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Abstract

One of the most important unsolved problems of computational biology is prediction of the
three-dimensional structure of a protein from its amino acid sequence. In practice, the solu-
tion to the protein folding problem demands that two interrelated problems be simultane-
ously addressed. Potentials that recognize the native state from the myriad of misfolded con-
formations are required, and the multiple minima conformational search problem must be
solved. A means of partly surmounting both problems is to use reduced protein models and
knowledge-based potentials. Such models have been employed to elucidate a number of gen-
eral features of protein folding, including the nature of the energy landscape, the factors
responsible for the uniqueness of the native state and the origin of the two-state thermody-
namic behavior of globular proteins. Reduced models have also been used to predict protein
tertiary and quaternary structure. When combined with a limited amount of experimental
information about secondary and tertiary structure, molecules of substantial complexity can
be assembled. If predicted secondary structure and tertiary restraints are employed, low res-
olution models of single domain proteins can be successfully predicted. Thus, simplified
protein models have played an important role in furthering the understanding of the physi-
cal properties of proteins.

Introduction

The question of how to relate a protein’s sequence to its native structure is referred
to as the protein folding problem (1). It is widely believed that proteins obey the
“thermodynamic hypothesis”, which asserts that the protein’s native conformation
corresponds to a global free energy minimum that is dictated by the various inter-
actions present in the protein-solvent system (2-4). Unfortunately, due to the com-
plexity of the interactions, finding this free energy minimum in the myriad of mul-
tiple minima on the free energy landscape (5,6) is extremely difficult.

While molecular dynamics simulations of all atom models have provided many
insights into protein dynamics and structure (7-9), they cannot yet explore the mil-
lisecond-to-second time scales required for protein folding. One way to reduce this
time scale gap is to simplify the protein representation by employing “united
atoms” and effective solvent models. Such approaches assume that the essential
physics is retained, and both continuous space (10-12) and lattice-based protein
representations have been developed (13-15). For highly idealized treatments, lat-
tice models offer obvious computational advantages (16), but the situation is less
clear-cut when one wishes to model real proteins (17). A lattice representation pro-
vides the important advantage that many structurally related quantities (including
numerous energy contributions) can be precomputed. Thus, for two equivalent
models, calculations on a lattice model are about 100 times faster than for an off-
lattice model (18,19), and yet their equilibrium and dynamic properties are the
same (19-21). There is an immense qualitative difference when a computer simu-
lation is completed overnight instead of in several months. However, recent work
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suggests that the crux of the solution to the protein folding problem does not lie in
the particular choice of protein model, but in the development of potentials that can
recognize a nativelike state from a misfolded state and the development of tech-
niques that can explore the relevant regions of conformational space (17,19-30).

Use of Simplified Models to Elucidate General Features of Protein Folding
a. Highly Simplified Lattice Models

In an important series of papers, Go et al. examined a lattice model (13,31-33)
designed to elucidate the major features of the protein folding process rather than
to predict a specific protein’s tertiary structure ab initio. Here, “native” short- and
long-range pairwise interactions, consistent with the target lattice structure, were
defined. The effect of nonnative interactions inconsistent with the target structure
was also studied. They concluded that the model system exhibited an all-or-none
folding transition (33) provided that the long-range tertiary interactions were spe-
cific for the target structure. Certainly, these studies captured some important fea-
tures of protein folding and inspired many other lattice models of proteins (35).

A very simple lattice model that could be treated exactly by enumeration of all
compact states in short chains (36) is the HP model (16,37-39). The polypeptide is
represented as a string of hydrophobic (H) and hydrophilic (P) beads (residues) on
a simple square or cubic lattice. Hydrophobic residues attract each other, while the
remaining possible pairwise interactions are equal to zero, except for excluded vol-
ume interactions. The model assumes that hydrophobic interactions play the pre-
dominant role in protein folding. This view was recently questioned by Honig and
Cohen (40) who argued that interactions involving backbone hydrogen bonding are
also important. In related models studied by Shakhnovich et al. (41-58), the same
interaction strength was assumed for HH and PP pairs, while interactions for HP
pairs were somewhat weaker. Eventually, the model was generalized to include all
20 amino acid types.

