining three cases. However, in most
cases, the standard deviation of the energy in a given structure is of the order of
the energy difference between the average energy values, i.e., the energy
spectra substantially overlap. Thus, selection of the native fold on the basis of
the force field energy is uncertain.

Results of the structural comparison between predicted and experimental
structures are presented in Table 1. For 14 of the 19 predicted structures, it is
possible to find a structural alignment covering about 80% of the residues of
the protein with a cRMSD of about 2 to 4 A from native, but the residue
fragments are shifted in registration between the predicted and experimental
structures. Thus, we conclude that this ab initio folding approach produces
structures of comparable quality to threading methods.

3.2.4. Physical basis of correlated mutations

Recently, Ortiz ef al. have tried to establish whether there is some analogy
between their approach to protein structure prediction and current knowledge
of protein folding kinetics and thermodynamics [214]. By analyzing recent
results from Shakhnovich’s group on fast and slow folding model proteins (48-
mers on a cubic lattice) [215], it was shown that correlated mutations at
neighboring positions in three dimensional space (i.e., contacting residues),
naturally arise as a consequence of the evolutionary pressure on proteins to
rapidly fold to their global energy minimum. This conclusion is based on the
observation that these correlations occur in positions that are close (in space) to
the thermodynamically characterized folding nucleus of the model protein. It
has been rigorously shown that a subset of the residues forming this folding
nucleus is able to discriminate between fast and slow folding sequences, or in
other words, it is responsible for the differences in folding rate of the
sequences. A possible physical explanation of this effect is that these correlated
mutations arise from an attempt by the system to minimize its frustration as it
evolves in sequence space.

Predictions from these model studies match well with results on
experimental protein folding studies of some real proteins (Ortiz and Skolnick,
unpublished). Indeed, when a similar procedure is employed on real proteins
for which experimental data are available, there is a substantial overlap
between the folding nucleus found experimentally and the folding nucleus
predicted from the multivariate analysis of multiple sequence alignments.

Thus, once the seeds are expanded, we speculate that a substantial pr.
of the real folding nucleus of the protein is used as a restrain
MONSSTER simulations.

Some other parallels between the current protocol to protein ¢
prediction and our knowledge of folding of real proteins are worth not
example, we have observed that in the folding simulations, a higher
correct topologies is obtained when residues predicted as loops are “pul
from the structural core to the surface with a biasing potential. It is of
that in the analysis of fast folding model proteins one of the main
responsible for the higher folding rate is what we have called a “loop ef
which residues in certain loop positions are different in fast and slow
sequences. Another interesting parallel is related to the number of r
required for successful fold assembly. We have noticed that about N/4 .
are required to succeed in folding, and that this number can be obtain
the expansion of seeds, whose number is about 5 for a 100-residue prot
of interest that similar numbers have been observed in theoretical st
protein folding. For example, recent lattice and molecular d:
simulations indicate that the number of contacts in the folding transitior
of the order of N/4, and that the average number of contacts in the
nucleus for small model proteins is 5. Given that we have demonstrate
least a fraction of the predicted contacts by correlated mutations are adj
the protein folding nucleus, it is tempting to speculate that part of the
nucleus is included as a restraint during the simulations. Once the
nucleus is arranged in space, the search for the native state is esser
downhill process on the energy landscape. Thus, relatively simple forc
should be sufficient in order to allow for the on-site construction of the
the structure around the folding nucleus. This fact could explain the suw
structure prediction for small proteins of this method, and why only
small number of restraints extracted from a very limited set of «
predicted using evolutionary information it is possible to assemble nat
conformations.

All these findings rationalize the results obtained so far with the
approach to restraint-based protein fold prediction, and link theoreti
experimental studies of protein folding with theoretical approaches to s
prediction. This is quite exciting, as the convergent points of view of t
and experimentalists are beginning to have an impact on practical app
to predict protein structure.
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3.3. Limitations and outlook

While some advances in the field of structure predictions by ab initio model
building are apparent, we are still far from having reliable methods for
structure prediction, even at the level of small proteins. Useful checkpoints of
the state of the art in the field are the CASP meetings, held regularly, at
intervals of one or two years. These serve to evaluate in a large-scale
experiment the accuracy of structure prediction methods. In CASP2, the most
recent meeting in which evaluation data are available, ten groups participated
in the ab initio prediction category [216]. In general, although there were some
ab initio predictions that were reasonably close to the native structure, the
results were disappointing. The best of these predictions came from Jones’s
laboratory, that was able to predict by Monte Carlo simulations using
predefined building blocks of supersecondary structure elements and empirical
potentials the structure of NK-lysin to a cRMSD of 6.2 A [204]. Since then, the
advances discussed in this review suggest that today the situation is more
optimistic, Thus, it has been possible to make successful blind predictions of
several small proteins. One well-documented example is the prediction by
Ortiz and coworkers of the 8l-residue KIX domain of the CREB binding
protein. Contact map prediction followed by fold assembly simulations yielded
either a left- or right-handed three-helix bundles. For the correct topology, a
cRMSD of 5.5 A with the experimental fold is obtained [217].

