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I. INTRODUCTION

In this postgenomic era, a key chall
by the knowledge of the proteome, the set of protein sequences

organism. Unfortunately, i
provides little insight; the key question is, What is the function of all of
proteins? Function covers many levels, ranging from molecular to cellular
physiological to phenotypical. By employing sequence-based meth
exploit evolutionary in
frames (ORFs) in a given genome can be assigned some asp
ranging from physiological to biochemical function. Indeed, because O
considerable success, sequence alignment methods such as PSI-BLAST
and sequence motif (that is, local sequence descriptors) methods such as £
[3], Blocks [4], Prints [5,6], and Emotif [7] set the standard against W

ect of fu

enge is to interpret the information provide
found in a givel

having a list of protein sequences 10 and of itsel

ods ‘tha
formation, between 40% and 60% of the open read!?
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?ltemat.lve apps‘oaches must be measured. However, sequence-based approach
mcrea.smgc!ly fail as the protein families become more diverse [8]. The fgm';iﬁi: !
Una::;f:fa ORFs, termed ORFans, represent an important challenge ancgl
rip : pﬁarea where structure-based approaches to function prediction can
p ?y a significant role. One structure-based method combines one-dimensional
thom;?t;on about sequence and structure and has had some success [9]. An
altern cl e tstructura-base-d approach to function prediction that employs the
gqien]oc‘—s ruc:ur.e—functwn paradigm has recently been developed [8,10-13]

er ,Ed ¥-reso ution models prec_hcted by threading or ab initio folding arP:
Scnl:en or-matches to known active sites; if a match is found, then a functional
asslgnm'el:t 18 madef. However, this method requires a predicted structure of
?Ppmp”ﬂ e resp]utlon. Structure prediction techniques will also play an
1mpoftam role in probe selection in structural genomics, where the ultimate
ggaill 1; to experimentally determine the structure of all possible protein folds
su;: ; a[t aniz nev:fllﬁ found sequence is within modeling distance of an already
solved structure. Thus, in this review, we exami ;

: i ; xamine the status of contempo
' rar

. ;tructurelpr.edlcnon approaches and demonstrate that the resulting (quirepoftei
oW-TeS0 -uuon) models can be used both to identify the biochemical function of
1hepproteml and to dock_ known ligands to the correct binding sites.
homrf;sem Y, t]he_re exist tl"lree approaches to protein structure prediction:
% 0 ogy mtzlc eling, threading, and ab initio folding. In homology mode!ing-

3 S[:u é)t{]ore: sglh;emptate szqucnc:es are clearly evolutionarily related, and thé

: probe and template are quite close ,

7 he to each other. Th

structure prediction method is threadi e

eading, where one attempts

bt : : 4 pts to find the closest

Stmzz?eg structlljlre in a library of already solved structures but where the

oy ;a [:lz;nrdzt z:jnallJogolLiS; that is, the two proteins are not necessarily

ed, but they adopt very similar str g i

e structures. Ideally, threadin

: 'suffe]rd :rztrinc:hseqfl.;elllce-based approaches. Threading and homology modeling

& e fundamental disadvantage that

S ‘ : ge that an example of the fold of

S gu :gl:ses fot; 1r11:Fert3]slt mll:st already have been solved in order for the method
b ul. Finally, there is ab initio folding wher

B i : ing where one attempts to fold a
‘ m conformation; obviously this i
i o mie k sly this is the hardest of the three

il structure prediction, but it has the advantage that an 1

~ I0ld'need not have been seen bef iled i ‘ e b o

s e - oo & n before. As detailed in what follows, a number of
rian o o - ;

oo b it ool g use extensive information from threading. Such

o DB lude local secondary structure information, supersecond-
g revl:mdtlfm, and/or predicted tertiary contacts. Indeed, the major

% iew is to describe a uni i

e e o dc‘: ibe a unified approach to protein structure
B e | reading plgs structure refinement when an example

; lgniﬁcantprobels found; but if not, it incorporates information from
- S al

B it e equence templgte structure matches and then does ab

structural information gleaned from such matches. It has
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novel fold even though some of the

hat it can predict a
Iready solved structures.

the advantage t
from threading on &

information comes

I. OVERVIEW AND HISTORICAL PERSPECTIVE

mparative Modeling Methods

A. Co
of those proteins whose

used to build the structure
or so with a protein template structure [16]. This
Search for sequence gimilarity to a member of
s with known three-dimensional structure; 2
to build a molecular model; and (3) carefully
t CASP3 prediction experiment [17],
nberg [18], Blundell and co-
and Fischer [22]. While the
not do as well as others, it
package. The results of

e modeling can be
sequence identity is above 30%
usually consists of three steps: (1)
a set of carefully gelected sequence
use the detected structural template
validate the resulting models. In the recen
encouraging results were reported by Bates and Ster
workers [19], Yang and Honig [20], Dunbrack [21],
automated approach of Sali’s MODELLER [23,24] did

is nevertheless & widely used comparative modeling
CASP3 suggest that t del is to generale the best possible -

he key to a good mo
initial sequence alignment and to modify it as little as possible (25,26]. Thus, a5
the sequence identity of the probe and tem moves into the twilight zone

plate
sequence alignments degrade with a comparable degradation in the quality of the:
model structures.

As an example of g
quence alignment algori
scanned a portion of the yeast genome, S. cere
ous proteins of known structuré for about 17%
and they built three-dimensional models for thes
these modeled proteins had a previously determine
236 proteins Were related to a protein of known structureé fo 7

An obvious limitation of the above approach is that it requires & homologd
protein whose structure is known. Depending on the genome, 15-25%
sequences NOW have a homologous protein of known structuré [29
percentage is slowly increasing as new structures are being solved
increasing rate. Interestingly, the majority of newly solved structures &
an already known fold. At this point, it is still uncertain whether this indi
that proteins can adopt a limited number of folds or if it simply indicates

toward certain types of protein folds that crys

Comparativ

b8 e
e ST

s

enome-scale comparative modeling using standard. s
thms and MODELLER, Sanchez and Sali [27] recentl
visiae [28]. They found homolo|
of the proteins (107 '
e yeast proteins. Only 40!
d experimental structure,

¢ the first tim

tallize relatively readily.

B. Threading

ns of predicting the tertiary structure of protcing-
find the closest matching struc!

Threading is another med
f homology modeling

for the sequence of interest, one attempts to
a library of known folds [30,311. The paradigm 0

S OA A

followed with its thr
ee : ; o
the alignment, and (3) Ztsﬁz (1) identifying the structural template, (2 ;
B cirmilar to'elassical h ing the model. Thus, threading hz?s‘l' s _( )_Creatmg
T Olllplogy modeling. First and forem imitations that
i e et will f;;J]SLScmst in the structural database that i: ;t,_an example of
e —— simi]‘ f:cond, the quality of the model is limite”;iscrcenm. "
© eontly [32], one coul (;m[y between the template and the prob ed by the extent
&l cou mads : ro >
e modate the probe:s :qol:elead_]tl;t the template strucmlze t: f’]t]roul(;mr& Until
: . nce. While tl : : e correctly
threading algo YR he quality of
remains ir0§e$2:}1s }l\mpmved from CASP1 to éASlE;I?:gFln’fmms e
1C. v g i
homologies (i.e., a Pl’otzsjhﬁr QI:ICSIIOI] is whether threading r]e’cétg:'ezvergl'eless
L hat is evolutionarily di izes distant
{emplate protein) as oppos onarily distant but sti
proteins are evolutionap _I?OSCd to pure fold recognition targetsl“ flt’-lz{ted 10 B
note that for se rily unrelated, but have converged to th et b
uenc : . ot .
Milecent evolu?jon i:svtlmtdg;; evolutionarily very distant ci:ame fold). We
. ery difficult to pr J vergent versus
problem of identifyi . prove. Nevertheles: i
ifying two proteins as having the same f(flq(i Wf; still have the
, when only about

65% of their seque ]
_ quences share a common core, with the possibili
) ibility that the

remr\'}under of the fold differs significantly
ext, we describe the fi ‘
eatures of existing i
g threading algori
g algorithms that
per-

0 med L p .
] I Wel n CASi 3 as We“ as m the ln[e]\‘enlng 81]0(1 ])1 101 tO CASI 4 II]

the construction of adi
a threading algorithm, one is faced with th h
ree choices: the

ener USEd to assess the ioba sequence lEmpla[C structure SLI]EElbllll

the degree of detai
il used to describe i
ot scribe interacti :
are included, and tl : h action centers if multi : 5
optimal sequence ‘itttlxzt COnf;)rmauonaI search scheme emptllc?()ddy s R
T & ure alignm yed to fin
three features in turn. gnment. In what follows, we address each of (:! e
- The first step i 1ese
25 p in constructi )
ntial used to deSCribeCtI]llng a threading algorithm involves the choi
ng functions containi e sequence-structure fitness and the rey-iong
nong the kinds of e ing more than one term; weights must b ek
i l”e‘;iduerg)’ terms that have been pieviously ¢ %GStabhshed‘
sidues, ¢ . onsi
*.ﬂ?d_ary structure, ﬁdditioge-clonddry structure propensities and/oired arf: the
mpensate for different nal penalty terms [33,34] (for exampl tIgl'f:dlcted
Uerinteraction protein lengths), and the inclusi e, those that
5 S bC[Wegn sid 2 2 e inclusion of pair or hi
lutiona side chains. Conte . 1 of pair or higher-
e ry com mpor:.ll'y 3.1 orl s
and the mbponem related to the sequence sign -;[hT“S often include
he abili[[)y fe lse(luence [35]. Inclusion of such nilarity between the
of the a 1 . sequence-bs
Wthe quality of th:ali(r):c;hm 210 recognize the corrf:clq structu?qllsfd te;ms
+ While such t icte align]ﬂel’it in tl al template
erms should he structural templ
the ar not be needed I'n p p ate [34,
terzctioeniounq to be quite important a structure-based approach,
: s are included, tl : )
mon choices bej , then the interactio
; eing (t n centers must be
g the Cos [40,41], the Cps [42,43], the i anes
v side-chain
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centers of mass, specially defined interaction centers [30,44], or any side-chain
atom [45]. This defines the protein representation. Then, one must again choose
the form of the interaction. Contact potentials [45,46], continuous distance-
dependent potentials [42,47], and interaction environments [48] are the choices
that have been made for the functional form of the pair energy.

