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ABSTRACT A new method for the homology-
based modeling of protein three-dimensional struc-
tures is proposed and evaluated. The alignment of a
query sequence to a structural template produced
by threading algorithms usually produces low-
resolution molecular models. The proposed method
attempts to improve these models. In the first stage,
a high-coordination lattice approximation of the
query protein fold is built by suitable tracking of the
incomplete alignment of the structural template
and connection of the alignment gaps. These initial
lattice folds are very similar to the structures result-
ing from standard molecular modeling protocols.
Then, a Monte Carlo simulated annealing procedure
is used to refine the initial structure. The process is
controlled by the model’s internal force field and a
set of loosely defined restraints that keep the lattice
chain in the vicinity of the template conformation.
The internal force field consists of several knowl-
edge-based statistical potentials that are enhanced
by a proper analysis of multiple sequence align-
ments. The template restraints are implemented
such that the model chain can slide along the tem-
plate structure or even ignore a substantial fraction
of the initial alignment. The resulting lattice models
are, in most cases, closer (sometimes much closer) to
the target structure than the initial threading-
based models. All atom models could easily be built
from the lattice chains. The method is illustrated on
12 examples of target/template pairs whose initial
threading alignments are of varying quality. Pos-
sible applications of the proposed method for use in
protein function annotation are briefly discussed.
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INTRODUCTION

In the limit of no apparent sequence similarity to any
solved protein structure, threading methods are perhaps
the most powerful tool for the approximate fold determina-
tion of new protein sequences.1–6 Given a library of known
protein structures, threading methods attempt to find the
fold that is the most compatible with a probe sequence.
Various sequence-to-structure alignment methods and a

variety of scoring functions (simplified potentials) have
been developed to achieve this goal.1–4,7,8 When the probe
sequence is aligned onto the structure of another protein,
an approximate three-dimensional model results. Unfortu-
nately, the resulting models obtained from threading
approaches are usually of very low quality, with gaps and
insertions in threading alignments that somehow have to
be connected or closed. Some fragments are significantly
misaligned with respect to the true structure of the test
protein. This may happen for several reasons. First,
despite some general similarity in their folds, the struc-
ture of the query sequence and the protein detected by a
threading method may be quite different. Thus, even after
the best possible superposition, the two structures may
differ significantly. Second, various threading methods
and their associated scoring functions only focus on as-
pects of protein structure and a subset of their possible
interactions. Consequently, the resulting sequence-to-
structure alignments are, in general, quite different from
those which result from the optimal structural superposi-
tion.6 Since standard threading procedures employ a rigid
‘‘template’’ protein scaffold, the design of a scoring function
that would give rise to the best possible structural superpo-
sition is, in practice, extremely difficult.

Nevertheless, even crude and incomplete threading-
based three-dimensional models are sometimes sufficient
for the functional annotation of newly sequenced pro-
teins.9,10 However, as the quality of the model decreases,
active site identification becomes more and more problem-
atic. With regard to the immense number of new protein
sequences of unknown functions that come from sequenc-
ing various genomes, any method that improves protein
structure predictions would be of great scientific as well as
practical importance.

When the threading alignments are of good quality, then
standard homology modeling tools can be used to build
useful molecular models.11,12 In contrast, when the align-
ments are poor, it is rather unlikely that classical homol-
ogy modeling can significantly correct alignment errors.
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One possible way to deal with this problem was recently
proposed by Jaroszewski et al.13 They have shown that
detailed molecular models built from various threading
alignments (obtained by changing the parameters of the
threading algorithm) can be evaluated using knowledge-
based potentials and the best alignments could be detected
in the majority of cases. This method detects and rejects
these cases where the target and template structures
differ significantly. However, it does not deal with the
problem of improving the alignment subsequent to the
identification of the best probe-template pair.

In this work, we attempt to build and refine protein
molecular models. Threading-based target-template align-
ments have been obtained from one standard threading
method;14 but in principle any could be used.15 The model-
ing technique employs a lattice model recently developed
by us and tested in a different context. This SICHO (SIde
Chain Only) model employs a very simple, computation-
ally very efficient, yet quite accurate, representation of
protein structure and dynamics.16,17 For the purpose of the
present application, the model has been refined by incorpo-
rating evolutionary information into the interaction
scheme. Starting from an initial conformation of the model
lattice chain that approximately follows the threading
template, a Monte Carlo annealing procedure attempts to
find a conformation that maintains some (but not all)
features of the original template and at the same time,
optimizes packing and intra-protein interactions, as de-
fined by the reduced model of the probe protein. This could
also be visualized as a folding simulation in a soft tube
built around the threading template.

The new method has been applied to 12 target/template
protein pairs that produce various quality models. The
parameters of the lattice model force field (more precisely,
the balance between the intrinsic force field and the
template-related biases) have been adjusted by a trial and
error method for three of the 12 target/template protein
pairs. The obtained parameters were subsequently used in
the other nine simulations. As will become apparent after
analysis of the simulation results, the obtained models for
the three proteins used for tuning the potential are among
the best. This may suggest that the method was strongly
tuned to these three examples. This is not the case. First,
these three proteins belong to completely different struc-
tural classes, so the tuning should be rather general, i.e.,
applicable to the majority of single domain proteins.
Second, when the tuning procedure is performed on just a
single case (the plastocyanin/azurin pair) almost the same
results are obtained; this suggests that the optimal bal-
ance between the template-related soft restraints and the
intrinsic force field of the model is similar for various
proteins. Finally, the poorer results obtained for most of
the remaining nine test proteins are simply due to the very
poor quality of the initial threading models.

The remainder of this paper is outlined as follows. In
Methods, we present the reduced lattice protein model
used in the Monte Carlo sampling procedure. We describe
the protein representation, the model of stochastic dynam-
ics, the interaction scheme and the template-related bi-

ases and restraints. Then, in the Results section, the
molecular models obtained from Monte Carlo simulated
annealing and subsequent refinement procedures are com-
pared with the initial crude, threading-based models. In
the Discussion, we analyze the improved models and
attempt to identify typical underlying structural rearrange-
ments. Possible developments and applications to large-
scale sequence-to-structure, and structure-to-function com-
putational projects are also briefly discussed. Finally, the
Conclusions section summarizes the main findings of this
work. Some details that are important on a technical level,
but not necessary for following the main features of this
work, are found in the Appendix.

METHODS
Lattice Model

The reduced modeling of protein structure and dynamics
usually employs an alpha carbon main chain representa-
tion.18,19 Side chains are either completely neglected or
treated at various levels of simplification. The choice of the
alpha carbon representation is mostly motivated by the
high level of geometric regularity of the main chains in
folded proteins.19 On the other hand, the packing and
interactions between the side chains are perhaps much
more sequence specific than are those of the main chain.

Motivated by the above reasons, we recently proposed a
very simple lattice model in which we only explicitly treat
the protein side chains. Elsewhere, it has been shown that
it is possible to incorporate many protein-like features into
such a representation.16,17 These include local conforma-
tional propensities and the characteristic packing regulari-
ties of protein side chains. The advantage of this model is
that the entire conformational space of quite large proteins
can be efficiently sampled. For example, assuming loose
knowledge of the secondary structure and a few long-range
side chain contacts (about N/7, where N is the number of
residues), which may come from sparse NMR data or other
experimental techniques, low-resolution protein structures
could be reproducibly and rapidly assembled for proteins
containing up to 250 amino acids.17 This compares rather
favorably with other attempts to build low-resolution models
from a small number of long-distance restraints.19

The model employed here is very similar to that previ-
ously described. There are small updates to the protein
representation that slightly increase the geometric fidelity
of the model. For the reader’s convenience, the design of
the model is outlined below.