General questions related to the protein folding process could be addressed within
the framework of this class of models, including the origin of the uniqueness of the
native state (38,48,49). For some sequences, the collapse transition was very coop-
erative, while for others, it was continuous (59). The folding pathway(s) changed
as well (49,60). Uniqueness is facilitated by incorporating a larger number of
amino acids (48,49,56,61). The HP model has been used to search sequence space
and to “design” optimal sequences (54,58,59). In this context, a variety of reduced
models that stress various aspects of the physical forces governing protein folding
(60,62-64) and dynamics (60,65-71) were proposed. These investigations have pro-
vided interesting insights into the protein folding process and have motivated the
idea of a folding funnel. The development of the folding funnel theory has led to a
considerable interest in the study of these minimalistic protein models, for which
excellent reviews are available (72,73).

b. Lattice Models of Intermediate Complexity

The HP model assumes that protein folding is driven by long-range interactions and
that short-range conformational propensities are only involved in structural fine
tuning (74). Earlier, a different viewpoint emerged from studies of simple diamond
lattice systems and the chess knight lattice model (75-88). These studies conclud-
ed that the native conformation emerges from an interplay of secondary structural
preferences and tertiary interactions. As Go et. al. found (13,31-33), folding is
more cooperative when the long- and short-range interactions are consistent with
the native fold. This qualitative picture has persisted even when far more sophisti-
cated versions employing knowledge-based potentials describing statistical sec-
ondary structure preferences and tertiary interactions were developed (35).



c. High Coordination Number Lattice Models

Reduced protein models with an increased number of lattice basis vectors were
developed to improve their geometric fidelity with respect to real protein structures.
For example, Kolinski & Skolnick employ a Cat virtual bond model where Cat
atoms are connected by 90 possible virtual bond vectors (23). Regardless of protein
size and orientation on the lattice, the Cct representation has about a 0.6-0.7A coor-
dinate root mean square deviation, CRMSD, with respect to experimental structures
(22). The fact that space is essentially isotropic and that all structures (essentially
independent of size) can be represented at comparable geometric resolution are the
major reasons why this high coordination lattice has been developed. Side chains,
which are not restricted to lattice points, are built from a set of rotamers, each at the
side chain center of mass. Excluding Gly, Pro and Ala, each amino acid has multi-
ple rotamers chosen so that the center of mass of any real protein side chain is no
farther than 1A from a member of the rotamer library.

i. Interaction Scheme

Recently, it has become popular to consider a simple interaction scheme (89,90)
where amino acids are divided into two types: hydrophobic and hydrophilic. Such
an approach is appealing because the number of energy parameters is small.
However, when ranked by their energy, nativelike states are found in the best sev-
eral hundred structures (90). While these results are better than random, there are
too many alternative conformations for use in a practical prediction scheme. Thus,
while complexity for complexity’s sake is certainly to be avoided, to reduce the
number of alternative low energy topologies and to reproduce essential features of
the physics of proteins, more complicated interaction schemes have been developed
(23,26,91,92). The empirical potential must capture both generic (sequence inde-
pendent) and sequence specific features of proteins. An example of a generic term
is hydrogen bonding (the free energy cost for the backbone residues not being
hydrogen bonded is very high), whereas the preference of Glu and Lys to interact
favorably is an example of a sequence specific contribution. As a example of an
empirical potential, we describe our present realization. The empirical potential,
Ecmpirs is given by

Eempir= Epp + Egec + Epr + Epair +Equ Q)]

where E,; is the hydrogen bond energy, E... accounts for statistical conformational
preferences for secondary structure and contains both generic and sequence specif-
ic components, E,,,; is a centrosymmetric burial potential that describes the prefer-
ence of a given residue to lie a given distance from the center of mass of the mol-
ecule, E ;. accounts for the tertiary pair interactions, and E,; describes the high-
er order multibody terms selected to reproduce the preferred side chain packing pat-
terns of pairs of supersecondary elements (23,25,27,35,91,93-95). All parameters
are available on the Internet (96) .

ii. Interplay of Intrinsic Secondary Structure Propensities and Tertiary
Interactions

This class of models has been used to explore a number of the general features of
protein folding thermodynamics as well as the prediction of tertiary structure.
Without tertiary interactions, but with potentials reflecting local, amino acid pair
specific, secondary structural preferences, on average the model correctly predicts
57% of the secondary structure of the native state (97). When tertiary interactions
as approximated by a one-body centrosymmetric burial potential are included (98),
the accuracy of secondary structure prediction increases to 66%, which is compa-
rable to standard methods without multiple sequence alignments (99). Most impor-
tantly, this calculation provides support for the idea that the observed secondary
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structure in a native protein results from the interplay between the short-range con-
formational propensities and tertiary interactions.