Third, given an energy function, the optimal alignment between the probe
sequence and each structural template must be found. Dynamic programming
[49] is the best choice when local interaction schemes are used (e.g., when the
energy consists of mutation matrices and secondary structure propensities). The
situation when a nonlocal scoring function is used (e.g., pair interactions) is not
as straightforward. Here, the problem is to update the interactions in the
template structure to include the actual partners present in the probe sequence,
To retain speed (a crucial feature if entire genomes are to be scanned), some
workers employ dynamic programming with the “frozen” approximation
(where the interaction partners or a set of local environmental preferences are
taken from the template protein in the first threading pass) [45,50]. Iterative
updating might follow this [45,48,51]. Still others employ double dynamic
programming, which updates a subset of interactions recognized as being the
most important in the first pass of the dynamic programming algorithm [42].
Other, more computationally intensive approaches evaluate the nonlocal scoring
function directly and search for the optimal probe—template alignment by Monte :
Carlo [44] or branch-and-bound search strategies [30]. These have the advan-
tage that the correct energy is evaluated, but unfortunately they are very CPU-

intensive.
A problem with

almost all threading search protocols is that they do not
allow the actual template structure to adjust to reflect the actual structural
modifications relative to the template structure that are actually present in the -}
native conformation of the probe. For example, Monte Carlo and branch-and-
bound strategies allow the partner from the probe sequence provided by the
current probe—template alignment to be used, but they do not allow the
template’s backbone structuré to readjust to accommodate the probe sequence.
Such structural modifications should be quite important when the probe and
template structure are analogous. As a simple example, when the probe’s TYR
replaces a GLY in the template protein, then the contacts associated with the
amino acid at that position in the structure would be radically different. Yet, this
effect is not accounted for at all in threading. However, the potential ability {0
recognize analogous structures is precisely the realm where threading should bé
the most valuable as compared to pure sequence-based methods.

As indicated above, because threading uses structure, it should be superior{d
sequence-based approaches that are one-dimensional and that assess the evql'l:J
tionary relationship between sequences and thereby, by inference, their stri
tural relationship. In practice, however, many of the most successit
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fgld-rejcogniti.on approaches in CASP3 were pseudo one-dimensional and used
gvolutlonflry information that contributed a significant fraction of the s;ll’l tfls'e
[52] (typically implemented in the form of sequence profiles) plus rZ((:l'wtlti
secondary St.ructure. In particular, the Jones [53] and the Koretke I’(il 81‘[33;
employed th.ls tlype of approach, where secondary structure played fn 'u?c'l] !
role. .The Nishikawa group [54] also employed a hierarchy of local‘ sc] ?ry
functions to describe hydration, secondary structure, hydrogen bondi " 8a
side-chain packing. , g o0
There w‘ere other successful approaches in CASP3 where structure played a
more prominent role. For example, the Sippl group [55] employed buria[; :31)1/ ,
and the frozen approximation to evaluate pair interactions, but unlike nergy
others, they_usecl a single sequence rather than sequence’ profiles or (:t;;lny
implementations of multiple sequence information. While the Sippl approach %
more structure-based, in order for dynamic programming to be useé) I;“ (intels
actions were made pseudo one-dimensional. The Bryant group [56] was uni .
in that they explicitly treated pair interactions within a structural core (ide ]t'guz
from the evolutionary conservation of structure across each protein hmtilli ?
order for the core to be identified, a number of structures in the protei‘n fal};.)iln
must be solved. While this approach embodies the original idea of threadi :
they too employ a PSI-BLAST sequence-profile component Indeed‘ tl?g’
E:onc]ude that the combination of both sequence profiles and COl.ﬂaCI ot;: ti Bly
improves the success rate relative to that when either of the terms is usid lr; e,
Because the Bryant group employs a nonlocal scoring function that a f)?ﬂe_-_
precludes dynamic programming, a Monte Carlo search procedure was uéelcziot} l
find the be-st sequence—structure fitness. Unfortunately, these calculations aro
very C.PU—mtenswe, thereby precluding the application of this ap rc‘nch o :
genomic scale unless there are very substantial computer resource;3 L n
The general consensus was that CASP3 saw some progress in thre.ading, with

alignment quality improving from CASP2 [17,26,52], but, as pointed out by

Mu -4 f) 2 ik
rzin [52], threading “performs better on distant homology recognition

: "tf?;gygtfhteh?; oln pure’. foldm;‘g .recogni[ion targets. This bias probably resulted
. a}; imentanon of. distant homology’ filters.” Thus, techniques that
.. i t%y of th.readmg techniques to address “pure” fold recognition
ns are still required. But, as Bryant and co-workers [35] have pointed

, the
best results are found when a sequence—profile term is combined with

- threadin i i
g potentials. These observations motivated the development of a new

readin i
Cdmbingdaj[']ng:gir:, {’RgS}?ECTOR (PROtein Structure Predictor Employing
i f]do ( pt-1m1ze Re_su]ts) [57], where it was demonstrated that
B o oo < significantly improve the sequence-structure specificity
iearing e ai’e. :que;ce—proﬁle terlr.ls are used. However, when multiple
Beion 1v, o o ombined, the resu]tmg‘ recognition ability is even larger.
: » We discuss the results of this new approach in some detail,
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a key eornponent of a recently devalo?ed unined approach to More recently, contin
diction. But here We note that wlnle considerable progress proposed sikidl in\,festi ;{ Udousjspace models with more struct :
ading by 2 number of workers, W€ will have to await the conformation of a gmf . with respect to their ability to ‘;1’3! details were
g as well as the representation of thep ein. Sun [64] examined model predict the native
main chain and a single united atosmwgh an all-atom
representation of

because it is
protein structure pre
has been made in thre

results of CASP4 to assess the full extent of this progres
limitations of such approaches. q]e ide gronps, Knosledge-bassd STAAS :
Cc. Ab Initio Protein Structure Prediction nons.betIWee.n the side groups. Tnteresii:;l p;?enua]s described the interac-
Due to the time scale of the protein folding process, which takes from EEZ;J;:TC;0'%02;132;]0;‘:(1%01% CfﬁCiently Samp);’e tfise s:slc;())’r:lzftlil;rllsltrated that a
milliseconds 0 minutes, at present, it is rather impractical 10 attempt protein apamin), proper Slruclt)u; ees (melhtm,‘ pancreatic polypeptide a IS.PH.CB of the
structure assembly using all-atom detailed models. Indeed, contemporary - Ato 4S5 ﬁ, depending o 8 werf" PT?dICted whose accuracy ran:ﬂ(;ﬂ?ltor, and
computers allow classical molecular dynamics simulations of a protein wtoms per side chain (%Orfzhpeptlde size. A similar model, but w".{eh from 1.66
surrounded by an appropriate number of water molecules over & much shorter Ullner [65]. Results for 'e largef amino acids), was StUL,lied b 1W t1;VO _umted
period of time, corresponding to tens or hundreds of nanoseconds (dependingon sccurae, probably due topctl?creatm polypeptide inhibitor werg Sl'a hqvxst i
protein gize). This inability to routinely access Jonger time scales stimulated educed continuous model he better packing of the model side lhg.ﬂ)" more
umerous attempts Lo simplify the problem by reducing the number of explicitly tructure prediction but al s were explored not only as a mea chains. Sueh
treated degrees of freedom of the polypeptide chain and by simplifying the model } protein folding dynamics ‘SO as a tool for investigating the genensl of protein
of intra and intermolecular interactions. Such 2 reduction of the number of | Pedersen and Moult [Gdgﬂd ll?ermodynamics (66,671, ral aspects of

could be achieved by assuming a united-atom representation f  structure prediction. They 132;2’:5351 a very interesting approach to protei