Reduced representation of polypeptide chains

The model chain consists of a string of virtual bonds
connecting the interaction centers that correspond to the
center of mass of the side chains and the backbone alpha
carbons. All heavy atoms have the same weight in this
averaging. Thus, the center of glycine coincides with its Ca,
the center of alanine is located in the middle of the Ca2Cb

bond, the center of valine roughly coincides with the Cb

atom, etc. These interaction centers (beads) are projected
onto an underlying cubic lattice with a lattice spacing of
1.45 Å. Obviously, the virtual bonds resulting from such a

593IMPROVEMENT OF THREADING-BASED PROTEIN MODELS



projection are of various lengths that depend on the
identity of the two corresponding residues, the main chain
conformation and the rotameric state of the side chain (see
Fig. 1). A change in any of these variables may change the
corresponding virtual bonds (the chain vectors v). In
proteins, these distances have a quite broad distribution,
ranging from 3.8 Å for a pair of glycines to about 10 Å for
some pairs of large side chains in their anti-parallel orienta-
tion and expanded conformations. The corresponding set of
lattice vectors covers this distribution with good fidelity. The
shortest vectors are of the form of (62, 62, 61) or (63, 0, 0)
vectors, including all possible permutations. The length of
these vectors corresponds to a distance of 4.35 Å. The longest
lattice vectors are of the (65, 62, 61) type and their length
corresponds to 7.94 Å. Thus, the wings of the distribution are
cut off. This should not have any noticeable effect on the
model’s fidelity because the small-distance cut-off error is well
below the resolution of the model, and the long-distance cut-off
error is not important due to very rare occurrences of distances
above 8 Å. As a result, the set of allowed lattice bonds
consists of 646 vectors. For technical reasons, sequentially
adjacent vectors must not be identical.

A cluster of excluded volume points is associated with
each bead of the model chain. Each cluster consists of 19
lattice points: the central one, six points at positions (61,
0, 0), (0, 61, 0) and (0, 0, 61) with respect to the central
one, and 12 points at positions (61, 61, 0), including all
permutations. Thus, the closest approach positions of
another cluster with respect to a given cluster are of the
form (62, 62, 61) and (63, 0, 0), as measured between the
cluster centers. Consequently, there are 30 closest ap-
proach positions. The distance of the closest approach
nicely corresponds to the smallest values of the inter-
residue distances in real proteins. Since the average
‘‘contact distances’’ (see the following sections) of the model
residues are somewhat larger than the distance of the

closest approach, there are much more than 30 spatial
orientations of two residues being in contact. Conse-
quently, such a representation of protein structure entirely
avoids various anisotropy effects typically seen in the
lower resolution lattice protein models. Figure 2 shows a
small fragment of the model chain confined to the underly-
ing cubic lattice with a lattice spacing equal to 1.45 Å. The
excluded volume points are denoted by the solid and open
circles. The solid circles indicate the three lattice points
along the direction orthogonal to the plane of the figure:
one in the plane below and one in front of the plane. The
open circles denote points in the plane. With the above
geometric restrictions, all PDB structures20 could be repre-
sented with an average root mean square deviation (rmsd)
of about 0.8 Å. Again, the accuracy of the fit does not show
any systematic dependence on protein length or on the
orientation of the crystallographic structure with respect
to the lattice coordinate system. Some features of the
model chain are illustrated in Figure 1.

Conformational updating

The simplicity of the model protein representation facili-
tates the very rapid sampling of conformational space. The
Monte Carlo algorithm employs three types of conforma-
tional transitions. The first type is a single bead, two-chain
vector move. A random displacement of a randomly se-
lected bead is generated and approved provided that the
vector lengths and the excluded volume are not violated.
The range of a random displacement is from 1 to 51/2 lattice
units. When accepted by the Metropolis criterion21 (see the
next section), such a move is equivalent to a collective

Fig. 1. Schematic illustration of the protein representation employed
in this work. The fragment of a detailed protein structure (main chain back-
bone is shown in gray and the side chains in thinner sticks). The blue sticks
correspond to the virtual bonds of the model chains, connecting the centers
of mass of groups of atoms consisting of side chains and alpha carbons.

Fig. 2. Lattice representation of the model chain and its excluded
volume. The sticks correspond to the model chain virtual bonds. Excluded
volume of each model amino acid is represented by 19 points on the
underlying cubic lattice with the mesh size equal to 1.45 Å. The black dots
correspond to three lattice points along the axis orthogonal to the picture
plane (one in the plane, one below, and one above the plane). The open
circles correspond to single lattice points in the picture plane.
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rearrangement of the main chain and/or the side chain
internal coordinates in a real polypeptide chain. The force
field of the model, especially its generic components,
prevents the acceptance of nonsensical, non protein-like
conformations.16 The second type of motion involves the
permutation of three chain vectors. This is a larger scale
move that is relatively rarely accepted due to possible
steric interactions. The last type of move involves a
randomly selected fragment consisting of several chain
units. This fragment moves as a rigid body due to appropri-
ate small changes in the two flanking chain vectors. For
instance, such a move may translate a helical segment by a
small distance, thereby slightly changing the conforma-
tion of the corresponding turn or loop regions.

Interaction scheme

The model force field consists of several types of poten-
tials. The first are generic, sequence-independent, biases
that penalize against non protein-like conformations. Se-
quence specific contributions to the force field consist of
knowledge-based, two-body and multibody potentials ex-
tracted from a statistical analysis of known protein struc-
tures. Finally, there are two kinds of potentials that
contain evolutionary information extracted from multiple
sequence alignments. In all cases, all PDB structures
whose sequences are similar to the query sequence have
been removed from the structural database used in the
derivation of the potential (greater than 25% sequence
identity). All potentials were derived from PDB structures
and then translated into proper lattice discretized form.

The generic protein stiffness potential and second-
ary structure bias. As defined above, the model chain is
intrinsically very flexible. A substantial fraction of its
conformations that are allowed due to the assumed simpli-
fied hard core interactions do not correspond to any real
polypeptide chain conformation. In reality, proteins are
relatively stiff polymers exhibiting very characteristic dis-
tributions of certain short-range distances. For example, the
bimodal distribution of the distances between the i-th and
i14th residues reflects the tendency to adopt either of two
types of conformations. These correspond to expanded
(b-type or expanded coil) or very compact conformations
(as within helices or turns). Such generic features need to
be included in the model. We proceed in a similar fashion,
as described elsewhere.16 The details are different due to
the particular protein representation that we employ.

First, for all possible two-vector sequences of the model
chain, let us define a direction w that is almost perpendicu-
lar to the plane formed by the fragment. A small system-
atic deviation from the exactly orthogonal direction is
introduced into w to obtain vectors that are on average
parallel to the helix axis and that also account for the
average supertwist of b-strands.

ui 5 (vi21 ^ vi 2 vi21 2 vi) (1)

wi 5 ui / 0ui 0 (2)

where vi is the i-th vector (or virtual bond) of the model
chain, the symbol ‘‘^’’ denotes the vector cross product and

0ui0 is the length of vector ui. These ‘‘directions of secondary
structure’’ (the vectors w point along a helix or across a
b-sheet) are normalized so that their length equals unity.
The idea is explained in Figure 3, where the model chain
virtual bonds are shown in solid lines and the vectors wi
are shown in open arrows.

The stiffness/secondary structure bias term has the
following form:

Estiff 5 2egen [S min 50.5, max (0, wi ● wi12)6]

2 egen [S min 50.5, max (0, wi ● wi14)6]. (3)

Where egen is a constant energy parameter, common for all
generic potentials, and S means the summation along the
chain. The above formulation means that the system is
energetically stabilized when pairs of the ‘‘direction of
secondary structure’’ vectors are parallel (positive dot
product). As can be read from the above equation, the
stabilization energy increases in the range between 90°
and 30° (the angle between appropriate vectors w) and
then maintains its extreme value. Thus, small fluctuations
of secondary structure have no influence on the value of
this potential.