iii. Origin of Structural Uniqueness in Protein Models

For a putative 45-residue, six-stranded B-barrel, the factors responsible for the
structural uniqueness of the native state were studied for a set of model protein
sequences (26). Among possible origins of this uniqueness are hydro-
philic/hydrophobic amino acid patterns (100) and the role of polar amino acids in
destabilizing misfolded conformations (101). Thus, the first sequence studied had
an alternating pattern of valines and serines in the putative B strand regions that
were punctuated by appropriate turn forming residues. For this sequence, numer-
ous low energy, six-stranded, B-barrel topologies resulted. In systems whose con-
formational entropy is comparable to real proteins (102), a simple HP pattern, even
when punctuated by appropriate turn forming regions, does not have a structurally
unique native state. To enhance the uniqueness of the hydrophobic core, four Phe
residues were introduced. This diminished the number of distinct low energy
topologies, but none was energetically favored. Substitution of Asp for Ser at posi-
tions designed to destabilize incorrect topologies yielded a sequence that adopted
both the desired and mirror image topology (where the chirality of the turns is
reversed, but the chirality of the intervening secondary structural elements is not,
e.g., helices would remain right-handed). Analysis of the energetic contributions
indicated that tertiary interactions favored the desired fold, but that the turn
residues favored the mirror image topology. Substitution with Gly linkers in the
turns yielded the desired fold as being the most stable. Thus, this study suggested
that the structural uniqueness of a globular protein requires a variety of polar and
non polar residue types and that it is just as important to destabilize alternative con-
formations as to stabilize the native conformation.

iv. Origin of the Cooperativity of Protein Folding

Experimentally, many proteins exhibit a highly cooperative, two-state conforma-
tional transition (34) where the cooperativity often occurs on passage from the
molten globule to the native state and is accompanied by the fixation of tertiary
contacts (1,103-105). A minimal requirement for any protein model is that it qual-
itatively reproduce protein folding thermodynamics. The question is: what interac-
tions are responsible for the origin of the cooperativity of protein folding? To
explore this issue, the entropy sampling Monte Carlo method as developed by
Scheraga and coworkers (87,88,106,107) was employed to investigate the folding
thermodynamics of the model six-strand, Greek key, B protein described above
(27). Two distinct models were considered. In model Type I, only pair potentials
were used, whereas Type II models also included higher order side chain packing
terms. The scale factors for the pair and higher order multibody interactions were
adjusted so that the total tertiary energy in the putative native fold in Type I and II
models was essentially the same. The two models give rise to qualitatively differ-
ent behavior. Type I, lacking any high order multibody interactions, essentially had
a continuous thermodynamic transition. On inclusion of higher order multibody
packing interactions in Type II models, the conformational transition became all-
or-none. Interestingly, the lowest energy states corresponded to the same structures
in the two models. Proteins exhibiting two-state thermodynamic behavior have a
decreased density of states (lower entropy) in that part of the energy spectrum near
to, but higher in energy than the native conformation. These simulations suggest
that the cooperativity of protein folding arises from cooperative tertiary interac-
tions. Similar conclusions about the origin of two-state thermodynamic behavior
have been presented recently by Hao and Scheraga (102). Finally, a series of stud-
ies exploring the relationship of the folding thermodynamics and kinetics for this
designed sequence, protein A and the o/B protein G (108) has been undertaken.
Similar qualitative conclusions emerge.



Application of Reduced Protein Models to Tertiary Structure Prediction: Full ab
initio Approaches

a. Off-lattice Models

The pioneering attempt to use a simplified protein model to predict protein struc-
ture is due to Levitt and Warshel (109) who succeeded in predicting a structure of
BPTI whose cRMSD from native was about 6.5A. The significance of these pre-
dictions was later questioned by Hagler and Honig (110), who obtained compara-
ble quality structures using a glycine and alanine heteropolymer model of the BPTI
sequence. Wilson and Doniach (111) subsequently developed a similar model that,
when applied to crambin, yielded low resolution structures with several proteinlike
features. More elaborate statistical potentials were used to predict the structure of
short peptides (112,113). Such studies achieved better prediction accuracy, with
errors ranging from 1.66A cRMSD for the mellitin single helix to 4.5A cRMSD for
some larger polypeptides. Interestingly, Sun used a genetic algorithm for the con-
formational search (112), an idea subsequently employed by others (114,115).
Srinivisan and Rose have employed a hierarchical approach based on the staged
accretion of structure (89).