- 3 an all-heavy atom representation of f}iﬂ
e

protein with knowledge-based .
. potenti S I
: z'-lsamplmg method, they used a combilrfa(tlif)scn?lll\]/lg NS PIEIASRC H: =
-~ algorithms. The MC r : . n of Monte Carl o
< of the genetic a]oormlagigfd“‘ed a set of structures for theosgf(-:) and geneuc
e Jargest structural ). The crossover points were select dl ng population
: Simulation:waé ‘llsoura flexibility, as detected during lh(:: eMm the regions
Low- to moderate-r plerformed between crossover ever?ts i L s, I
small proteins have E?a; t;(:: proftein fragments and the ap;)r;ot:iem?[A f‘c?j o
M that the appli uccess fully predicted by thi ate folds of
! pplicability of thi d Dy this method. Unfortu
Even reduced y of this method is limited At
models of - ited to rather small :
degrees of freed proteins have a lar; profems.
=R om, and an effecti o F ge number of confi :
e s effective sampl ormational
proteins in a : pling ‘of the long-ti
further simplify lhzontm; e could be verYAdifﬁculL%f“me' sy for
ined. Early qtugims]eril"l’ discrete or lattice models w‘;?:mposmb]e_ To
T studies of the latti : proposed and
tion but rather ice proteins focu
PHS on . 1sed not "
trmodynamics and som u}]dcrsmndlng the fundamentals of N
ioneered by Go et al [Gg aspects of the folding dynamics Thprotem folding
nick and Kolinski' L k /and t.hen followed by Krigbalnn aezeg’\_'orks ey
2], Dill et al. [93—96_]_24]’. Sikorski and Skolnick [85-88] nch.m el
05_111]_ Since thf; Sud;{ et al% [97,98], Shakhnovich et ai [QSHIZS;? 2L
6 cxistenc ject of this chapter is i L » and
: istence of excellent revi protein structure predicti
;;ei{hre\;ew g reviews on the subject, we refrain fro:iloz
e first attem i
fashion withj pt to predict the nati
; ithin the fr ive structure -
the framework of a lattice represeonft:ftig::) 1'emdm o
1S due to

degrees of freedom
d residues, by assuming a single-atom representation of the |

of entire amino aci
sentation of the side groups. The internal degrees

ain and a similar repre
groups were frequently ignored in such models or Wer

treated in an approximate fashion. Such a simplified protein representation als
led to simpliﬁcations in the interaction scheme; for example, all reduced mode

cither ignored the effect of water or implicitly treated it.
{ the reduced modeling of protein folding were underr:

The first attempts &

taken about 25 years ago. In their classical work, Levitt and Warshel [38];

proposed a model that later inspired other analogous simplifications of proteln
f interaction per residue, 0

representation. They assumed two centers 0

associated with the alpha carbon and the second with the center of ma
the side group. There was & single degree of freedom per amino acid
rotation around the Co—Ca virtual pond—while the planar angle for th

trace was assumed to be constant [59]. A knowledge-based potential control
the short-range interactions, while the interacti

ons between the side groups!
in the form of a Lennard-Jones potential (partially corrected for the hydroph
effect). The sampling was done by means of classical molecular dyn
Simulations of a small protein bovine pancreatic trypsin inhibitor

someti
produced structures resembling the native fold. The best structures had
mean-square—devialion (RMSD), from native in the range of 6.5 A. Later:
et al. [60,61], Hagler and Honig (621,

and Wilson and Doniach [63) S
somewhat similar continuous models.

The results were of comparabl
some qualitative features of small protein folds were sometimes recoY
their simulations.

main ch
of freedom of the side
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protein. A
interactions between such d
low resolution were generate

sampling scheme.
Kolinski and Skolnick [75—84,116420] developed a series of high-coordi--
Lattices of various resolution We

¢ models of globular proteins.
¢ the conformation of the Ca trace of real proteins, fro

«chess-knight”’-type lattices to a high coordination lattice;
to represent possible orientations of the Co—Ca virtu
loyed in the test structure predictions [118,121-123]h
ters to represent the side groups. For each side chain

single-sphere, multiple rotamer representation was assumed. The force field

each of these models contained several terms mimicking the short-range
interactions, explicitly cooperative hydrogen bonds, one body, and pairw!
and multibody long-range interactions with an implicit averaged effect
It has been shown for several cases of small globular pr
Jtimeric molecular assemblies [124-126] that such m

w- 0 moderate-resolution (high-resolution in the ca
Carlo simulated annealing COmP

Dashevskii [112]. A diamond lattice chain was used t0 approximate the poly- The ROSETTA method
. ~ . . . i . O .
peptide co.ntormanons. A chain growth algorithm ?:?&ecute_d the sampling of iiovative. The: method oo pl'oposcd by Baker and.cosworkess [108] f
conformguonal gpace. Compact _struqtures rese:pblmg native folds of small alignment for a sequenc fllfvlsts of several steps. First, a multi 1— ] is very
polypf.:ptldes were generatfad anq identified by a simple force field. Next, Covell prediction et faacy eﬂo ;nterest was prepared, and tfle seconi]pae sequence
investigated a simple cubic lattice model qf real pr'otems [113]. The bfahavim secondary prediction teff: h 1 HD server based on Rost and Sander’ lylsgrucmrc
was controlled by the force field that consisted entirely of long-range interac- Jlignments were then nique. Secondary structure prediction s el
tions that included a pairwise, knowledge-based potential, a surface term, and a irncrral fragments (’75uf°ed to extract the most plausible 35 atlz)d ;equence
5 . 5 . Al Z ragm - -resi
potential that corrects the local packing of the model chain. The quality of crude tom the structural databa gments f.or each segment of the quer sidue
folds generated by this method were not worse than the quality of folds obtained .k and the sequence simila;‘ste )(aCTCOI'dlI]g to the secondary Stmcturz Seq:‘ence)
Z : . . : : 1ty). re i
using early cc?ntmuous models. (;ovell and Je¥n1gan [114] studied ﬁ\:fe small andom insertion of fra mey . hen a Monte Carlo algorithm emp[ 1ct10n
globular proteins by the enumeration of all possible compact conformations ofa- fimensional structure '%h nts 1r_1t0 the structure was used to build ploying a
body-centered cubic lattice chain. They found that the closest to native | term, elements of EISC-EFOS[itiscormg function contained a hydr:;hott)}']e thee-
; i "0 ¥ i cs, i . 1c i
conformation could aéih:;ays ]l()e fo;.u(ljd w;thnll t:ne top 2 To ofh the lowest-energy i) fent term that evaluates the packiz; dlSLfllﬁde bond bias, and a Sequence-indellzal
strucfures, as asse'sse y a knowledge- ase }nteracl_mn scheme. i  (of 1200 generated) structures f g of secondary structure elements. The top ;15
Hinds and Levitt [115] pmposed an interesting lattice model of proteins. Ina fve structures exhibiti _ requently contained the proper fold p2
diamond lattice chain, a single lattice vertex represents several residues of areal inspection.” This Couldnlfe(ﬁ:; Sm:gclle hydrophobic core were selccte(():l b The best
isti ia imi s ' onside “vi
n elaborate Stat’i;lc:;dpgsg[}: :;;eingyzge:;;“:{‘:fe t:l; :T;eaf; development). It would be difﬁcultr ig 210 be a flaw of the method (at thi)s: slaoiu;l;
S n LEC , ‘correct 10.C0 on a massive sci o a manual evaluati €
7 ale: Neverihelass: # valuation of the icti
] : : ) fo - prediction
d among the compact structures enforced by ﬁw, ~ correct (with an RMSD range of Zplg tE&rgfﬁts, four predictions were nlobal[;
“majority of their R o or the native ¢ -
- were coyrrect ItISh(I)):i;ill;IUOnS contained significant fragmen:;rucftum)’ and the
assembly using predeﬁ:;3 ?lotfed that a somewhat similar idea of omitr_ucture thet
i d in the method de ragments and the Monte Carlo POt phmpte
exercise eveloped by Jones [132] and tested doring the CASP2
' g the CASP2

nation lattic
employed 10 mimi
three~dimensiona1
with 90 lattice yectors
bonds. The models emp
additional interaction cen

A number of othe:
B tatsct proteins & g;;’gps made good predictions on a fraction of diffi
Geveloped by Kolinlski mgl él:( []1?33 applied a high coordination Ia[[ilcecuuc;ztl)
P Monte C 2 olnick [122,123] to a numb moce
‘expanded confo1.m§tril§n§'$}]g§ted annealing calculations sta‘::e(;) ffrsonrila“ Hggﬁ
; ; f the target rotei random
Or represents proteins. The model as .
ntation of the alpha carbon trace that has a ]e]? Elis:eme]d % 00 basts
< solution due to

water molecules.
[118] and simple mu
can generate correct 10
leucine zippers) folds during Monte

experiments.

Various recently developed methods for ab initio protein structure Press

tions were tested during the CASP3 (Critical Assessment of Technd
luded in December 1998 in

,“u iijng the d. 1 i ) ular amino ac (ES I] [+ E!e]lel C
trlbl][
mode = pOtﬂl’][ialS (del’i&ed fl"Ot]l
ons, one bod}‘ i i W. y g— allge
"'ns a[ld terms s lIlUIatll’lg the regularity aﬂd COOpCl at.‘fity OIl [he
g nety OI‘I\. Addltiona”y, a eaI\ bfaS tow : d d |
in 11} dIo cn bOIl(I N W ar pre ICted

otei cture P ediction exercises, conc
Erater Stru - . ) N s developed ary structure (obtained from i
mar, California [1271. A number of new techniques have been deve 'P : prediction from P multiple sequence alignment
that time, and @ number of them constitute qualitative progress in 4% Ange contact restraj HD [129-131]) and weak theoretics 1-1+- sccj'on.dary
prediction with respect to the previous CASPs (held every two years i the interaction Schzis frFln; correlated mutation analysis w:r ¢ Pl?dlcted
‘ me 4-138]. Conta . € implemen-
: ct prediction was ba
‘ sed on the
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ed by multiple sequence
Y q atom model [147]. Due to the force-field design of the model
model, which is based on

analysis of correlated mutations in sequences detect
or large fragments of the s ; L
g basic physical principles, this method is very close t
' o a purely thermodynami
ynamic