Additionally, a weak bias has been introduced towards
helix-like and b-type expanded states. All conformations
are, of course, allowed; the purpose of this bias is to mimic
a protein-like (average) distribution of local conforma-
tions. Symbolically, this could be written as follows:

Estruct 5 S 5dH1(i) 1 dH2(i) 1 dE1(i) 1 dE2(i)6 (4)

with:

dH1(i) 5 2egen, for ri,i14
2 ,36 and

(vi ● vi13) . 0 and (vi ● vi12) , 25

0, otherwise (4a)

dH2(i) 5 2egen, for ri,i14
2 , 36 and

(vi ● vi13) . 0 and (vi11 ● vi13) , 25

0, otherwise (4b)

Fig. 3. A fragment of the model chain and a set of vectors w employed
in the definition of the short-range polypeptide chain stiffness (see the text
for details).
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dE1(i) 5 2egen, for 56 , ri,i14
2 , 135 and

(vi ● vi12) . 5

0, otherwise (4c)

dE2(i) 5 2egen, for 56 , ri,i14
2 , 135 and

(vi11 ● vi13) . 5

0, otherwise (4d)

The numerical values are in lattice units and are selected
to define a broad range of helical/turn conformations (for
the dH1 and dH2 contributions) or expanded conforma-
tions (for the dE1 and dE2 contributions). Due to the
exclusive character of the two subsets of geometrical
conditions for specific chain conformations, the minimum
contribution from a residue is equal to 22egen (either the
first two conditions or the two last conditions can be
simultaneously satisfied). Let us express the last condition
a bit differently. Equation (4d) says that the system gains
an energy equal to 2egen for being in an expanded b-type
conformation. For a four-vector fragment of the chain, this
requires that the distance between the i-th and i14th beads
(the centers of mass of the side chain plus Ca units) has to
lie between 10.7 and 16.8 Å, and the chain vectors vi11 and
vi13 have to be oriented in a parallel-like fashion (the dot
product . 5). Additional stabilization is gained when, for
the same fragment, another pair of vectors is parallel (see
Eq. (4c)). The broad ranges allow for substantial fluctua-
tions around an ideal expanded state and accommodate
the variations of the model chain geometry caused by
differences in side chain size.

We have performed computational experiments where
all interactions except the ones defined above, were turned
off. At low temperature, the model chain forms rapidly
fluctuating local clusters of expanded and helix-like states.
The persistence length and the distributions of the short-
range distances along the chains mimic protein-like geom-
etry.

Generic packing cooperativity. We introduce two
terms that enforce some of the most general regularities of
the dense packing of protein structures.22 In all the more
regular elements of secondary structure (within helices
and b-sheets, but not between helices) and, to a lesser
extent, in some coil-type fragments and turns, given a
contact between a pair of reference residues, there is a very
strong preference to have contacts between the preceding
and the following residues. Indeed, the contact maps of
globular proteins contain very characteristic strips.23 Those
near the diagonal correspond to the intra-helical contacts,
those farther from the diagonal (parallel or antiparallel to
the diagonal) correspond to contacts between b-strands
within b-sheets. Thus, we introduce the following ener-
getic bias towards such a mode of packing:

Emap 5 2egen 5SS (di, j ● di11, j11 ● di21, j21) dpar

1 SS (di, j ● di21, j11 ● di11, j21) dapar6 (5)

where the summations are over all pairs of residues i, j,
and di,j is equal to 1 (0) when residues i and j are (are not) in
contact. dpar is equal to 1 only when the corresponding
chain fragments are oriented in a parallel manner, i.e.,
when the chain vectors satisfy the following condition
(vi21 1 vi)●(vj21 1 vj) . 0, otherwise dpar 5 0. Similarly,
dapar is equal to 1 when the chain fragments are anti-
parallel, and it is equal to zero otherwise. For a given
contact of a pair of residues, the maximal energetic
stabilization due to regular side chain packing is therefore
equal to 2egen, which has the same value as in the
previously defined potentials.

The packing cooperativity of the model protein is further
enhanced by a term that mimics main-chain hydrogen
bonds. The geometry of protein hydrogen bonds is trans-
lated into a specific range of the model chain geometry.
First, let us define a vector that is likely to connect the
model beads that are within motifs that represent regular
secondary structure elements. Such a vector should con-
nect beads i and i13 in a helix and the appropriate beads
in a b-sheet. An optimization procedure leads to the
following definition of this vector:

hi 5 3.3(vi21 ^ vi )/ 0 (vi21 ^ vi ) 02 vi21/ 0vi21 0 . (6)

The value of the 3.3 pre-factor has been found to be
optimal for reproducing the internal main chain hydrogen
bonding in the lattice projected PDB structures. However,
due to the wide distribution of the model chain bond
lengths, there are always some hydrogen bonds that are
missed in the model. The coordinates of the vectors hi are
rounded-off to the nearest integer value. Thus, in a helix
the hi vectors have a component whose length is about 3
lattice units in the direction perpendicular to the three-
residue plane (the first term in the above sum). They are
also tilted back by a lattice unit (the last term of Eq. (6)).
The projection along the helix axis is also about 3 lattice
units; this nicely coincides with the 1.5 Å longitudinal
increment per residue in a real helix. Residue i is consid-
ered to be hydrogen bonded with residue j when the vector
hi points to any of the 19 points of the excluded volume
cluster of residue j. Correspondingly, the vector 2hi may
point to another cluster. Such a situation is illustrated in
Figure 4, where residue i is hydrogen bonded with residues
j and k because the hydrogen bond vectors coincide with
the excluded volume of both residues. The excluded vol-
ume clusters are symbolically represented by open spheres.
Since the excluded volume clusters never overlap, the
maximum number of these ‘‘hydrogen bonds’’ originating
from residue i is equal to 2. The total energy of the
‘‘hydrogen bond network’’ can be written as:

EH-bond 5 2eH-bond S (d1 1 d2 1 d1,2) (7)

where d1 (d2) equals 1 when the vector hi (2hi) connects
with an excluded volume cluster, and d1,2 5 1 when both
vectors connect to some clusters, respectively. Otherwise,
the corresponding terms are equal to zero. The cooperative
contribution, d1,2, corresponds to the local saturation of
the hydrogen bond network.
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Again, a computational experiment has been done to
check the effect of these generic potentials on the behavior
of the model system. When only the interactions outlined
up to this point are included (all the above short- and
long-range generic potentials), the model lacks sequence
specific information. At sufficiently low temperatures, the
chain adopts either of the following two types of struc-
tures: a long (sometimes broken) helical structure, or a
b-sheet with a right-handed supertwist. These motifs
fluctuate and are not structurally unique. In a long chain,
these two classes of secondary structure elements some-
times form separate domains.

Sequence specific short-range interactions. For the
sequence of interest from the structural database, one may
extract the statistics of distances between a pair of amino
acids (with their interaction centers as defined in the
model) Ai and Bi1k, where A and B denote the identities of
the amino acids and i is the position in the chain. Here, we
consider k 5 1, 2, 3, 4, 6 and 8. The terms for k 5 3 and k 5
6 are treated as chiral variables. This means that the
distance between Ai and Bi13 is stored as a positive or
negative number, depending on the handedness of the
corresponding three-bond segment. For the k 5 6 case, the
chirality is defined for three subsequent supervectors (the
doublets of vectors between beads i and i12, i12 and i14,
and from i14 to i16). As was done here, the sequence of
interest can be divided into overlapping short fragments.
These could be aligned to the sequences of known struc-
tures. The highest scoring fragments provide a set of
structural templates. The obtained statistics could be
related to a random distribution and the statistical poten-
tial of mean force could be appropriately derived. The k 5
1, 2, 3, and 4 terms were weighted equally, while the terms
for k 5 6 and k 5 8 had weights reduced by a factor of two,

with respect to the lower order terms. Homologous pro-
teins were always excised from the structural database for
the purpose of these test calculations. As previously shown,
this type of potential very nicely reproduces the local
conformational propensities of globular proteins.16

The short-range potentials could be made even more
sequence specific when one employs evolutionary informa-
tion encoded in homologous sequences. In such a case, the
aligned fragments of highly homologous sequences (from
the sequence database) are treated as the original test
sequence, thereby increasing the strength of the statistics.
The details of the derivation procedure are given in
Appendix 1. Encoding such evolutionary information im-
proves performance of the proposed method; however, it is
not crucial. Simulations without homology-enhanced poten-
tials lead to slightly worse results. Most of the test
sequences employed in this work belong to relatively large
families of proteins; however, the criterion of the number
of similar sequences was not taken into consideration in
the selection process. Also, in this respect, the selected set
is rather representative of all small single domain pro-
teins.