b. Low Coordination Number Lattice Models

Low coordination number lattice models have been used for tertiary structure pre-
diction for almost 20 years (15,116-118). For example, Covell and Jernigan (116)
enumerated all possible conformations of five small proteins restricted to fcc and
bee lattices. They found that the nativelike conformation always had an energy
within 2% of the lowest energy. Virtually simultaneously, Hinds and Levitt (119)
used a diamond lattice model where a single lattice unit represents several residues.
While such a representation could not reproduce the geometric details of helices or
B-sheets, the topology of native folds could be recovered with moderate accuracy.

c. High Coordination Number Lattice Models

Using a 56-neighbor (coarse) lattice to describe the Ca positions, Kolinski and
Skolnick performed ab initio folding simulations (91) on two 73-residue
sequences designed by DeGrado et al. (120-122). One sequence contained an all-
leucine core, and the simulations predicted that the right- and left-handed four-
helix bundles were isoenergetic, a prediction subsequently confirmed by experi-
ment (122). They also explored the origin of protein folding cooperativity and
found that including cooperative side-chain packing terms was necessary to
mimic the process of side chain fixation associated with passage from the molten
globule to the native state (103-105,123,124). The folding of a number of other
single domain proteins was examined on both 56- and 90-neighbor lattices
(23,24,92-94). For example, folding simulations of the B domain of protein A
(24,25) yielded structures whose cRMSD from native in the ordered parts of the
molecule is 3.3A. The folding of crambin (without assuming the identity of the
disulfide crosslinks) produced low energy conformations having an average Ca
cRMSD below 4A. A similar treatment of the folding of BPTI on a high coordi-
nation number lattice has also been done (125). Finally, the 90-neighbor lattice
model was applied to predict the quaternary structure of the GCN4 leucine zip-
per (126) starting from two isolated, random coil chains (92). The lowest energy
lattice structures have a Coc cRMSD from native ranging from 2.3 to 3.7A. Using
these structures, detailed atomic models were then built and relaxed using
CHARMM with explicit water (127). The resulting average structure has a
cRMSD of 0.8A for the backbone atoms, 1.31A for the heavy atoms in the dimer-
ization interface, and 2.29A for all heavy atoms, respectively. These studies
demonstrate the compatibility of the reduced protein representation on a high
coordination lattice with models at atomic detail.
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Application of Reduced Protein Models to Tertiary Structure Prediction: Empirical
Approaches

a. Use of Known Secondary Structure

One way to improve the quality of tertiary structure predictions is to use known
secondary structural information. In that regard, using an off-lattice model and
exact knowledge of the secondary structure, Friesner er al. successfully folded two
four-helix bundle proteins, cytochrome b562 and myohemerythrin, the large heli-
cal protein myoglobin and the relatively complicated fold of the o/f L7/L12 ribo-
somal protein (11,12,128). Furthermore, assuming known secondary structure and
using a genetic algorithm to search conformational space, Dandekar and Argos
(114) reported encouraging results on a test set of 19 small helical and B proteins
where they succeeded in predicting a significant portion of these proteins at about
5A resolution. However, use of predicted (rather than known) secondary structure
information substantially degrades the performance of their prediction algorithm.
Mumenthaler and Braun (129) have developed a self-correcting distance geometry
method that assumes known secondary structure and successfully identified the
native topology for 6 of 8 helical proteins.

b. Folding with Correct Secondary Structure and Tertiary Restraints

There have also been a number of studies that incorporate correct secondary struc-
ture and a limited number of correct tertiary restraints to predict the global fold.
One of the very early studies is due to Vasquez and Scheraga (130). In addition,
Smith-Brown et al. (131) have modeled a protein as a chain of glycine residues
with restraints encoded via a biharmonic potential. Unfortunately, they find that a
considerable number of restraints is required to assemble the native structure, there-
by rendering the approach impractical for realistic situations. Another effort to pre-
dict the global fold of a protein from a limited number of tertiary restraints is due
to Aszodi et al. (132). Their approach is very much in the spirit of Mumenthaler and
Braun and is based on distance geometry, where a set of experimental tertiary dis-
tance restraints are supplemented by a set of predicted interresidue distances. These
distances are obtained from patterns of conserved hydrophobic amino acids
extracted from multiple sequence alignments. In general, they find that to assemble
structures below SA cRMSD, on average, typically more than N/4 restraints are
required, where N is the number of residues. Again, a key problem with all these
approaches is the relatively large number of exact tertiary restraints required for
successful topology assembly.