e targets, the globally correct fold

alignments. For som
structure were correctly predicted. The method wds capable of assembling low- approach. In this respect, it ot
resolution novel folds. The level of success during the CASP3 exercise was on methods. This off-lattice ) I.Otflfl«'vllltatwely differs from the previously outli
the same level as reported for test predictions made for a series of small globular alpha carbons, side groupsr;) anillr;) m?(;elbhas a united atom representation O;I:i:
proteins prior t0 CASP3 [137]. o variable bond angl ’. eptide bond group, with fi
P ; ari es. T : . » ixed bond 1 p
A snrml'fir methodology, but one based on a completely different protein p———— efcrgy (i‘;i‘n“ttefﬂm.lc’ﬂ potentials between united atorr:l ﬁgi d-gd
representation [139,140] (that are discussed in Sections V and VI), was average solvent effect and Cractlong zind account in an implicit way fo rlhe
empl'oyed by Kolinski and co-\'vorkers with a similar fralction of correctly optimization is perform;d bCOOpem“v'%y of the hydrogen bonds [143] r_;he
predlcted. structures [133]. .An lmpf)rtant advantage of this method was its technique [147], which Subsye means of the Conformational Space Annf;ql' ©
con?putanonal speed and nicer scaling of computational cost against protein finds distinct families of low- Mty Gareows s search; sgions Aug ﬁ:] ]ﬁg
chain length. Thus, the prediction of structures of larger proteins via ab initio model conformations are subzzzrgy Sonformations. The lowest-energy rcduicl;e(}j’
folding became possible. optimi uently converted int '
‘ ptimized by electrostatic: g o the all-atom mode
- Osguthorpe [1'411 empl'oyed a continuous mpdel ar?d molecular dynamics fraction of CASP3 targetzq]ll-gi driven Monte Carlo simulations [149] 1;031112
simulated annealing. In spite of the use of a quite detailed model (main chain'f  tions. The method seems lo’persof;ﬂmdl [iroduced exceptionally good .Pl'edic
much better on he]ical v =
proteins than on 3 or

united atoms and up to three united atoms per residue), its very flexible chain o/p proteins

geometry enabled efficient sampling. The potentials were derived from the.

statistics of known protein structures. The method enabled us to obtain correclf—
| fractions of the structure of the attempted targets, and In the past, different methods of sampling of
¢ of protein model confi i
ormational space

D. Choice of Sampling Scheme

predictions of substantia

for one of the difficult targets, the prediction resulting from this method was e’} have been employed with various de

most accurate. : s degrees of f

A very interesting hierarchical procedure has been used by Samudrala etal: Sﬂ?:,:?;sq e b? assd 01?1y in the case of Comiill‘lCOCESS. Jenirons MBlEeH At

b . y . ) e, including a variety of M us models. Other samplin

[142]. First, as previously proposed by Hinds and Levitt [143], all compat combinations of these method Bz Catlp merbicds, pentuc 2l epiims ﬁ
ted using the diamond lattice model f  discrete (including lattice reprfa’sf:iltli?i c? e) appged to continuous as well as 1,0;1[113

ation) models.

ons of test proteins were enumera
with multiple residues pet chain unit. The best (accordin
the lattice model) structures Were then selected for further consideratio
Subsequently, the all-atom structures were reconstructed by fitting the predict
secondary structure fragments 1O the lattice models. These structures We
subject to energy minimization using an all-atom force field and spati
restraints of the lattice models. The optimized structures were scored by
combination of all-atom and residue-based Kknowledge-based potentials (1441
Then, distance geometry [145] was used to generate 2 number of possit

models. The local geometry of predicted secondary structuré
again fitted to the resulting models. Finally, the resulting all-atom models ¥
d rank-ordered according to energy. A number of qualitat
correct protein fragments of significant size were correctly predicled
method appears t0 be very robust and (as pointed out by the authors) 1t
likely that it could be further improved. Probably the major weakness of
method in its present form is in the small fraction of good structures

initial pool of lattice models.
The method developed by Scheraga and co-workers [146] and U
CASP3 is based on the global optimization of the potential energy of a

conformati
g to the force fielddtf  In gene " .
g . ]i 01:rtahl‘; ;l’tll{id(j‘llOICe‘ qf the simulation/optimization algorithm d
B amics and foldilszl Dllﬂerent procedures are needed for the stud epfenfis .
S ndithe lowest g pathways from those procedures that are j el
i % l-energy conformations of model pc’lypepti(‘[ re just targeted to
arlo proc « f . ) €s.
itegics for Collil fmid’m.‘es for Ch&lt"l molecules [150] use a wide s :
global, as in the ch national updating. In some, algorithms, th peatrum of
e g € e C 1 : ! N e u v
pvot moves of a 1'1122 sgﬁwt? ilgOrnhms, whereas other a]gorithrrlizhéfs lare
sy ¢ : mploy
- modifications part.of thie: model. chain, Tn other § i
: are loc: . er algorithms s
Istance displacemen?;;ﬂ’v?lvmg only a small portion of lhs chain Zrlge m‘}i
_global. modificati a larger part of the chai . Sm#
uhal. ifi . ) ain. Son
What is thiat[olni._ were combined in the same algoritl:r:!mes’ the local and
: relationshi .
ontinuous model a::;]smp between the molecular dynamics simulations
imilar discretized G i'l'ﬂ }SOthernlal Monte Carlo trajectory of a o 0.f a
S are applied i r lattice) model? When only local (and l111 i
2 n = . sma. ists
Schieme, the discrete n?ol()]:])per]y controlled random (or rather PSEUdodrlft;]nCE)
A’ S m 1 . 3 ando
ain, The Monte Carlo t L coarse-grained Brownian d}/n‘i;nic mi’
B tochastic c rajectory cr?uld be then interpreted as the n‘u 50
quation of motion. Of course, the short-time d e
’ E = ynamics

“consensus”

optimized an
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he Monte Carlo scheme) of the
eaning. However, the long-time dynamics
it with possible distortions of the time scale
lence of the molecular dynamics and
d lattice-simplified protein

(the time scale of a single elementary move in t

discrete model has no physical m
should be qualitatively correct, albe
of various dynamic events. Such an equiva

stochastic dynamics of equivalent off-lattice an
models has been demonstrated in the past by Rey and Skolnick [151], and by

Skolnick and Kolinski [152]. Recent studies have shown that Monte Carlo
folding pathways observed for high-coordination lattice models reproduce the
qualitative picture of folding dynamics seen in experiments [153]. Thus, it could
be rather safely assumed that Monte Carlo lattice dynamics can be used in
meaningful studies of protein dynamics, folding pathways, the mechanism of
multimeric protein assembly and other aspects of biopolymer dynamics. The
validity of protein dynamics studies using discrete models depends more on
the assumed accuracy of the protein representation and its force field than on the
particular sampling scheme. However, some oversimplified discrete models may

face serious ergodicity problems. This aspect of Monte Carlo simulations

always needs to be carefully examined.

Isothermal simulations (molecular dynamics or Monte Carlo) provide charac-

ture. Numerous simu-

teristics of the system’s properties at a single tempera
lations at various temperatures (above and below the folding transition

temperature) are needed to gain some insight into the thermodynamics of th

folding process. There is a very serious problem associated with the extremel %
slow relaxation of protein models in the dense globular state. The local barriers
in the energy landscape near the folded state are high and the sampling become
ineffective. Thus the computer studies employing straightforward MD o
canonical MC algorithms became prohibitively expensive. Essentially, th

same applies to yarious simulated annealing strategies. In all cases, the design
of sampling details could be very important. For example, properly design
local moves can “jump over” the high local energy barriers, thereby speedin
up the sampling of the entire conformational space.

Mulicanonical [154] (or entropy sampling Monte Carlo [108-110]
ations provide more complete data on folding thermodynamics (116,15
Due to their differently defined transition probabilities in the sam
energy barriers became i

much less important, but are

barriers. From 2 single series of simulations, it is possible to obtain an
of all thermodynamic functions (energy, free energy, and entropy) OVer
range of temperatures. However, the cost of such computations grows:
with the system size and its complexity. :

A somewhat simpler, but by no means trivial, task is

state of the model polypeptide. Due to the {hermodynamic hypo
n the global minimum ©

which postulates {hat native proteins are i
mational energy, the minimum energy State of a properly designed P

S

) simv
5-15

f the
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model should closely mimi
y mimic the fold F
have been develo olded conformation ari
el stple E;Ste;? soive this global minimum. ;{)"I;ill';ety[‘i’g S
. _ , when the total m [159]. Fo
analytical form, it i : otal energy could -t
[160]. For more CDII;IE)I(;SS[?IC e pl’()b?em in a clijeet exl?rf‘:ssed S
X (i.e., realisti erministic fashi
methods do not gua ic models of protei smon
o Dfpg;‘;g;?se E:_'lat the lowest energy Copnfofr]:zlst)' Systems, existing
- onformati ton will b
B it ssarvb peactioal ions and the rugged energy landscap: niillind
Simulated annealin : red
g, ESMC [108,10
[162], genetic algori ) -109,161], Monte C i PP
e with Montegg?;i];n: [64,163-165], and the combinztril:))nm;h munizatnn
B oo rinfivesconlont af“lﬂmg have been successfully used it algori-
Recently, a numb ations of reduced models of small i 'the Peet o
e Car](; strategieesrfgf gtuc?les have focused on the ‘COHITUH’?IHS gl
168]. Probably the most rt n.dl}ilg the global minimum of a prl::n'son S
) straightforward € ein model [166—
annealing, where the of these search ies i
: e system tempe . Strﬂtegles is simul d
simulations, starting f ) .p rature is gradually 1 ; ate
o) and endTn ér(;rtn a relatively high temperatu{e (():l;zred during the
a low temperature below the foldi ve the folding
ing temperature