Sequence specific pairwise interactions. The pair-
wise interactions between model residues are defined by
contact potentials in the form of a square well function.

`, for rij , 3

Eij 5 Erep, for 3 # rij , Ri, j
rep

eij, for Ri, j
rep # rij , Ri, j

0, for Ri, j , ri, j (8)

where eij are the pairwise interaction parameters, rij is the
distance between chain beads i and j, Erep 5 3kT is a
constant repulsive term operating at very short distances,
and Ri,j

rep and Ri,j are the cut-off values that depend on
amino acid type. The values of these cut-off parameters are
provided in Table I.

Because the derivation of the potentials uses evolution-
ary information, the interaction parameters depend not
only on amino acid identity, but also on their positions in
the polypeptide chain. A more detailed description of the

Fig. 4. Schematic illustration of the main chain’s ‘‘hydrogen bonds.’’
Residue i is hydrogen bonded to residue j and k because the vectors h i

and 2h i (see the definition in the text) connect with any of the points
forming of the excluded volume clusters (the clusters are symbolically
shown as large spheres) of these residues.

TABLE I. Compilation of Pairwise Cut-Off
Distances for Pairwise Interactions

Ai Aj Ri,j
rep (Å) Ri,j (Å)

Smalla Small 4.35b 5.97
Largec Large 4.83 6.80
Other Combinationsd 4.57 6.32
aSmall amino acids are: Gly, Ala, Ser, Cys.
bThis value corresponds to the excluded volume radius of
three lattice units; therefore, for pairs of small amino acids,
the soft-core envelope does not exist.
cLarge amino acids are Phe, Tyr, Trp.
dSmall-large, other (than small or large)-large, other-small.
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derivation of these potentials may be found elsewhere.17

The total energy contribution from the pairwise interac-
tions is therefore calculated as follows:

Epair 5 S S Eij (9)

where the summations are over all j . i pairs of residues.
Multibody potentials. The hydrophobic interactions

in our model are partially accounted for by pairwise
interactions between residues; however, this is not suffi-
cient to generate well-packed proteins. Thus, a surface
exposure based statistical potential has been developed.
The scheme is as follows: Each model residue has been
assigned 24 surface contact points. A specific subset of
these contact points becomes occupied upon contact with
other residues. The main-chain Ca atoms contribute sepa-
rately to the coverage of a given residue. The positions of
the Ca atoms could be quite well approximated given the
positions of three consecutive side chain beads.16 Some
contact points could be multiply occupied. The fraction of
non-occupied surface points defines the exposed fraction of
a given side chain. Potentials could be derived from a
statistical analysis of the protein structures for which the
solvent exposure has been determined on the atomic level.
The total surface energy is computed as follows:

Esurface 5 S Eb(Ai, ai) (10)

where ai is the covered fraction of the residue Ai and Eb(Ai,
ai) is the statistical potential when amino acid type A has ai

of its surface points occupied, i.e., the covered fraction of its
surface is equal to ai/24.

Studying the distribution of inter-residue contacts in
globular proteins, we have found that various amino acids
have different tendencies to pack in a parallel or antiparal-
lel fashion. A contact between residues i and j is considered
to be ‘‘parallel’’ when (vi21 2 vi)●(vj21 2 vj) . 0, and
‘‘antiparallel’’ otherwise. Moreover, for a given residue
there are strong correlations between the number of
parallel and antiparallel contacts given the total number
of contacts. Due to the reduced character of our model, the
other contributions to the force field do not properly
account for such effects. Therefore, the model force field
has been supplemented by the following multibody poten-
tial:

Emulti 5 S Em(A,np,na) (11)

where Em(A,np,na) is the value of the statistical potential
for residue type A having np parallel and na antiparallel
contacts. The reference state is a random distribution of
contacts. The values along particular diagonals (np 1 na 5

nc) have been re-normalized such that the lowest energy
for a diagonal was exactly equal to the value of statistical
potentials derived from the distribution of the total num-
ber of contacts nc for a given type of residue.

Total intrinsic conformational energy. The total
internal conformational energy of the model chain was
equal to:

Etotal 5 Estiff 1 Emap 1 0.875EH-bond 1 0.75Eshort

1 1.25Epair 1 0.5Esurface 1 0.5Emulti (12)

with the value of generic parameter egen 5 1 kT.
The relative scaling of various potentials has been

adjusted by a trial and error method in ab initio folding
experiments performed for the following selected small
proteins: 1fna, the B domain of protein A and the B1
domain of protein G. The objective was to maintain low
secondary structure content in the random coiled state and
dense packing with a proper level of secondary structure in
the collapsed globular state. For instance, the small 56-
residue a/b protein G domain folded ab initio in about 30%
of simulated annealing Monte Carlo simulations to a
native-like structure with an rmsd from native in the
range of 4 Å. The majority of the remaining misfolded
conformations had native-like secondary structures, but
they had topological errors, usually involving the wrong
order of b-strands in the four-member b-sheet. The model
is not sensitive to small variations in these scaling param-
eters.

Building the Starting Lattice Model

A separate algorithm was used to build an initial lattice
model from a given target sequence alignment to a tem-
plate structure. Such alignments contain gaps and inser-
tions. First, interaction centers are computed from the
template. Then, starting from the first aligned position,
the lattice chain is sequentially built. At each step in the
aligned region, the new vectors are selected so as to
minimize the distance of the lattice chain from the equiva-
lent template points. In the gap regions, the distance from
the last residue of the preceding aligned fragment to the
first residue of the next is divided to generate a set of
checkpoints. The number of these checkpoints is equal to
the number of target sequence residues that have to be
mounted to span the gap. The checkpoints outside the
entire alignment are randomly generated. The set of all
checkpoints provides the target for the starting lattice
model. The model chain maintains the excluded volume
and satisfies the other geometric restrictions discussed
before.

Implementation of the Template Restraints

The template (more precisely the structural fragments
of the template protein that correspond to the aligned
residues of the probe sequence) is projected onto the
underlying cubic lattice. The corresponding three-dimen-
sional array, initially filled with zeros, is then updated to
store a loose trace of the template. All elements of the
array that are closer than 61/2 lattice units from template
residues are assigned the corresponding residue numbers.
When a lattice point is within a distance of 61/2 from two or
more residues, the number of the closest residue is as-
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signed to the corresponding element of the occupancy
array. In the direction towards the center of mass of the
template, the cut-off distance for creating the template
‘‘tube’’ is equal to 141/2 instead of the 61/2 value in the other
direction. This fills in most of the volume occupied by the
template structure. Figure 5 schematically shows such
tubes surrounding the aligned fragments of the template
chain (in solid lines). To illustrate the above-mentioned
different width of the tube in the directions towards the
center (versus the outside) of the template structure, the
blobs forming the tube are shifted towards the center of
mass of the template. This facilitates the close packing of
the query (target) chain that wanders within the tube.