The CASP3 contest is now in progress, and results for some proteins are
already available. From the partial results, it seems that substantially better
predictions are possible than were done in the past, but we must wait until a
full analysis of the results is available to assess the final outcome of this
contest.

4, WHAT 1S THE .REQUISITE RESOLUTION OF PREDICTED
STRUCTURES?

A key question in the field of protein structure prediction is how close must
a given model be to the native state in order for it to provide useful
information. In the previous section, we have shown that small proteins can in
a fraction of cases be predicted with a backbone cRMSD of 4-6 A. These are
typical of the average cRMSD of threading models for larger structures as well.
Such models have the same global topology as the native structure, but there
are errors in chain registration and packing angles. Nevertheless, we argue that
for many biologically relevant questions, such models are quite useful. To

identify binding regions, one is interested in which residues are expos
to identify binding epitopes), and here the accuracy is acceptable. Furth
in at least a number of test cases, Skolnick and coworkers have sho'
these models can be used to identify the active site residues associated
given class of chemical reactions (e.g. disulfide oxidoreductase activii
23]. On the other hand, because the interiors of these model proteins ar
poorly packed and there are substantial errors in the side chain positior
cannot be used to identify ligands. Such models are not appropriate for
lead compound identification. In other words, given the current state of
models can be produced that have significant use in biology, and whicl
be used as initial structures for rapid NMR refinement, but cannot be u
chemistry. A key question which must be answered is what resolution of
is required so that lead compounds can be identified using conten
approaches, not necessarily as being best, but within a reasonable th
that can be used for screening. Alternatively, different molecular desc
could be developed that could be used with lower resolution models.

5. TECHNIQUES FOR LOW TO HIGH RESOLUTION MODELI

As indicated in Section 1, a possible approach to the solution of the
folding problem is to use a hierarchical approach [63, 83, 84]. One starts
reduced protein model and then assembles the overall topology. Then,
detail is added. While quite reasonable in principle, in practice there a
very few examples of success. Early work yielded mixed results. For
domain of protein A, which adopts a three-helix bundle, the backbone ¢
from native of the detailed atomic model did not show improvement fr-
initial reduced model [63]. However, for the GCN4 leucine zipper (a
coil), the detailed atomic model showed substantial Improvement,
started from about a 3.7 A cRMSD, the resulting backbone cRMSD of tt
structure was 0.8 A [83]. However, its native conformation is very simy
consists of the side by side association of two a helices. More re
Simmerling and coworkers started from a model of a 29-residue
CMTI-1 generated by MONSSTER whose initial backbone ¢cRMSL
native is 3.7 A [84]. Using the Locally Enhanced Sampling method cor
with the Particle Mesh Ewald technique [218], they produced a structure
cRMSD is only 2.5 A from native. Of course, this is a very small prote:
more detailed studies on other systems must be done to establish the gen
of this result. Nevertheless, to put these results in proper perspective, w
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that models of this quality were commonly produced in the early days of
protein NMR spectroscopy. Thus, while improvements and further validation
are clearly necessary, encouraging progress is being made.

Quite often the structures generated from threading have insertions and
deletions, (especially in loops which may be involved in binding). In fact, the
alignments substantially differ from the best models that could be produced on
the basis of structural alignments. Thus, Kolinski and Skolnick and coworkers
have developed an approach that may allow for the refinement of models
produced by threading [219]. The structure is refined in the context of a side
chain based lattice model that employs a number of short and long range
potentials derived from multiple sequence alignments. The starting
conformation of the lattice chain approximately follows the aligned template
fragments. Then, Monte Carlo simulated annealing is used to minimize a
combination of the system’s internal energy (as defined by the model force
field) and the distance from a loosely defined tube surrounding the aligned part
of the template chain. As shown in Table 2, for a number of test cases, after the
models are minimized, there is considerable improvement in the quality of the
model. Because it is reasonably rapid, requiring about a CPU day per sequence,
see Section 6, it is applicable to whole genomes and nicely complements
classical homology modeling techniques. Since this technique is very much in
this spirit, we term it generalized homology modeling.