_ (usually well below d
ue to thermal fl ;
~ from different initi al fluctuations). Wh
initial 3J. €N o1 I .
~ assume that there is a Statzs. the same conformation is ;[:;ﬂtecl o
- found. However, fo} ditgﬁO:uhChanCc that the global minimum :ereq;done -
: . ; ble : has indeed b
“substantial fractio problems, simulated ¢ i een
: n of the runs) annealing runs (o
of the local mini could be trapped in | Bk east 2
ima could n local ener ini
be close to the model’s representaigi{)ml?uza s
n of the native

ate, whereas other
’ s could co
the properl rrespond to confi -
y folded stat i ormations that ar y
e. There is no simple test of ::011v€;far away from
rgence in the

simulated anneali
: ing m :
e be considemct’, y ?ﬁod. The efficiency of the simulated anneali
proved by a certain médification Ofctnea_mg method
ransition accep-

nce criteria. For i
: - Instance
fter' the transiti » one may perfo :
: ransition and t rm local minimizati
Iergy pairs or co”for'm'}:t?([;nzp[p]lg] tljl? Metropolis criterion to ﬁ:telcig b]elfo;e n
Sits o a lar rmatior . This way, the sampli cally lowest
o comras;ge{ofra_cuoln of irrelevant local energy II::iP]_Ing procedure can avoid
> simulated anneali nima.
ical ensembl ealing, sampling t . :
e have s . g techniques withi ;
gue, called —— S‘;mell_nternal convergence tests. In at‘?m .the n?u[n_
Stem’s entropy is builintl? ing Monte Carlo [108-110], the :r:'lon ('Jt e
of states of particular di SY a gamplmg process that is‘ Comrsliﬂéattl)on of
ged, all ener cretized levels of : ed by the
Wi rgy lev i . conformationa
same frequency. Tffllli ]lzgcll’dmg the lowest energy Sho‘;‘éﬂgrgy, b
_pteccding Simillati MC method is “quasi-dete,rminisf ,f sampled
:81Ve muns. In princi lons could be used to improve the i Th? data
ate. In practice t}fee, when converged, ESMC should ?icc(l; ey L
» the energy spectrum near the lowest ener;y 1?8 e
: state could
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be associated with large €
not detected in spite of the apparent convergenc
visited states in the remaining low-energy por
rate of convergence of the
the energy landscape could be accelerated by t
entropy curve (artificial increase of the density
high-energy range [156].

The replica exchange
local minima in a different way. A number 0
gimulated by means of a standard Metropolis s
The temperature range covers temperatures fr
folding temperature down to a temperature be
perature. Occasionally, the replicas are randor
ion that depends on temperature difference and
low-energy conformations at a higher tempera
a2 lower temperature. As a result, the copies of
conformational space but also move between

temperatures, the energy barriers could be surmoun
ys” are efficiently sampled. B

of the computational cost of finding the lowest energy state fora

tures the vicinities of energy landscape “valle
Comparison

simple protein-like copolymer model [168] shows that

Carlo (REMC) is much more efficient than simple Me
e fact that multiple copies of th

simulated annealing protocol in spite of th

syste
conformations many times

the REMC method (or its variants) could be a met

initio folding of reduced protein models, where

the main goal of computational experiment. Due to th
emperatures could be used for the

by the REMC method, the samples at various t
“ymbrella”-type estimation of the system

applications of the REMC method into cost-efficient stu

thermodynamics.

[iI. OVERVIEW OF THE UNIFIED FOLDING METHOD -

When faced with the problem

structures in the protein data bank [17
a threading program (o see i it detects a signifi
if either of these two cases is
of the probe sequence may be in error, and ther
the probe sequence to the template structure
unaligned regions. If both methods fail, then

ntropy barriers, and the lowest energy state could be

tion of the energy spectrum. The
ESMC method into the low-energy portion of

Monte Carlo method [169] addresses the problem of
f copies of the model system are

om a temperature well above the
mly swapped according to a criter-

ture have a chance t0 be movedto

m have to be simulated. The REMC me
faster than the ESMC method. Thus, it appears th

of predicting the tertiary structure of anun

sequence, one typically runs PSI-BLAST [170] over sequences fr
1]. Then, if this does not work, 0

successful, for nontrivial cases often the @

e—that is a constant density of

he artificial deformation of the
of states) in the less important,

cheme at yarious temperatures.
low the folding transition tem-
the energy difference. Thus, the
the system sample not only the -

various temperatures. At high
ted easily; at low tempera-

replica exchange Monte |
tropolis sampling witha i

thod also finds the low-energ

hod of choice for use in thea
finding the lowest encrgy state!
e very efficient samp

entropy. That may extend: !
dies of protein fol

cant probe—template matc

e may be gaps in the align
and/or sometimes there ¢
ab initio folding 18 the
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structure predicti )
approach I:haczwﬁgmn;;ﬂﬁ?' Thus, ideally one would like to have : :
describe one recently dev‘;y treats. these possibilities. In What( fo”:; vlvlmﬁed
An overview of the idezpizdgl';:;ie(_i a?Pl'Oﬂch_ 3 WE
algorithm, PROSPEC in Fig. 1. First, one runs our ,
sequence—template st TISE—JSH and establishes if there is a Signiﬁ‘c:lllillt'ea;ngg
generalized comparative n]oéllglaalt't‘:h' ,If so, the template is used as a soft |3ial:sJ 31 e
the vicinity of the template i ing approach .that involves ab initio foldin a
predicted secondary struct i reduce.d protein model. Threading also pr ‘gd“T
template structure but cal:]reband tertiary contacts that are not restriclti)dotVl [‘35
the possibility of fold predi e extracted from other structures. This 31(1) ol
ihe probe sequence to tEe lelctl?n in those regions absent in the a]ignmen‘t)w:;
comparative modeling is tl]:zlp ate s_lructure. The advantage of this gencra]iz?l
{he threading algorithm a d‘ ‘1t can improve the initial alignment generated ec
) nd can provide a structure prediction for the unzlfgnzz

SEQUENCE

PREDICTED CONTACT
S& PREDICTED
SECONDARY STRUCTURE SECONDAHYCSC'.I]'\'RTL?(?'I-I'—USRSI‘E
STRUCTURAL TEMPLATE
v v

[ AB INITIO FOLDING | GENERALIZED
COMPARATIVE
MODELING

-

CLUSTERING

(" REFINEMENT )

f FINAL MODELS ]

1. F]OW charf n ach to rote TUC! ¢ prediction. First
hart describ. P C pi »
g the unified approa tein structur

5 15 done. If a significant hit

e e hit to a !‘emplute is found, then generali i i
'ﬁ_‘Dm b tcmp[ﬂ[{igt}z l()igtljuﬂplemf.:rm?d by predicted second:ri!d ;?:::F:;:gl'vcdm(}ddmg
e s o d no significant probe sequence-template stru ““‘ CO““’CFS
R foved o rcsn"_.n sets of local distances in the top 20 ; i
){picﬂly s ddmt‘s in an ab initio folding algorithm. On_ce SC“]““g_ SRt
b one, the structures are clustered, full atomic la h:ﬁliuem e
¥ @ models are built in the

: and then usi
stru using a new, di
i » distant-dependent atomic pair potential [204], t!
Lt , the top five

s are selected.
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regions of the probe sequence- On the other hand, f there is n0 significant match a profile for distantly rel ated s
{0 a template, then the predicted secondary structure and tertiary contacts set of alignments. The goal hCCl-uepces; these are termed the “distantly”
extracted from threading are passed to an ab initio folding algorithm that uses ore sensitive to more Cl:) Se]ete is to have two sequence pl'oi{leg- 0):1 rtﬁ;‘ate_d
del. Then, for both generalized comparative fimes detect more distantly re]};tlgast:(cllusequences and another 111ot C'-ai qo‘i.;és
ences. f -

the same reduced protein Mo

modeling and ab initio folding, the resulting structures are clustered, atomic The first step of the threadin : .
detail is added and the results are reported. gatabase of interest o eacﬁ Fg?t;ml is to independently scan the structural
[v. THREADING RESULTS Waunsch type of global alignment pmgfafﬂlig?c?rﬁﬁh“ with a Needleman—
A. First-Pass Threading it %” lept is used to identify the partners in the be template structures.
Recently, 1© puild on the strengths and address the weaknesses of existing ;?dte].itiz:iﬁu:g:in e palt interactions. Here we usepn:r:»O T terhe uscH
A ) e . e act potential averaged ' ur previously developed

threading approaches, We have developed a new threading algorithm called contribution from contacting fra ged over all homologs which includes
PROSPECTOR (PROtein Structure Predictor Employing Combined Threading each member of the close set Ofgmems that have weak sequence similarit ta
to Optimize Results) 571, which runs sufficiently quickly sO that entire genomes use a pseudo energy term i desfr'?)be sequences [178]. Furthermore, we ilso
can be scanned in the matter of several days on a standard workstation or PC. amino acids to adopt a given type nf es the preferences for COnsecutivé types Oof
During the course of the development of this programm, we noticed that sequence ture pl‘Opensity term is also a{};m(;ezecondafy structure. This secondary struc-
72] often generated secondary  structure propensity ;roﬁltz:velFE{rm:;}sfs, zmei lhu?' it tesets m &
. scoring function, close

profiles generaled from the BLOSUM 62 matrix (1
g probe and template sequences, even when (distant) sequence profile, and sicse: (distant)

ant) sequence plus pair i -
pair interactions

reasonable alignments petween th

the alignment score was insignificant. This suggested that the first stage ofa | plus the secondary structure pr ;