As described in the previous section, the starting model
is placed into the template tube. The initial alignment
provides an equivalence list between the template and
target residue indices. This is called ‘‘the old assignment’’
in contrast to the ‘‘new assignment’’ which will be gener-
ated by the program. Both the old and the new assign-
ments are then evaluated and updated in the following
way:

a) At the very beginning of the simulation process, the old
assignment (the original alignment) is copied into the
new assignment list. The entries of these lists identify
the tube compartments and the equivalent residues of
the template chain. Then, all residues for which the
total number of long distance (i 2 j . 4) contacts for a
three-residue fragment (with the residue of interest as
a central one) is smaller than two become non-assigned
both in the old and new assignment lists. This erases
those template fragments that do not interact with the

rest of the model protein. Thus, ‘‘non compact’’ frag-
ments of the template are ignored.

b) The new assignment is then updated when, for a steric
reason (or due to local stiffness), the initial query chain
residue simultaneously satisfies the following two crite-
ria: (i) the bead of the query chain is farther away than
five lattice units from the corresponding template resi-
due of the original equivalence assignment (‘‘old assign-
ment’’), and, (ii) the position of the query chain residue
(the central point of the excluded volume cluster)
coincides with a lattice point that is assigned to any
other template residue. The number read from the
appropriate element (occupied by the lattice chain) of
the occupancy array that corresponds to the bead
coordinates becomes the updated entry of the new
equivalence list.

c) For all residues of the starting query chain that are
farther away than nine lattice units from the equiva-
lent (according to the old assignment) template resi-
dues, both old and new assignments are erased. These
residues also become non-assigned. All allowed updates
of the old assignments can only remove some entries
from the equivalence list, which means that some part
of the threading alignment is erased. The new assign-
ments are dynamic (due to the updates described in b),
and they have the character of a structural superposi-
tion, which is not sequential in many places.

This updated pair of assignments of the query chain
residues to the template defines a flexible tube around the
template chain. To keep the moving query chain in the
neighborhood of the template, a set of biases is introduced.
First, the model chain is kept in the broad vicinity of the
original template (according to the updated old assign-
ment list) by

Etemp,o 5 S do(i)fr max 50, (0ri 2 roi 0 2 9)6 (13)

where fr is a constant (equal to 1kT in all simulations), ri is
the position of the query chain, roi is the position of the
template and do(i) is equal to 1 (0) when residue i is
assigned (non assigned) according the old alignment.

Then, the residues of the query chain are similarly
bonded to the template residues in the new assignment by

Etemp,n 5 S dn(i)fr max 50, (0ri 2 rni 0 2 Rt)6 (14)

where rni is the position of the initial template according to
the new assignment and dn(i) is equal to 1 (0) when residue
i is assigned (non assigned) according the new assignment.
The constant Rt is equal to 7 (4) when residue i occupies
any point of the template tube (the residue is outside the
tube, i.e., the occupancy array at position ri has value 0).

Additional restraints are the following:

Etube 5 2Erep S 5do(i)d3(i) 1 dn(i)dt(i) 1 dn(i)dc(i)6 (15)

where d3(i) is equal to 1 when residue i of the query chain is
at a distance smaller than 3 lattice units from the template

Fig. 5. Fragment of the model template chain (shown in the black
sticks) and the template tube formed by the chain of spheres. The target
chain (not shown in the drawing) is allowed to move in the tube with a
penalty associated with all excursion from the tube.
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according to the old assignment, otherwise d3(i) 5 0. The
second component, dt(i), is equal to 1 (0) when the residue
is anywhere in the template tube (is outside). dc(i) is equal
to 1 for a ‘‘quasi-continuous’’ alignment on the tube, i.e.,
when 5al(i21) 1 al(i11)6/2 2 al(i) , 2, where al(i) is the
value of occupancy array in the tube for residue i of the
query chain, otherwise dc(i) 5 0.

A small energy reward is also provided when the second-
ary structure of the query chain is consistent with the
template structure. For all residues that are in extended or
helical states (as defined in the loose conformational
definition used for the generic short-range potentials) and
that are in agreement with the secondary structure read
from the corresponding fragments of the template protein,
the system is stabilized by an energy equal to 2egen.

With the above restraints, the system only pays a small
energetic penalty for moving along the template tube
(shifts in the alignment with possible lateral adjustment);
however, the penalty is large for escaping from the loosely
defined volume occupied by the template. For instance, it
is possible (and this happened in a couple of cases studied
here) that continuous fragments of the original alignments
permute (this cannot be called an alignment in the conven-
tional sense) by swapping their original tube compart-
ments. This only occurs when the potential strongly favors
such a rearrangement of the topology. The two assign-
ments, carried out by the algorithm, play a different role.
The ‘‘old’’ one bonds the model chain to the broad vicinity of
the threading-based template. The ‘‘new’’ dynamic assign-
ment is a compromise between the template restraints and
packing requirements of the model chain.

Summary of the Threading Model Refinement
Protocol

The entire model building procedure is illustrated in a
flow-chart (see Figure 6) and can be outlined as follows:

a) Generate the threading alignment between the query
sequence and the template structure.

b) Derive the sequence similarity-based short and long-
range pairwise potentials. (Structures of proteins ho-
mologous to the query sequence are excised from the
structural database; however, multiple alignments with
homologous sequences of unknown structures were
used in the potential derivation procedures.)

c) Build the starting continuous model chain onto the
lattice-projected template structure.

d) Build the tube around the aligned fragments of the
template structure. Then, perform the first stage of
Monte Carlo refinement, where simulated annealing is
done over a temperature range of 2–1. Since the Monte
Carlo algorithm corrects unlike fragments of the align-
ment, the simulated annealing run is repeated two
times. Subsequent runs have no systematic effect on
the obtained models.

e) Refinement of the structure. The model obtained from
the above simulations is assumed to be the new tem-
plate, with a full length, complete self-alignment. The
distance restraints from the new template are nar-

rowed to 4 lattice units, and simulated annealing is
performed over a narrower temperature range (1.5 to
1.0).

f ) Selection of the lowest energy structures, by short
isothermal simulations at T 5 1, followed by building
all-atom models using MODELLER.24

RESULTS
Test Proteins, Templates and Starting Alignments

Twelve pairs of target/template proteins of very low
sequence similarity were selected for the present study.
These proteins belong to various classes of small globular
proteins, with the selected set being rather representative.
As described in the Methods section, the relative scaling of
the various potentials of the model force field has been
adjusted in a series of ab initio folding simulations on

Fig. 6. Flow chart illustrating the molecular modeling procedure
described in the text.
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several (different from described here) small proteins. For
the tuning of the template restraint contribution, we
selected three proteins: 2pcy, 256b, and 1hom. These
proteins belong to rather different structural classes: 2pcy
is a quite irregular b-type protein with a very poor initial
threading-based model, when the 2azaA template is used.
256b is a compact, four-helix bundle, where the original
alignment appears to be quite good; however, the template
and target structures have a different packing of helices
that needs to be significantly readjusted to obtain a
reasonable model. A very different example is 1hom. Here,
the target fold is not very compact, and it is important to
see if the proposed procedure can handle such small open
structures. All proteins were subject to the previously
described model building/refinement procedure. The list of
these proteins is given in Table II. The threading align-
ments have been generated by a standard threading
algorithm.14 These alignments are compiled in Table III.

Compilation of the Modeling Results

Due to its stochastic character, the entire simulation
procedure has been repeated several times for each case of
the target template chains. The resulting structures were
then subject to a refinement run. Namely, the algorithm
employed in the first stage of the Monte Carlo modeling
(starting from the initial, ‘‘old’’ threading-based alignment
and performing all the updates of the alignment described
in the ‘‘implementation of the template restraints’’ section)
has been used in short isothermal runs at low (T 5 1)
temperature, with the final structure obtained at the end
of the first stage of Monte Carlo used as input. At this
temperature, the model does not change any of its global
features, rather only local fluctuations are seen. The
average conformational energy, which includes the intrin-
sic force field of the model and the effect of template
restraints, was then used to select the ‘‘best’’ structure.
The model has quite a strong, root-mean-square deviation,
rmsd, versus energy correlation far from the native state.
Closer to native state, the two quantities become uncor-
rected or the correlation is weak, depending on the particu-
lar case. It should be pointed that out that this refers to the
entire force field (intrinsic terms and the template biases).