Using their 90-neighbor lattice model, Skolnick and coworkers have developed
the MONSSTER (MOdeling of New Structures from Secondary and TErtiary
Restraints) program for folding proteins using loosely defined knowledge of the
correct secondary structure of regular fragments and a small number of exact ter-
tiary distance restraints (133). The method also incorporates the empirical poten-
tials described above reflecting statistical preferences for secondary structure,
side-chain burial and pair interactions, and hydrogen bond contributions
(131,132). Helical proteins can be folded with roughly N/7 tertiary restraints,
while B and o/B proteins require about N74 restraints, with N being the number
of residues in the protein. However, if the empirical potentials are turned off, then
with this level of restraint information, essentially random, compact structures
result. Thus, there is an important synergism between the empirical contributions
to the potential and the restraints. Of course, for any particular case, the accura-
cy depends on the restraint distribution (133,135). Most recently, Kolinski and
coworkers have reported an approach that reduces the requirement for the fold-
ing of B and /P proteins to N/7 known tertiary restraints (135). These studies
served as calibration studies to develop our current protocol to structure predic-
tion, which we summarize in what follows.



¢. Prediction of Tertiary Structure from Predicted Secondary Sructure and Tertiary
Restraints

a. Overview of Methodology

As depicted in Figure 1, our current approach to the prediction of protein structure
can be conceptually divided into three stages (1). Restraint derivation, (2).
Structure assembly, and (3). Selection of the native conformation. In addition, we
present objective, rigorous validation criteria that are applied in order to judge the
success of the prediction technique.

For restraint derivation, a multiple sequence alignment with the sequence of inter-
est is generated (136). Then, predicted secondary structure restraints are obtained
from a standard secondary structure prediction scheme. The predicted secondary
structural elements define the predicted core regions of the molecule. Next, tertiary
contacts (restraints), termed seeds, between these core elements are predicted from
multiple sequence alignments. Multiple sequence information is used to derive
such seed side chain contacts based on patterns of residue covariation in a set of
homologous sequences (139-141). These seed contacts between predicted topolog-
ical elements are then enriched by threading fragments of the test sequence through
a structural database that typically produces about N/4 contacts, the number
required for successful topology assembly (133,142).

In the structure assembly step, the set of predicted restraints is used in the MON-
SSTER method (133) to drive the conformational search. A series of up to 1000
independent, simulated annealing structure assembly runs are performed. Low
energy structures are selected, typically the lowest 1% set of the complete pool of
structures, and the resulting structures are clustered on the basis of their pairwise
cRMSD. From these, we select representative structures from each of the families
obtained, and proceed to the native structure selection stage, which consists of long
isothermal runs from which the putative native topology is chosen on the basis that
it has the lowest average energy (14,15). If the differing topologies cannot be
selected on this basis, then the prediction consists of several lowest average energy
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Figure 1: Schematic overview of the procedure for
tertiary structure prediction.