hierarchical approach 10 threading should employ & sequence-proﬁle (170,173, and output the top five scorinp Otpensuy profile, we scan the structural datab
174] (using 4 sequence profile plus a three-state secondary structure predicti ‘| are output, along with their gl.S ructures. Thus, a total of 20 possible stru ase
scheme gave worse results) t0 generate the initial probe sequence 10 template alighments. B

structure alignment. We call this the “partly thawed” approximation. Then, t
resulting ali uence in the {emplate structure is used to-f Asa test case, we have focused on the Fischer d
cher database [179] :
£ that is comprised
of

gnment of the probe s€d
calculate the partners for the evaluation of the pair interactions. Previously, in{f 301 template structures and 68 prob
first iteration of the frozen approximation (45], the partners Were taken from tecf ~ on this database before decidiif e sequences. We tried a variety of approaches
template structure. This worked well only when the environments 1 meters. We just summarize the rz 0111 the aforementioned combination of pa ©o
and template structures Were similar, but more often than not t Vfunction, the Needlemaanunsctfu 1t s ol th‘?se studies here. For a given scgrira-
were quite different. On successive iterations, n the so-called defrost® * correct probe—template pairs than d_gdobal alignment algorithm recognized mong
mation [45] where the partners were taken from the previous alignment, th f‘_lgoﬁlhm. We also tried using th id the Smith-Waterman [180] local a1ignmere
hen the resulting algorithm never converged. Here, after the in*generating the probe_te[ﬁm;;ecﬁndmy structure profiles as the initial st;1 :
quite good results were obtained. ' . structure profiles alone only correc;l ignment for:ipair evaluation. Secoodarg
' ce ahgnment .(MSA) generation used 1 %F@S secondary structure profiles yl recognize 18 cases in the first position
construction of {he sequence profile combines Swissprot (http://WwWW.eXPE): his clear improvement dhoses:th PSPl profiles correctly assign 29 case ’
and the genome sequence database (ftp'.ergg.genome.ad.lplgenom ]m‘t’)igtheless, even 29 recognized g;il:;h;y Of‘l pair potentials in this approacli:
d sequences. whose seq¥ ,ﬁl‘;e;??:sgéfcgd reoognition comes, as 3:132 111):\?; Cl;’sfformancf:_ The major
. Even if the sequence profile i served, when sequence
is turned off completely but is used

. First, a profile for relatively closely relate
enerate the ali
ignment
gnment, the number of correctly recognized pairs increa
< ses to

B. Application to the Fischer Database

were times W
initial alignment,
The database for multiple sequen

sprot/)

' ity lies between 35% and 90%; 18 calculated. These sequences ar se
from the composite database by FASTA [175,176]. Then, pai i
alignments with the probe sequence : i orrect probe-template pairs oy e
and a sequence profile is generated. We term this the «closely W ons improves the yield of op position. In all cases, inclusion of i
alignments. To this set, We add additional sequences whose E value inE summarize our result o correct probe—template matches pait
less than 10, use CLUSTALW to generate pairwise alignments, and then ECA58 PECTOR). One 0% lh: Ez;]ga IIZROSPECTORI in Table I (the o

ernative methods is that of Gonnet Wl‘1ic

i h
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TABLE I
on the Fischer Database for Different Scoring Fu

Summary of Threading Results
Number-of Fischer Number of Fischer

Pairs in the
Top 10(8) Positions

Number of
Fischer Pairs in the
First Position

Pairs in the Top
5(4) Positions

Method
PROSPECTOR1
“Close’ sequence profile 44 46(46)
“(CJoge” sequence profile plus 45 55(53)
secondary structure plus pair profile
“Distant” sequence profile 46 53(51)
“Pistant” sequence 52 56(56)
profile plus secondary
structure plus pair profile
Hierarchy of four scoring methods 59 63(62)
Hierarchy of three scoring 58 62
functions (as above but
without the “distant”
scquencc-pmﬁles)
PROSPECTOR2
“Close” PROSPECTOR2. 48 51(51)
sequence profile plus protein
specific pair and secondary
structure potentials profile
“Distant” sequence profile 51 59(59)
plus protein specific pair
and secondary structure potentials
Hierarchy of four scoring methods 61 64(64)
Hierarchy of three scoring functions 60 64
(as above but without the
“Distant” sequence profiles)
Other Methods
Simple Blast' 27 —
PSI-BLAST restricted to the 24 37(36)
Fischer database [170,182]
PSI-BLAST using extensive 41 46(46)_
sequence database and PSSM
constructured using IMPALA [247]
Original GKS threading program [45] 22 30
Hybrid threading [181] 52 57
52 (56)

Best UCLA benchmark results as of
2/4/00 which is prediction of secondary
structure plus mult-gonnet 341

0(8) positions [181

n both the top 5(4) and top 1
//www.doembi.uc]a.cdulpeop

aResults are reported i
bsite (http:

thesis given by the UCLA benchmark wel
table1.html).

1, with the numbe
le/fische

A UNIFIED APPROACH TO THE PREDICTION OF PROTEIN STRUCTURE |
. “TURE 151
recognizes 52 proteins i iti
S imm‘apctig::sr;gothe.top posnt.lon, the same number as the distant profi
B s o becﬂusgnjtges, but. if a hierarchical method is used ‘theplo )
e i [;) S € 59 proteins are recognized in the top pos:itio : (Iml:S
Ll gl [ll]lr aia;lgsf;fforts as well as to the alternative ?1'ybtril§
e Scoﬁn, - _ —BLA..ST [170,182]. It might be argued th
e et et g functions while the hybrid method uses onl N
comparison. If we eliminate those results obtailrllgdufl:s .
m

nctions?

49(47)
56(55) tjheanjljt(;ml sequence profiles, then we obtain 58, 62, and 64 )
s B e lfc:lsmlc'mdas compared to 52, 57, and 66, re;pectiVelcasc; in the top 1,
59(57) . g IPtP le .l.he method to a second Fischer benchmarky, i GtPnnet,
g'scher o plate pairs and scanned each probe sequence .COmP"lSed.ot." 29
i rur.;tural database plus an additional 19 t against the original
65(63) - www.doembi.ucla.edu/people/fischer/BENC E_mplate structures (http://
64 been able to find 27 of the 29 probe seq H/tablepairs2.html). We have only
| accordingly. PRO sequences and have report o
A placisyz . ﬂndszli)Ej(;—f}?Rl places 17 correct pairs in the tti;) ;ziit?zl I’e;..u]t_s
e e best re ;_t | e top four and eight positions, respectivel Tlnl,‘z?nd it
: case one probe “SFC]]UB ;e'SE]tS of 17 CO[TCC[IY identified pairs HO\{" nb.lS the
y , “stel,” which is supposed to be mat l S L SH
58(58) :Efllgt;ea;(;ngoggon, which has the same core as 23;:;‘* EI(‘)hzazaA, selects 2pcy
(eigl’xt) 0 ‘t-( ) correct f‘latches in the top position an('i to rlli i i L 1
ﬁreviouf;;:}(:;]s’ respectively. Thus, we have su:)mta'whatpb(;te ULCIEg S T
59(59) L8 er results than
65(63) C. Iterative Threading
65 1. General Idea

Just-as PSI-BLAST [170] can i 2
[Meading, In an increase its specificity by i i
'dd-lonfl infof‘?ﬁ:;ti:)[:leeieetn(l))f Stmcmms. sfe]eCtéid by P}I;OSYP!IEIS;I(I)(I:LC(S)(;I ins
fhe set of 20 structures thaf%, ond providing for a structural match. If we li)mli
OO crure pais, it i are se'lectecl as being'the best scoring seque 0
T e v e st i

iction of tertiar ' way of illustration, we sider

i e resid); ;Js();llt)z;crtts. V‘ée focus on all contacts between f:;:;i?:: 111:1?
ned regions of slructur;a;lf };N e count the predicted contacts generat;ed b
consistently predicted) then there is a consensus (i.e., at least three contacly

the specificity Oftilreadi WebemPloy lhis-information in two ways: (1) t;

I potential and (2) g by constructing a protein-specific threadi

: as described in Section IV.F, to pred,ict t;].tli[,:rg);

4 : ’
prc?wously derived formalism t
‘derive a set of

A
s 0 cpnvgrt contacts into a pair potential
¢ potentials, where the contacts are not

ments with i
weak sequence similarity, but rather are
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generated by consensus contacts in the threaded structures. We use the
arithmetic average of this potential and the previous iteration’s pair potential

in the next iteration of threading. This case¢ is termed the «close” and “‘distant”

protein—speciﬁc potentials, and we call the threading method that employs these

terms PROSPECTOR2.
2. Application of PROSPECTORZ 1o the Fischer Database

The results from PROSPECTOR2 are also reportecl in Table 1. The “close’ case
48 proteins as compared to 45 in the top position. The ‘“distant”
51 as compared t0 52 previously, but the composite of the four
61, 64, and 65 proteins in the top position as

now recognizes
case recognizes
scoring functions now recognizes

compared to 59, 63, and 65 in the top, top
for PROSPECTORZ. In all cases, the method improves when pair potentials are =

used as compared L0 that when the corresponding sequence profile alone is used.
Sjmilarly for in the second Fischer database, a total of 17, 20, and 20 proteins are
recognized in the top, top five, and top ten positions, respectively.