A quite different situation is observed for the intrinsic
force field alone; this has the strongest correlation of rmsd
versus energy near the native structure (unpublished
results). Since all our models are, at best, of moderate
resolution, this criterion is no better than that based on
the total energy. The lowest average (total) energy confor-
mation from these short isothermal runs was selected for
further consideration. For example, in the case of 1tlk, a
structure that has a rmsd of 4.4 Å from native was
selected, while several simulations resulted in structures
about 3 Å from native.

Tables IV and V contain a compilation of the simulation
results. In Table IV, the Ca rmsd from the native are
compared for two kinds of molecular models. The first was
generated using the initial threading template followed by
automated modeling using MODELLER. We realize that
the use of this homology-modeling tool in such a naive way
is not the best practice; however, we wanted some means of
comparison for two automated methods of model building
from poor initial data. The second set of rmsd values is for
the present lattice models, which for convenient compari-
son were converted into the full-atom models via an
automatic application of MODELLER (with lattice models
of the Ca backbones used as templates). As one may see,
the most significant improvement of the model quality
occurs when the threading alignment produces a rather
poor but not nonsensical initial model (compare Table IV
and Table V). As shown in Table V, for small globular
proteins, such initial threading-based models have a rmsd
in the range of 6–8 Å from native (over the aligned
fragments). When the threading models are really bad,
e.g., for 1cewI or 2azaA, the improvement is rather small.
At the other extreme are those cases when the alignment
is good and the resulting rmsd relatively small. Here also,
the changes are small because the models are already
good. Importantly, the procedure essentially does no harm
to these models; thus, it can be applied to all situations
with impunity. Moreover, as it is illustrated in Figure 7,
the proposed modeling method systematically improves
the entire threading-based model. The number of residues
in structurally very accurate fragments (say less than 2 Å
from native) is the same as for threading based models.

TABLE II. List of Target/Template Pairs Studied in This Work

Target protein Template protein
PDB code Name Length PDB code Name Length

1aba_ Glutaredoxin 87 1ego_ Glutaredoxin 85
1bbhA Cytochrome C 131 2ccy_ Cytochrome C 127
1cewI Cystatin 108 1molA Monellin 94
1hom_ Antennapedia protein 68 1lfb_ Transcription factor 77
1stfI Papain 98 1molA Monellin 94
1tlk_ Telokin 103 2rhe_ Immunoglobulin 114
256bA Cytochrome c 106 1bbh_ Cytochrome C 131
2azaA Azurin 129 1paz_ Pseudoazurin 120
2pcy_ Plastocyanin 99 2azaA Azurin 129
2sarA Ribonuclease 96 9rnt_ Ribonuclease 104
3cd4_ T-cell surface glycoprotein 178 2rhe_ Immunoglobulin 114
5fd1_ Ferrodoxin 106 2fxd_ Ferrodoxin 81
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TABLE III. StartingAlignments Employed in Model Building

602 A. KOLINSKI ET AL.



For the remaining residues, a large average decrease of
the distance from target coordinates could be observed in
all cases (see Fig. 7). We have also run a number of test
simulations employing the structure of the query protein
as a template (with full and randomly selected ‘‘align-

ments’’ fragments). In all cases, the resulting structures
were 2.5–4.0 Å rmsd (depending on protein size) from the
native structures. Thus, given a good initial alignment, the
model stays in the vicinity of that structure, thereby
demonstrating that this approach ‘‘does no harm’’.

In summary, in 6 of 9 test cases (in 9 of 12, including the
three proteins employed in the model tuning procedure),
the models generated by the method proposed here give
lower values of rmsd over the set of aligned residues than
that found in the initial structure. In the three remaining
cases, the changes in rmsd are insignificant (essentially in
the range of the statistical fluctuations). In five cases,
qualitative improvements were observed (for the aligned
residues as well as for entire models; compare data given
in Table IV): from 5.6 Å to 3.5 Å for 1hom, from 7.1 Å to 4.7
Å for 1stfI, from 7.9 Å to 3.9 Å for 1tlk, from 6.9 Å to 4.4 Å
for 256b or from 6.6 Å to 4.4 Å for 2pcy. These numbers are
for the initial threading and final lattice (refined with
MODELLER) models, respectively. It should be noted that
the MODELLER refinement of the final lattice models
changes their rmsd very little (in the range of 0.2 Å), while
the improvement of the initial threading models by the
application of MODELLER is more noticeable.

TABLE IV.Alpha Carbon Rmsd From
Native for Models Built From the Initial
ThreadingAlignments and Refined by

Lattice Simulations†

Target
protein

Threading
1MODELLER

SICHO
1MODELLER

1aba_ 4.43 4.86
1bbhA 6.77 6.82
1cewI 14.96 14.38
1hom_ 7.82 3.70
1stfI 6.40 5.95
1tlk_ 7.23 4.17
256bA 6.09 4.36
2azaA 21.95 10.77
2pcy_ 6.56 4.41
2sarA 10.28 7.83
3cd4_ 6.74 6.39
5fd1_ 25.67 12.40
†Note: The threading 1MODELLER models use the
threading alignments (for the aligned residues) as
the target for all-atom reconstruction. SICHO mod-
els are the reduced lattice models obtained by the
method described in this work. The final all-atom
model is also built by MODELLER using as a target
the lattice model alpha carbon positions estimated
from the SICHO lattice model. The values of the
rmsd for alpha-carbon traces (in Å) are given for the
structured parts of the target molecules (1hom_:
residues 7–59, 1tlk_: residues 9–103, 3cd4_: residues
1–97 i.e., the first domain).

TABLE V.Alpha Carbon Rmsd (in Å) From Native for
Threading-Based Models and Lattice SICHO Models Built

by MODELLER. Comparison for Threading-Aligned
Fragments Only†

Target
protein

Starting
RMSD

Threading
RMSD

SICHO
RMSD LENGTH

1aba_ 4.37 3.89 4.40 69
1bbhA 7.03 6.35 6.69 116
1cewI 12.88 12.37 10.74 69
1hom_ 5.59 5.34 3.45 40
1stfI 7.05 6.04 4.73 83
1tlk_ 7.88 7.15 3.94 86
256bA 6.92 6.06 4.37 104
2azaA 11.04 13.53 9.94 80
2pcy_ 7.64 6.65 4.36 94
2sarA 8.28 8.07 7.60 73
3cd4_ 5.72 5.56 5.22 82
5fd1_ 12.38 12.18 11.94 69
†Note: The starting rmsd is for the set of threading-aligned residues of
the template from the equivalent native target coordinates. The
MODELLER models use the threading alignments and an all-atom
target. SICHO models are the all-atom models built by MODELLER
using the lattice models (only Ca) as a target. The length of the
alignments is given in the last column, and the same sets of residues
are compared for both methods.

Fig. 7. Comparison of the accuracy of the threading/MODELLER
structure with SICHO/MODELLER structures. The number of alpha
carbon atoms whose distance from the native structure is less than a
given cut-off is plotted as a function of the cut-off value for four example
proteins.
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It is very interesting to see how the proposed procedure
deals with the non-aligned part of the model. Comparison
of the rmsd values for the aligned parts (Table V) and for
the entire structured parts (Table IV) of the model shows
that the algorithm builds rather reasonable models of the
entire structure, provided there is a well-defined fragment
of good geometrical fidelity in the original alignment.
Again, in all but two cases, the present method leads to
more accurate models. For both the aligned part of the
molecules and for entire chains (Table IV), good models are
generated in about half of the studied cases (including all
three proteins used in the model-tuning procedure). In the
remaining cases, one may see models that are marginally
improved as for 3cd4 or that remain rather poor final
models as for 2azaA or 5fd1; this is true despite an rmsd
decrease of more than 10 Å, as compared to models
generated automatically by MODELLER from the initial
threading results. However, as demonstrated in the second
panel of Figure 7, it should be pointed out that in these
cases, large fragments of the structure qualitatively im-
prove. Indeed, about 40 residues of 2azaA in our model are
closer than 6 Å from the native structure, while the
threading/MODELLER model structure has only five resi-
dues in this range. A possible way to improve the perfor-
mance of the method in the case of very bad templates is to
loosen the template restraints and perform the annealing
from higher temperature. This, however is closer to ab
initio folding with weak homology based restraints and
will be addressed elsewhere.