388 representatives of the various generated topologies.
. b. Validation of the Tertiary Structure Prediction Method on Proteins of Known
Skolnick et al. Structure
We have applied this method to a set of 19 different non-homologous small proteins
listed in Table IA. On applying this protocol, the following results were obtained: on
average, the predicted secondary structure is 69% correct; this is slightly less than the
reported average of this technique, which is 72 + 9% (99,137). As to the contact pre-
diction, and leaving out proteins for which known disulfides made a substantial con-
tribution to the total set of contacts used in the simulations, about 75% of the predict-
ed contacts are correct within +3 residues. Often, there were also a number of grossly
incorrect restraints that could potentially lead to non native topologies. Turning to the
assembly stage, for a particular sequence, about 10-30% of the assembly runs with
'MONSSTER produced nativelike topologies, independent of the protein class.
Table Ia
Summary of Prediction Results
A. Proteins with known structure in advance of prediction.
Protein® Type N° QF Net Npt Nw' =0 d=2¢ Native Topology Lowest Energy, Final
Nonnative Topology Score®
n,nsnh E,,i rs“j nTIka E..l l'S_,m
3cti small 29 50.5 » 6 0 833 100. 38 -107 6 6.7 -103 6 U
lixa small 39 70.5 43 5 0 100. 100. 56 -130 5 77 -131 5 S
1gpt small 47 70.6 0 13 0 46.1 100. 59 -276 9 6.6 -142 10 S
1tfi small 50 60.0 % 37 0 216 888 59 -202 p. ] 70 -191 31 U
prota® a 47 77.6 91 17 0 0 705 31 -246 2 94 -240 10 S
1ftz a 56 63.5 149 12 1 250 583 51 271 11 10.1 -270 15 S
Ic5a a 66 85.8 105 43 1 244 733 42 -194 p.\) 98 -182 % S
1pou o 7 78.8 122 49 0 286 89.8 35 418 18 11.9 -364 2 S
3icb o 75 823 154 Pa) 0 280 68.0 45 -406 21 12.6 -342 1} S
1hmd o & 90.6 157 20 2 100 650 46 458 3 93 460 13 PS
Ishg B 57 67.1 109 » 0 282 100. 45 420 19 6.7 -397 18 )
Ifas B 6l 67.1 9% 25 1 263 789 6.2 -330 19 9.37 -284 2 S
6pti off 5 58.8 2 19 0 684 100. 47 410 19 9.7 -397 18 U
lcis of (¢ 64.7 144 3 -0 86 782 64 -240 7 76 -232 7 S
llea op B 63.5 131 4] 2 97 756 6.1 -136 p. 94 -115 pi) U
lubi of 76 62.3 153 17 0 235 941 6.1 -238 9 115 -203 8 S
Ipoh of 8 659 162 36 3 83 555 65 -336 42 11.7 -299 3 U
lego off & 600 223 3 0 151 939 5.7 417 2 90 -396 16 S
life off 100 753 148 21 3 142 380 6.7 -419 15 82 -482 16 PS
Table Ib
B. Results for blind predictions.
T42? a 78 808 150 24 1 29.1 583 5.2-5.5 -362 15 11.7 -360 8 S
KIX aQ 81 87.7 320 37 11 26.3 579 58 -477 19 10.7 -479 % PS

2Prot refers to the PDB access number of the protein studied.

®N is the number of residues in the protein in the PDB file.

€Q; is the percent of correctly predicted secondary structure. All proteins have a Q, within one standard deviation of the average.
9N, is the number of contacts in the native structure.

€N, is the number of predicted contacts.
'N,, is the number of contacts that are incorrect when no native contact is found within +5 residues of a predicted contact.

2% of predicted contacts within d residues of a native contact.

hrms, is the average cRMSD deviation in A from the native structure.

iE; is the lowest average energy (in kT) after refinement for the nativelike topology.

Ir, is the number of restraints satisfied in the nativelike topology.

krms,, is the average cRMSD deviation from native in A of the alternative topology of lowest energy.

IE,, is the lowest average energy (in kT) in the alternative topology after refinement runs.

mrs,, is the number of restraints satisfied in the alternative topology.

"Relationship of lowest average energy structure to the native conformation if known. S indicates that the full structural selection criterion as
assessed by the energy and DALI are “successful”, PS indicates that the tertiary structure prediction is “partially successful”, and U indicates that
the tertiary structure prediction is “unsuccessful”.

OThe B domain of protein A (152).

pT42 is target 42 of the CASP2 meeting.
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Figure 2: Blindly predicted structures of a) T42
superimposed on its native conformation; b) the left
turning, three-helix bundle topology of KIX, super-
imposed on the experimental structure. The predict-
ed structures are in cyan and the experimental struc-
tures are in blue. All figures were produced with
MOLMOL (153).



390

Skolnick et al.

Figure 3: Contact map of the KIX domain. a)
Predicted seeds (red), enriched contacts (green) and
experimental contact map (blue); b) Contact map of
the correct quirality of the predicted model (green)
together with the contact map of the experimental
structure (blue).

HHHHHHHY

LYQal l‘lTHrAAI—!P!%‘I—V&fAI%QPmF!A%@ﬂ‘.’\'"l&

HHHHHHHHHHH UM HHHE M

HHHHHHHHHHHHHH

KGWHEHVTQDLRSHL YV

HHH

HHHHH

HHHHHHAHRHEHAN S

i

80

70

70

1

60

|4

40 50
1 i

30
1

QDLESHLVHELYQAI FPTPDPAALKDRRMENL VAYAKKVEGDMYES ANSRDEYYHLLAEKI YKI

S | )
-
>
°° L} L] L3 1] =
L L]
0 10 20 30 40 50 60 70 )
0'.‘5"'""@0["“['“‘\.‘0.. FPTPD'AAI.KD!I_NLVATA.IVIQM‘SANS.DIY"H[LAIKI YKI QKELEE
HHH HHHHHHHHHHHHHHHRHE N
0 10 20 30 40 50 60 70 80
1 L 1 L L 1 1 1
-
- -8
-
o
o