Table 2.
Results of refinements of the threading alignment based models by Monte
Carlo simulations an a reduced model

Protein PDB Sequence Full model Threading Final alignment Alignment
code length® cRMSD® alignment cRMSD* length
cRMSD*

lhom_ 68 - 3.76 5.59 3:53 45
Ttlk_ 103 4.64 7.88 4.57 84
256b_ 106 3.88 4.55 3.90 104
2azaA 129 9.40 11.04 10.45 80
2pey_ 99 4.37 7.76 4.43 93
2sarA 96 7.72 8.28 6.95 72
3cd4 97 5.96 5.72 5.49 79

*For 1hom, residucs 8-60 are considered to be structured, for 1tlk residues 9-103 are considered to be structure;
otherwise, the entire protein is compared in the Table. All RMSD values are for alpha carbon atoms.

*cRMSD from experimental structure after Monte Carlo refinement/mode! building for entire molecule (except
for the unstructured parts of 1hom and 1tlk).

¢cRMSD from native target structure of the threading-aligned fragments before and after Monte Carlo
refinement. The last column gives the total length of the threading alignments (number of aligned residues).

6. ROLE OF STRUCTURE PREDICTION IN THE GENC(
REVOLUTION

The computational requirements for evolutionary-based foldir
threading approaches to genomic scale structure prediction are
substantial, but not unreasonable given the increasing availability of f:
cost PCs. For example, contemporary evolutionary based protein
methods are applicable to single domain proteins, up to about 15(
residues in length and can identify possible novel protein folds [166, 16
Threading is significantly less expensive [132], but often there are in
and deletions in the subsequent alignments that require sub
modification using generalized homology modeling tools such as th
have developed [219]. Table 3 gives a summary of the CPU requirem
protein structure prediction on the genomic scale.

Table 3
Computational requirements in CPU days for protein structure predicti

genomic scale
Genome Number of Number of Monsster Threading Refinen
ORFS ORFS Folding CPU time® time*
<150 residues | CPU time®

M. genitalium 408 82 4,920 2 4
H. 1,680 369 22,410 8.4 1,
Influenzae

M. 1,735 425 25,500 8.9 4
Jannaschii

E. coli 4,290 879 52,740 215 4,
S. cerevisiae 18,567 1433 85,980 92.8 18

* Assumes 1000 folding simulations with an average 60 CPU days per sequence on a single proces
SGI ORIGIN 200 running at 180 megahertz.

® Based on the fact that 200 sequences threaded through 1000 structures take 1 CPU day on

an SGI Origin 200,

¢ Refinement takes 1 CPU day per sequence on an SGI Origin 200.

The resulting set of predicted structures could be used for molecular
assignment [12, 23]. In addition, since it is not practical to determ
structure of all proteins in a genome, some choices have to be made. E
evolutionary based folding, putative novel folds could be identified, an
guide experimental studies by suggesting likely targets [84, 166, 16
Using either this approach or threading, such models could provid:
starting structures for NMR refinement. Furthermore, using the exact 1
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methods described in Section 2, low-resolution models of single domain
proteins could be produced from a limited amount of experimental data [72, 86,
164, 165]. These models could then be used to help refine the structures,
thereby speeding up the process of structure determination. Thus, the field
protein structure prediction is likely to play a vital role in the genomics
revolution.

7. OUTLOOK

The last decade has seen considerable progress in the field of protein
structure prediction using reduced protein models. At present, for small single
domain proteins quite often it is possible to identify a handful of folds, one
being native [166, 167, 172, 204]. On the other hand, improvements in the
energy functions that select the native structure and better sampling techniques
must be developed. Such approaches will allow for the identification of the
native topology with greater certainty and the extension of these approaches to
larger, single domain proteins. This is likely to be accomplished by the
convergence of sequence based, threading and ab initio folding approaches.
Clearly, evolutionary information can provide tremendous structural insights,
the key question is how to extract this information in the appropriate manner.
Similarly, local fragment threading can provide a set of effective building
blocks from which to assemble novel native folds. While the latter has been
previously tried [205], it has failed due to the lack of an adequate energy
function; the requisite enhancement can be provided using evolutionary
information. One is still left with the problem of conformational sampling, and
here distance geometry may play a very important role [164]. Furthermore, in
the near future, one is likely to see the development and maturation of
techniques that can bring low resolution models closer to the native structure.
Better atomic potentials, better sampling and/or the use of evolutionary
information may achieve such model enhancement in detailed as opposed to
reduced models.

Improvements in the ability to predict tertiary structure will allow these
techniques to assist in the rapid determination of protein structures. Such tools
are necessary if structural genomics, which is designed to determine the tertiary
structure of all proteins [220-222), is to make major progress. By suggesting
proteins of novel fold and/or function, tertiary structure prediction can be used
to prioritize the selection of proteins whose structure will determined by
experiment. It will also assist in the rapid determination of the structure of

such proteins. Thus, the outlook for the future of the field of protein s
prediction is very bright. Not only will considerable theoretical prog
made in the near future, but also the practical applications of these tec
can make them an important contributor to the genomics revolution.
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