DISCUSSION
Means of the Model Improvement

There are several ways in which the described algorithm
changes the protein model from the original fragmentary
threading model. The first is rather trivial in that the
non-aligned parts (mostly loops) are added and readjusted
according to packing requirements and the preferences
encoded in the force field. Then, the entire chain has some
freedom of movement within the template tube without
any changes in its template-target sequence assignment.
Furthermore, parts of the chain can slide along the tube,
thereby allowing for a quite substantial modification of the
initial alignment and, consequently, the resulting struc-
ture. Finally, the aligned fragments can leave the tube in a
lateral direction. These segments can enter a different part
of the template tube or remain outside of it. Such motions
of the model chain could result in a large change of the
structure, or even change the fold topology. The last,
rather radical mode of the model rearrangements, hap-
pened in several cases. In other words, the most effective
way of model improvement was by neglecting a part of the
threading alignment, even at the expense of various
template-related energetical penalties. Interestingly, those
sections of the threading-based model consistent with the
target structure undergo only very minor changes in all
cases, and the alignment remains unchanged. As dis-
cussed below, this observation may help identify those
models that should be of good quality from those for which

improvement of the starting threading model is not satis-
factory.

Below, for three selected cases, we analyze in more detail
specific rearrangements of the initial threading models
that take place during the Monte Carlo simulations.

2pcy case

The threading alignment of the 2pcy sequence on 2azaA
covers a substantial part of the sequence. There are gaps of
substantial length. As a result, the threading model has
the wrong topology, and two-edge strands of the eight-
member b-barrel (one in each of the two b-sheets) are
located in the wrong sheets. This is the reason for the
resulting 7.6 Å rmsd from native for the models built solely
from the threading alignment. During the simulations, the
three C-terminal strands remain almost unchanged. Simi-
larly, the three N-terminal strands undergo only small
adjustments; however, in several models, one or two
strands slide along the tube by a distance that sometimes
changes the original alignment by one or two positions.
The central fragment of the model chain (two putative
irregular strands, with a couple of short helices breaking
these strands) is responsible for the large rmsd in the
initial model. The algorithm erases most of the template-
target assignments in this part of the molecule. Partly this
occurs because of the compactness criterion; several resi-
dues do not have any long-range contacts in the threading
model. During the simulated annealing process, residues
30–37 (small differences in the extension of this fragment
can be seen between the particular runs) switch their
sheet assignment, and join the tube fragment associated
with one of the C-terminal b-strands, the third one from
the C-terminus. This is seen in the final ‘‘new assignment,’’
or pseudo alignment. At the same time, the second strand
(completely helical in the threading model) moves to the
second sheet, and the long helix breaks and becomes
distorted, as actually occurs in 2pcy’s native structure.
Most of the displaced residues join the tube fragments
generated by various secondary structural elements of the
template, but only a few maintain their original assign-
ments to the template tube. This way the internal force
field of the lattice model overrides the target interactions,
significantly correcting the threading model. The initial
model and the final model are compared with the native
structure in Figure 8, where stereo alpha-carbon traces
are displayed in their best mutual superposition, using the
MOLMOL25 drawing program.

256bA case

This molecule is a four-helix bundle and the threading
alignment has a few gaps. The template structure is very
similar to the target, but the threading model is not very
good. During the simulations, most of the C-terminal
helical hairpin remains almost unchanged, except for the
loop region that is very mobile. The third (first helix of the
C-terminal hairpin) helix of the model is the most stable.
The N-terminal hairpin undergoes a large-scale rearrange-
ment. The second helix undergoes a rotation that changes
its packing angle with respect to the remainder of the
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molecule. As a result, the end of this helix moves by about 7
Å in a lateral direction, while the beginning of this helix
stays close to its original position. The largest changes are
observed for the first N-terminal helix. It moves along the
tube, changing assignment indices by several (up to 8)
residues; a lateral adjustment takes place as well. The
initial model and the final model (superimposed onto the
native structure) are compared in Figure 9. The helical
regions of the final model are very close to the native
structure; the largest errors that account for most of the
structure errors are in the central turn/loop region.

1tlk case

Telokin is a quite regular b-protein. Again, due to gaps
and insertions, the threading model has produced a model
whose topology is wrong. During the simulations, one of
the b-strands from the original model leaves the initial
assignment and sticks to the tube of a strand from the

opposite sheet. Two b-strands that are not in the threading
model (lack of the alignment assignments) are built in the
simulated annealing procedure, and they join tubes associ-
ated with existing strands. The entire structure, except for
the last C-terminal b-strand that remains essentially
unchanged, rearranges substantially. Mostly lateral (or-
thogonal to the local direction of the template tube)
displacements occur in the range of 6 Å for about half of all
the residues. As a result, the model improves its rmsd by
almost 4 Å. The initial model and the final model (super-
imposed onto the native structure) are compared in Fig-
ure 10.

How to Identify Good Models

As mentioned before, the proposed method generates
low to moderate resolution models of correct topology in
those cases when the initial threading-based alignment
leads to at least a partially correct structure, i.e., when a

Fig. 8. Stereo drawings of the two models of plastocyanin (in red)
superimposed onto crystallographic structure 2pcy (in green). The upper
panel shows the model obtained by MODELLER from the threading

alignment, the lower panel shows the model obtained by the procedure
described in this work. For the sake of readability, only the alpha carbon
traces are displayed.
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part of the identified template is close to the target
structure. How to (a priori) distinguish between a good
(threading-based) alignment from a poor one is a non-
trivial question. Unfortunately we do not have a general
solution to this problem.

For example, it might appear that the cases where the
initial alignment is more continuous should lead to better
final model. In reality, no such correlation was observed.
For instance similar qualitative (by more than 2 Å)
improvements of the model were observed for two helical
proteins, 1hom and 256bA. This is true in spite of the fact
that in the first case the fraction of aligned residues is

much less than in the second case where threading aligns
104 of the 106 residues in the target sequence.

The intrinsic force field of the reduced model correctly
identifies the native structure (the lattice projection) as
the lowest energy conformation when compared with the
models generated by MODELLER from the initial thread-
ing alignments. The models obtained by lattice homology
modeling are described in this work. In all cases, except
one (1bbhA, where MODELLER gave a slightly better
result than the present method) the energy of the models
built by the present method is significantly lower than
other worse models (including these built by automatic use

Fig. 9. Stereo drawings of the two models of the cytochrome 256b (in
red) superimposed onto crystallographic structure (in green). The upper
panel shows the model obtained by MODELLER from the threading

alignment, the lower panel shows the model obtained by the procedure
described in this work. For the sake of readability, only the alpha carbon
traces are displayed.
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of MODELLER). These are interesting results; however,
our goal is to identify those target /template pairs where
the final model is of reasonable quality from those cases
where, despite a sometimes large improvement of the
initial models, the resulting structures are still far from
the native target conformation. Unfortunately, simple
energetic criteria (conformational energy per residue in
the final model, decrease of energy from the starting model
to the final model, etc.) do not enable identification of these
poor quality structures.