D. Genome-Scale Iterative Threading
i d that the optimum number of

n genome scale threading, W€ foun
correctly recognized folds was found on the third iteration, PROSPECTOR3,

However, because of the computational cost of constructing pair potentials that
used local sequence fragment gimilarity, in our preliminary study and in the
interest of computational tractability we employed the best quasi-chemical pair
scale [183]. We term this PROSPECTORQUAS11-3. Furthermore, t0 deal with
the problem of very large proteins that may contain more than one domain, i
addition 1o threading the entire sequence, W€ also threaded 150 residu
fragments, starting at the first residue and then shifting by 25 residu
the final fragment of possibly shorter length 18 scanned. This allows for
detection of domains. For genome—scale threading, our structure library consis!
of 2466 sequences constructed so that no pair of proteins has greater than 35

sequence identity between them.
L

In tests O

M. genitalium

This genome cONSIsts of 480 ORFs [184]. The first pass of PROSPECTO!
PROSPECTORQUASH assigns 153 proteins to @ structure in the proteils
bank. The second pass, PROSPECTORQUASIZ, assigns 182, and the third,
PROSPECT ORQUASB, assigns 194. This constitutes an assignmem of 40
the genome. All assignments are made using an automated protocol bas
score significance. Of these 194 structural predictions, all but three are ¢0
years ago Fischer and Eisenberg [185] assigned the fol
68 proteins by their threading algorithm. Gerstein has Tepots
pSI-BLAST [186,187]. Genethread€

contrast, several
out of a total of 4
identification of 211 proteins using

five, and top ten positions, respectively, |
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200 proteins, but for 15
) of them the assi
gnment appears to be i
ncorrect [188] as

aSSBSSCd by a consensus of ir e
Gerstein’ S ioil
; /) ‘ SI results (hl[p://blomfo.mbb.yule.edu/

2. E. coli

The E. coli genome contains 4289 ORF
o 2 s [189], for whic

S) el ﬂbgu[sﬂl);lgfg]RFs to structures in the ProteinhDF;iol?;ElSTgR'_

L ———— e %l;nome., In-terestingly, this is the same perce t. hlS_

e Cln , . genitalium. In contrast, without the use nfage' .

i p onfident structure predictions have bee ) ﬂfm"e
sed method [190]. e

E. Extiension of PROSPECTOR to Includ
Orientation-Dependent Pair Potential o

0 El'lh‘
n IJ ﬁCI[y, € nex p al [) p tenti 1 y l
ce Specl W ext re 1 Ced [lle alr otentia b one that 18

orientation dependent and agai
gain perform three i i
i PROSPE hree iterations of modi PRO
TOR, PRO CTORIEN1-3. In applications to the Fischerodalilﬁlse :
a , we

- found that, on avera
f s ge, PROSPECTORIEN
i alignme : 3 generates the most
mp gnments. The resulting set of structures constitutes t;‘;C_Urf:_felebe—
initial model

that will be subjected to
tt ;
Section V. e generalized comparative modeling described in

I. Th i i
reading-Based Prediction of Tertiary Contacts

or a given iteration, the
. ) set of 20 top-scori
- predict the tertia : p-scoring structures can
air of contacts ?Cgoma-cts in the probe protein. Again we dBIH:]'llilOt]be use-d ©
teraction of PROSuIl;SEl([?]TEEt) least 25% of the top-scoring Structures;m}t:a i
icted contacts. Th R1-3 and PROSPECTORIENI-3, w it
= s. The sets of contacts are then pooled » e collect the
report our results for th ;
A= % e set of 18 smx i
1e validation set f spall proteins that const
2 lg_prgtre::letMONSSTER ab initio folding algoﬁthn:n[Llltgef P
eins to the probe sequ est set, care is taken to remove all homol s
se: global r°0t-meanql ence fron'l our structural database, and all _Og?US
B e oxcl -cslquare deviations (RMSD) from na:tiv th g
xclu e that are less
e correct within twsd‘ O(? average, 28% of the contacts are corr;:(t3 o
R4 correct and 8 2r;sr ues. Thf'l correlated mutation analysis gi Ay
r e haso Correcthwﬂhin 42 residues [191-193] V%L‘;TZ’I;)“
: : somewhat P ' e
‘fgateF' mutation analysis, it can b lo'wer e T
e irac , e readily automated. Not
acy of about 70% correct within £2 resi s
in £2 residues is sufficient for the

sful assembl e
i y of the global fi i g
Bt program [l9l,lgg3]‘ old using the MONSSTER ab initio structure
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Comparison of Contact Prediction Aceuracy for CASP3 Targets for Threading and Correlated predicted Contact Acc TABLE I1I
Mutation Based Appmaches" uracy from Threading for 28 Proteins U
< ins Used in an A P !
Number of 5=0 5=0 5=2 5=2 =3 5=3 Name of Protein Number of Contacts n Ab Initio Folding Test®
Name of Contacts ~ From Mutation From  Mutaton From  Mutation Predicted 5=10 5
Protein Predicted  Threading Analysis Threading ~ Analysis Threading  Analysis = 1stfl 25 =1 5 =20 5=13
‘ 1poh_ 0.28
ljwe_ 16 0.19 0.14 05 044 05 065 1 s 37 03 S P
leh2_ 22 0.68 0.14 091 073 09! oss b life 30 033 o it 0.7* 0.7
1bqy_ 19 0.05 0 0.53 0.13 053 05 8 TN 56 0.18 0;‘; 0.73* 0.9
1ckSB 22 0.14 0.02 0.59 04 0.55 os[ B 256bA 47 038 0 0.54 0.79
Average 0.265 0.075 0.63 043 0.62 066 1tk 5l 0 0-53 0.79% b 8
o - 3 1% o
agp, of contacts correct with & = 1m1 residues of a correctly predicted contact. | leg)(, 45 gil 0.94 1 }
45 1 A
: = 52 0.51 0.91%*
2sarA 2 0.19 0.35 Al 0.91
' sfd1_ port 0.21 055 076 0.79
Turning to the results of CASP3, the correlated mutation analysis performed :Cf:"l 7 g . 0.17 0.30 8'22’
. 5 w e ( B X2
considerably poorer whereas threadmg—based contact prediction Wwas bette Tba 46 0.11 8-85 0.86 0.86
[133]. In Table 11, for four of these proteins, We show the predicted contact fihiA. ‘112 0.58 0'27 0.50 07
results and compare them to correlated mutation analysis. Now, within £2 e 5; 0.34 0.66 g'g;’* 0.75
residues, 63% of the contacts are correct as predicted by the threading-based Ishg_ 42 3.23 055 0'72* 0.88
39 from the correlated mutation analysis; this is é';':_'- 23 O'é? 0.57 0.76 g'gg
1 1% - 0.65 :
elated mutation’ = leis_ ?; 0.26 0.56 8'2 0.83
021 0.5 : 0.8
58 0.95
: 0.95

ithin £3 residues, corr

6% versus 62% from the threadin lfas._ A
- 0.27 0.59 077 v

method as compared 0 4
1ftz 18 02
; 0.72 0.78* 0.89

itatively significant improvement. W

qual
analysis 18 slightly more accurate at 0
based contact predictions. Here again, We excluded all analogous and hom itz
logous proteins in the prediction of contacts from the analysis of consensus: : 1;5“.— 20 e
contacts in the alignments generated by PROSPECT OR1-3 and PROSPE( s 18 0‘_14 0.3 0.4 0%
TORORIEN1-3. 19 o el i
ent the set of predicted contact results for 28 proteins thal ?i 0.18 0‘32 0.79 0.89
requisite cont 23 0.43 0.64 g'f,zi 0.73
: 0.3 0.52 i 0.86
§ D22 0.74*
0.31 . 053 0.96
5 ; 0.73 0.83

in Section VL. Again the
319 of the contacts exactly predicte
correctly predicted on average within £2 residues. If we'l
the threshold of 709% prediction accuracy as indicative that the folding st
tion will be successful, then, as shown in Section 1v, 2

should be foldable. The asterisk indicates those proteins t
agsessed by the presence of a cluster of structures whose RMSD from né
d

less than 6.5 A. In practice, of the 28 proteins, 13 are foldable. In a

another two whose contact pre less than 70%
42 residues are also foldable. Of course, the presence of reasonably 8¢
contacts in and of themselves do not guarantee that the native topolog
found; but in all cases of accurate contacts, if there are 2 sufficient NUM
such contacts, then rather low RMSD structures are found in the P

Table VI. Thus, this is a reasonably effective method of predicting

accurate tertiary contacts.

In Table 11 we pres
that will be subject to ab initio folding

ction accuracy is achieved, with
m is the number of
contacts adi EPRTES
predicted within =£m residues of a correctl
i y predicted contac
t.

Jated mutatio :

Tt n analysis is fro

sterisk indicate is from the CASP3 predictions of Orti

s s that this protein is foldable by ab "Ju';,'zj(?m; et. al. [133].
ee Section VI).

predi
average and 13%

--V. GENE |
RALIZED COMPARATIVE MODELING

diction accuracy is
n the level of
seque 2 .
quence identity of the target and the templat
ate proteins.

ses of high imi
4 methodsg Os;e(il;enr:cn; su.mlarity, the protein folds are very simi
o equently to modf:lsfaul:’e'm'()deling T R toy o a'nd
B e .oy, o of similar quality to those obtai S
or good NMR data. When the sequ;ﬁg s'r:r()]:‘l1 e
imilarity
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become!
proteins could be weakly homologous or just &

folds without any obvious evolutionary relations.
alignments are usually incomplete, with 2
insertions. A fraction of residues of the pr
substantial, aré not alig
structu
details from the structure resulting from the al
optimal structura
threading-based alignment. D
alignment might not be the optimal one-

Is it possible 10 build a good—qualit

Usually,
modeling. When
structure, the resulting models are typically
structure than to the true structure of the prob
not move (in conformational space) in the dire
instead wander around the template structure.
gaps in the alignment, the filled-in pieces O
nonphysical (non—protein—like).