70

S - S
e =
=
=
]
=
=
H

k=3 =

1 L L] L) ¥ L] L] L)
1] 10 20 30 40 50 60 70 80
GVRKGWHERVTQULAS ML VKL VQAI FPTPDF AALKDREMENL VAT AKKVEGDMYES AN RDEYYRLLAEK! YKI QKELEE
(= N 1 L8 M BB S




We have judged success as follows: The predicted folds were subjected to a struc-
tural similarity search over a representative database using the DALI (143) struc-
tural superimposition program. The prediction was a “success” if the predicted low-
est energy structure, when used as a query with DALI, found the target structure or
a homologue as a first hit in the search. On the other hand, if two or more of the
selected topologies were isoenergetic, they were subjected to the same protocol,
and if one matched the native topology, this was considered a “partial success”. If
the next lowest average energy matched the native fold rather than the lowest aver-
age energy structure, this was also considered to be a “partial success”; otherwise,
the prediction was “unsuccessful”. We also used DALI to generate the best struc-
tural superposition between the predicted and native structures so as to examine
whether the differences between the predicted and actual structures reflect rela-
tively minor shifts in registration due to errors in the predicted secondary and ter-
tiary restraints, but not topological defects.

In 14 of 19 cases, “success™ or “partial success” was obtained with the lowest aver-
age Co. cRMSD values ranging from 3.5 to 6.7A. For the five “unsuccessful” cases,
3cti, Itfi, 6pti, 1lea and 1poh, DALI failed to find any structure that was signifi-
cantly related to the lattice model; thus, the prediction is labeled as being “unsuc-
cessful”. Furthermore, in spite of the relatively high RMSD of the predicted folds,
good topological predictions were made. Thus, DALI produced structural align-
ments between 2.7 and 4.0A over about 75% of the sequence, on average. These
results suggest that, when successful, this folding algorithm provides low resolu-
tion structures of comparable quality to those generated by threading techniques
(145).

c. Blind Predictions of Tertiary Structure

We also examined the results of predictions on those proteins whose structures
were not known at the time the predictions were made. Due to its inherent com-
plexity, these studies are required for validation of any structure prediction tech-
nique. Here, we review two documented cases of blind predictions that illustrate
both the virtues and flaws of the technique previously described.

i. Target 42 of the CASP2 Competition

At the second meeting on the Critical Assessment of Techniques for Protein
Structure Prediction (CASP2), a variety of protein prediction targets were provided
(146). We made a prediction on target 42 (T42) outside the competition when the
experimental structure was still unavailable. This protein was selected because it was
the most popular target sequence chosen by the ab initio protein folding groups.

Here, some details are given about the prediction of this target to give the reader a
feeling about how the method performs in practice. From the multiple sequence
alignment, a prediction of secondary structure was carried out using PHD. The pre-
diction wrongly merges helices 3 and 4, and does not predict the last helix (Figure
2A). The correlated mutation analysis (139) provides three seed contacts (6-56, 7-
70, 34-61), one involving a known disulfide crosslink (7-70). In this regard, since
the CASP2 organizers provided the location of three disulfide bridges, we used this
information in the subsequent topology assembly and refinement stages of the algo-
rithm. The three seeds along with the three crosslinks were expanded to give 24
predicted restraints.

As indicated in Table IB, subsequent comparison of the blindly predicted and native
structures indicates a backbone cRMSD ranging from 5.2-5.5A from the set of
NMR conformations, with a superposition of the predicted and native folds shown
in Figure 2A. Although absent from the secondary structure prediction, the turn
between the third and fourth helices is present in the predicted native structure.
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However, predicted helix four extends from residues 59-62 as compared to residues
57-61 in the native conformation. Even though the C-terminal helix is entirely
missed by the secondary structure prediction scheme, it partially forms in the pre-
dicted structure. These results, while quite encouraging, also demonstrate some of
the shortcomings of this approach. Most salient is the fact that (see Table IB) the
alternative, non native topology is only 2 kT higher in average energy than the
native topology. If the energy is dissected into its components, the pair potential
strongly favors the native fold by about 10-20 kT, whereas the restraint energy
favors the alternative topology by about 10 kT.

ii. KIX Domain of the CREB Binding Protein

We also undertook the prediction of the 81-residue KIX domain of the CREB bind-
ing protein, which is involved in gene expression as mediated by AMPc (147,148).
The secondary structure prediction scheme suggested that KIX should adopt a
three-helix bundle fold. Correlated mutation analysis provided four seed contacts
(22-35, 22-73, 35-73, 17-72), which when enriched yielded 38 predicted tertiary
contacts. Figure 3A shows the predicted seeds together with the enriched set of
contacts superimposed onto the experimental contact map.