In the previous section, we discussed how the proposed
modeling procedure improves the initial, threading-based
model. This could actually be used for a qualitative identi-
fication of better models. Consider the displacement of
particular residues (as a function of their position along
the chain) during the entire simulation procedure. In those

cases where the final model is of good quality, the plots
indicate relatively well separated regions where the chain
modifications were small and also indicated regions of
large modifications. This is consistent with the previously
mentioned characteristic behavior of ‘‘good’’ models, for
which some fragments of alignments are recognized by the
procedure as being very good and behave as a scaffold for
readjustment of the remainder of the protein. In contrast,
poor models are characterized by random fluctuations of
the spatial amino acid displacements along the sequence.
In such cases there is no pattern. Perhaps there is a huge
energy barrier between the starting model and the better,
near native models that cannot be surmounted by partial
readjustment of the initial alignment. Examples of both
situations are given in Figures 11 and 12. The lowest (and
locally similar) displacement (during the modeling proce-

Fig. 10. Stereo drawings of the two models of telokin (in red)
superimposed onto crystallographic structure 1tlk (in green). The upper
panel shows the model obtained by MODELLER from the threading

alignment, the lower panel shows the model obtained by the procedure
described in this work. For the sake of readability, only the alpha carbon
traces are displayed.
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dure) regions identify the regions of an optimal (or very
close to optimal) alignment. While the above is not easy for
a simple quantification, it still can be used as a heuristic
criterion for the identification of cases where the method
proposed in this work is likely to provide relatively good,
low resolution models. Figure 13 shows the plot of model
accuracy (measured as the alpha carbon rmsd from native)
as a function of the variability in the model chain mobility
during the simulations. Unfortunately, the correlation is
not very strong. Consequently, the mobility criterion has to
be used with caution. Rather, plots as given in Figures 11
and in 12 can be used to identify the best fragments of the
threading models. Indeed, there are very strong correla-
tions between the lowest mobility and the best structural
fidelity (to the target structure) of the model chain frag-
ments. This may have some other applications, where

assessment of the reliability of various parts of a model
structure is needed.

SUMMARY AND CONCLUSION

In this work, we proposed a novel approach to prediction
of low-resolution protein structures that is based on homol-
ogy or sequence-structure compatibility. The method em-
ploys templates obtained from threading procedures. It
should be noted that the alignments used in this work
belong to the best alignments available from threading
procedures.5 Of course, the alignments can also be ob-
tained from sequence alignments. Such templates are used
to guide Monte Carlo simulations that employ a reduced
protein chain representation. In about a third of the
studied cases, the procedure is capable of making large
structural rearrangements that lead to qualitative improve-
ments in the initial poor models. In some other cases,
despite a huge decrease in the rmsd between the model
and the target native structure, the final model was still
unsatisfactory. Analysis of the simulation trajectories al-
lows for a plausible identification of those cases where the
final models qualitatively improved with respect to the
initial, threading-based model.

While the described method needs further improvement
(better resolution, better procedure for the model valida-
tion), even now it may be useful for large-scale protein
structure and function prediction. A complete series of
simulations for a single target /template pair could be now
performed in 24 hours on a single state-of-the-art com-
puter. The process itself could easily be automated. Thus,
predictions on a genomic scale are quite feasible and will
be attempted in the near future. In this regard, it is
possible to identify the biochemical function of a protein
function having a model with a 5–6 Å backbone rmsd.9,10

Certainly, that would be much more difficult, if not impos-
sible, for a model with an 8 Å Ca rmsd from native. For
example, the model of plastocyanin (2pcy) generated by
the proposed method has its four copper-binding residues

Fig. 12. Displacement of the model chain units during the Monte Carlo
simulation as a function of the position along the chain for the aligned
portion of the 5fd1 molecule. In contrast to the case of 256b (see Fig. 10)
the displacements of the chain elements are essentially random. This kind
of pattern suggests a rather poor quality final model.

Fig. 11. Displacement of the model chain units during the Monte Carlo
simulation as a function of the position along the chain for the aligned
portion of the 256b molecule. The very stable (most of the second helix
and C-terminal hairpin) regions and very mobile regions (the first helix and
the central loop region) are clearly separated. This is the pattern typical for
successful modeling (relatively low final rmsd from the native structure).

Fig. 13. Accuracy of the final models, measured as the Ca rmsd from
the native structure, as a function of displacement variation. The variation
is defined as a ratio of the number of passages of the residue displace-
ment plot (as given in Figs. 10 and 11) through the line of average
displacement to the total number of protein residues.
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much closer to their native position than the threading-
based model does. Thus, having a structural template of
this active site, the model structure can be identified with
high fidelity as a copper-binding protein. In a substantial
fraction of cases, function annotation based on structures
provided by the proposed method would certainly fail, due
to the above-discussed problems in the identification of
good quality models. Nevertheless, it appears from the
present studies that for many new proteins that cannot be
annotated by other simpler methods, their function could
be identified. Thus, the proposed method is complemen-
tary to sequence-based and threading methods and pro-
vides a means for improvement of initially poor and
incomplete models. On the other hand, it is also complemen-
tary to standard homology modeling tools, enabling homol-
ogy modeling in those cases where the template is structur-
ally very far from the target structure.
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APPENDIX A
Derivation of the Homology-Enhanced Short-Range
Statistical Potentials

The input sequence is compared to the non-redundant
sequence database (containing over 300,000 sequences)
using the PSI-BLAST program.26 This process is iterated
until a stable multiple sequence alignment is obtained.
Next, the sequence profile is built using this set of homolo-
gous sequences. The profile is a two-dimensional array of
size 203N where N is the input sequence length and each
of 20 positions corresponds to the frequency of a given
amino acid in the multiple sequence alignment. Let oa(i)
will be a number of occurrences of amino acid type a at
multiple sequence alignment position i. Then profile P(a, i)
can be defined in the following way:

P(a, i) 5 oa(i)/M i 5 1,2, . . N (A1)

where M is a number of aligned sequences.
In the next step, a representative set of PDB files27 of

proteins of known structure (PDBSELECT’97) is scanned
to find the fragments of sequences similar to the profile.
The comparison is done using a 21-amino acid window of
sequences and the BLOSUM80 mutation matrix28 as the
scoring function.

si, j 5 Sk5210,10P(D( j 1 k), i 1 k) (A2)
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where si,j is the score of a given fragment (at position i of
the profile and position j of database sequence D), D is a
given database sequence, k denotes the scanning window
position, D( j 1 k) is the amino acid type at position j 1 k of
sequence D.

The 200 best scoring sequence fragments (and corre-
sponding pieces of structures) are stored. These presum-
ably exhibit significant structural similarity to the corre-
sponding fragments of the query sequence. Then, the side
group atom positions of these fragments are used in the
calculation of the potentials. For each of these fragments,
various distances (based on side chain 1 Ca centers of
mass) are calculated. For computational convenience, these
distances are discretized into a number of bins. Five bins
have been assumed for the distances between the i-th and
i11st residue; six bins for the distances between i-th and
i12nd residue; eight bins for the distances between the
i-th and i13rd residues; seven bins have been assumed for
the i, i14 distances; nine bins for the i, i16 distances and
seven bins for the i, i18 distances. The distances i, i13 and
i, i16 have been assumed to be ‘‘chiral,’’ i.e., negative
values have been assigned to the left handed fragments
and positive to right-handed fragments, respectively. For

the two shortest distances, conservation of the identity of
the flanking residues was enforced in the fragment align-
ment procedure. Then, weighted histograms are built by
summation of the number of occurrences of a particular
bin at a given sequence position (using the mutation
matrix score as a weight).

H(rlx,b) 5 1/200 Sm51,200sm(rlx,b) (A3)

where H(r1x,b) is the histogram value, r1x,b is the b-th bin of
distance r1x, (1x is the short-hand notation for the dis-
tances between residues i and i1x), sm (r1x,b) is the score of
fragment that belongs to the bin b and m is the number of
fragments.

Finally, the potentials for particular distances along the
chain are calculated using the obtained histograms and a
random statistical distribution as the reference state.

E 5 2ln (H(r1x,b)/Ho(r1x,b)) (A4)

where the denominator corresponds to the histograms
averaged over the database (ignoring sequence similarity
and amino acid identity).
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