Fold assembly simulations yielded either a left- or right-handed three-helix bun-
dle. As indicated in Table IB, on the basis of their average energies, the two
topologies are essentially isoenergetic. Decomposing the energy into its con-
stituent contributions (149), the pair interactions, secondary structure preferences
and hydrogen bond terms favor the right-handed bundle, whereas the burial ener-
gy and terms designed to generate proteinlike densities favor the left-handed bun-
dle. The difficulty in distinguishing topological mirror images is a problem that
this method often experiences with helical proteins, and indicates that improve-
ments in the empirical potential are necessary. Figure 2B shows the predicted
left-turning bundle superimposed on the experimentally determined NMR solu-
tion structure, which also adopts a left-turning, three-helix bundle fold. For the
correct topology, a RMSD of 5.5A with the experimental fold is obtained. This is
in spite of the fact that one small helix was missed in the secondary structure pre-
diction and there were shifts in registration in the contact prediction. Figure 3B
shows the contact map of the left-turning bundle together with the experimental
contact map. Note that although there is a general agreement, there are also con-
siderable shifts in registration in the positions of the contacts. Since both the left-
and right-handed bundle topologies are isoenergetic, our prediction criteria judge
this to be a “partial success”.

d. Conclusions from Restraint Assisted Folding

Based on these studies of small proteins, the following conclusions emerge. First,
the current level of accuracy of existing secondary structure prediction schemes
is adequate, in most cases, for this approach to tertiary structure prediction to
work. However, if an element of secondary structure is entirely missed, then
depending on its location in the native conformation, its absence might or might
not prohibit successful tertiary structure prediction. Second, these low resolution
models of small proteins can be assembled from rather inaccurate predictions of
a subset (25%) of the total number of tertiary, side chain contacts. Third, helical
proteins are predicted with higher accuracy than o/B proteins, and these are pre-
dicted with higher accuracy than f proteins. Fourth, the method usually predicts
a handful of global folds, one of which is native, but selection of the native fold
on the basis of its average energy is problematic.

Summary and Outlook for Future Progress

In the past decade, reduced models have provided an increased understanding of



globular protein systems. Nowadays, simplified lattice models are routinely used
to elucidate the qualitative, very general features of the protein folding process.
Furthermore, more complex lattice models, because of their increased detail and
better treatment of the configurational entropy of compact, near native states can
provide qualitative insights into the factors responsible for the observed two-state
thermodynamic behavior of proteins. At least at the level of reduced protein mod-
els, it is becoming increasingly apparent that the specificity of the protein for its
native fold arises from higher order than pair, multibody interactions. The deriva-
tion of such interactions will remain a challenge, but with the increasing size of
the sequence and structural databases, it is quite likely that progress in this area
will be made.

Turning to the problem of tertiary structure prediction for small single domain
proteins, the combination of predicted secondary and tertiary restraints resulting
from multiple sequence information should in many cases allow for the predic-
tion of a handful of topologies, one of which is native. Aside from the obvious
improvements in the method of contact map prediction, further progress demands
the development of better conformational sampling approaches and improved
energy functions, and efforts to achieve these goals are being made by a number
of groups. Given such low resolution models of the native structure, a key ques-
tion is what information can such models provide? Or put another way, how
close does a model have to be to the native state for it to be useful? Recent work
suggests that such low resolution models as produced by the current state-of-the-
art can be used to identify protein active sites (150), but obviously they cannot be
used to identify binding ligands. Methods that refine these types of low resolu-
tion models to higher resolution will have to be developed, and encouraging pre-
liminary progress has been reported using molecular dynamics in explicit water
(151). In the near future, studies of models at varying levels of resolution should
prove to be a very powerful means of retaining the advantages of atomic detail
where appropriate while simultaneously exploiting the advantages of conforma-
tional sampling provided by reduced representations. Thus, reduced models are
likely to play an increasing role in computational biology.
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