A recently proposcd method i8 described in

address this problem. The idea is tO perform a kind o
odel force field controlling detai

vicinity of the template structure, with the m
of the folding. The template

conformational space
protein fold. The lattice model employed in

resolution and accuracy. Consequently, the 0
achieve the accuracy
pointless tO apply the proposed methodology t
are very good and complete.
slightly worse than structures built by classi
Such situations could be easily detected.
homology (or just analogy of the
that it does not do any
substantial fraction of cases, leads to a
The resulting structures move toward
approach bears some
method of homologyfanalogy—based structure
tive modeling (GeneComp, GC). The applie
same for the template-restrained folding as

crossover is smooth, and there is no sharp bo

and ab initio approaches.
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s low or nondetectable by sequence compariso
nalogous—that is having similar

substantial number of gaps and
obe protein, which is sometimes

ned to the template. Moreover, in the aligned parts of the

re, the true structure of the probe protein may
ignment to the template. Also, an

| alignment of the two structures coul
ue to low sequence similarity, the threading

y model based on poor alignments?

it is not possible by means of contemporary pro
the template structure differs substantia

f structure are sometimes completel

is used only to reduce the searchable portio
and loosely defines the general topology of the pro

btained models, in general, cann

of the experimenlal structures. As a resd
o those cases when the alignmet

In such cases, the obtained structures W

In the remaining cases of
folds), the method 18 robust in the.

“harm” to the initial threading-based models and;
qualitative improvement of the moc&

the true probe structure. Becau
similarity to the comparative modeling,

n methods, the template

As 4 consequence, the resulting

differ in many important

d be quite far from the

cedures for comparative

much closer (0 the templat
e protein [196]. The models d
ction of the probe structure, bu
Moreover, in the cases of larg

the next sections that attemptt
{ ab initio folding in th

these procedures has

It, it is ra

cal comparative modeling (00

3|

we ¢l
prediction generalized col
d methodology is essent!
for purely ab initio foldin
undary between thread
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A. Description of the Method

The method of generali
raliz :
eich Sequentialﬁg X sé;aed comparative modeling consists of
e robe ; orm the threading alignm . several steps,
P PI'Otel[]. They are the fOIlow]ngD ent into a full-atom model of

1. Build the threadin ia
SaHDIE: g alignment by a method described in the previ
vious

2. Construct the starti
artin i .
threadin g lattice model using the parti

g as a structural scaffold. partial template from the

3. Fold/optimize the lattice model us
F ti 1 usi i ment as a e
it 1 e sing the threading alignment as a loosely

4. Cluster the lattice foldi
- ing results [197] ¢
by means of distance geometry (DG) ] and/or calculate a mean structure

5. Refine the ave
: rage
e it reso{f d model b}f Monte Carlo simulated anneali
ution off-lattice continuous model ERibgrar o

~ 6. Reconstruct atomic details

B. i
The Lattice Model and Its Force Field

.-.Before describing the parti
= : particular steps of t! :
we outline the latti e comparative modeli
i T inirio)lclg l;:(:;lzlg implg)’ed in all coarse—graizezller}gm{ll]l?t?()dol(og%
L . sumed reduced repr ; X SR R
protein model th -chai AEPIESERIAAG i
el dESie :Eje lc]:ngm—onW (SICHO) model [139 lg,S?reThﬂve }lan1ed this
gn and its force field could be found elszewhe.ree[il;)lg]cal details
. Here, an

[) s n ni . M “1 “]e]educed n df‘:
I]]e S ](I\c‘ltle( o1 ]Ie]eﬂ(le convenience ()S[ mo ]S Of

pl‘OtemS assume a !) Y dll= p p
[+ more or leSS ex I]Cl[l ledu(.red (1” com lete) representation

ie- main-chain backbo
; n
N ce [?OO]. Frequently the alpha-carbon trace i
onformations, and;the side chains ce is used (o
are neglected or

l'esented on var i u eve (8] v‘/ €51¢ c Ii esent
X 10US ] i i io =]
o h f SlmpllﬁCdUOll. hen d Si ning th

wo partially contradictory goal
atons simpic goals were taken into considerati i
Btoec residfe_ stgé (l)l;zre“slhou]d just be a single degree ofr:ctjl:f'?).ril:rll;f't, o
2 —— S,e . ; .model should enable straightforward i 101:31
e that::g a force field as possible. Thus, we asIsTrI; ec;
da?eslpha e — rresponds to the center of mass of the sifle
1S Side-c ain repres it B
ool (F;.esi(:nit;ltll{on has several advantages over the alpl |
B o citiocont ot :llown that the sequence-specific in‘lelsa]jt-'carb(?n
B atier gonoric Tlracter of the side chains. The interactio o
easy g, = S ti 1en,l having the coordinates of the sid “5 c')f th'e
: R side-cha'le main chain-coordinates [200]. In ¢ e e
= i A reqmrm positions from the positions ofvlh O'mraS[,' 5
. es extensive optimizati iti i
ation. Additionally, the side
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o . between amino acids. Thus, this side- models. This technique was t.herefore used for the restrained folding (or
chains are bigger and their size vares ed e protein-like packing, witha refinement) of the probe proteins using the threading alignments as loosely
chain representation provid.es for better and more pr ' defined structural templates. In the beginning of the procedure, a number of
well-defined first coordinauf:m shell. lvine simple cubic lattice with the copies of the initial model are created and placed at various temperatures,
The model chain is o U'Té?ef }'Irltugal bonds between consecutive according to the REMC scheme. Two subsequent runs were performed. In the
lattice spacing 1.45 A. The set of possible i vectors. The shortest are of the first run, the range of temperatures is wider and shifted toward higher tem-
side chains is defined by a set of 046 lattlhc_ti g ]L)ngest are of the type |  peratures 10 allow for the fast equilibration of all replicas. In the subsequent
vector type |43,0,0l and 2,42, 41w ]Zistribuliﬂn of the length of the u : Jonger run, the temperature range was smaller so that approximately half of the

: i its. The . =k
2. 4+11, ex ressed in lattice units. : st S
Iii"j:bjl:ld covgrs the majority (except for the wmgs& (t),f the clltllssttl;;‘? Olf ?h:eTS 21
chai : - cimulated by a €
. d volume 18 simu - :
i teins. The mam exclude ; - - rlying cu
11-ll Eézt (to the center of the model side chain) pomtsdmll) the ;n::l(t’;rey re%uls?(:;
clo et ted by soft-
5 : hain 1S supplemen A .
ce. This hard core of the ¢ ' g 1 .,
1at;1ce for the larger amino acids. The size of these spheres 1s adj_llstf‘;) fmhs)\];c}‘l a
[e & ot
sp ;rte}fat e foldz d model chains mimic average packmg density globu ar’_‘
wa,
proteins; 1 ists of three types of potentials. First are the
onsists of three typ 2
e force field of the model ¢ -ce the protein-
T‘:ic contributions that are independent of sequence and enf(()jlf : arg e .
%’T{n chain stiffness and internal packing. Potentials of the se'con )g(ms o
1 'ecl dependent and are used to reproduce the short-range interacti¢ il
-depe a ; . 4 eraction!
?Cl ec(l)jndary structure propensities and or:entatlon-.depf:ndellltr[i 1:; Lfr:) -
11r“]k%es otentials of the third type (short-range potentials 1dc-:n'tlcze endent. TH
d scfibed above and pairwise potentials [202]) aref lete”"le][:w of e
€ : - ; the sequ
. e : ence alignments O !
tion involves multiple sequ T of prote
geg\’;; strength of interactions depends on the sequence similarity of P
n

replicas run below the folding temperature and half above. About 20 replicas
~ were usually simulated. This number of copies guarantees very fast and efficient
: swapping of conformations between the various temperature levels (the
 temperature increment between replicas has been assumed to be temperature-
independent—a linear temperature set). A somewhat larger number of replicas
may be required for fast convergence of larger proteins—250 residues or more.
_ The conformations seen at the lowest temperature of the REMC scheme rapidly
~ find the global energy minimum.
~ Three types of restraints are used to keep the sampling process in a broad
~ conformational neighborhood of the template conformation.
~ The first is the most straightforward. The aligned portion of the template
structure is placed at the center of the Monte Carlo working box. Then, at the
beginning of the simulation, the starting chains are superimposed on the
mplate. During the simulations, there are weak and somewhat ambiguous
tiractions (linear with distance) between aligned (according to the threading
results) residues of the template and the moving probe chain. Thus during the
ulation, the initial alignments have the chance to be corrected or even
verridden by the model force field.
The set of tertiary contacts predicted by threading comprise the second set of
traints. Because only about one-third are correct and a much larger fraction
are “almost” correct (i.e., they are shifted by £1 or +2 residues), the energy of
tion between the two residues of the probe predicted to be in contact grows
ly with the closest distance between the 42 segments of the model chain.
of el}’ good alignments, the predicted contacts are, to a large extent, consistent
: U1 t.emplate structure, and this set of restraints is essentially redundant to
€ Iestraints .Of the first type. For poorer alignments, a number of other locally
roteins may contribute to the contact prediction. Consequently, the
contacts may significantly modify the resulting structures of the probe
¢ _P?Cl to the template; that is, an averaged effect of other weak
lates” s introduced.
nmi(:ezztmof restraints contaigs the probe ‘distance.'.s predicted from the
.~ ireading procedure. The distance restraints are limited to the pairs of
that are no farther away than the length of the largest secondary

en : i Haan ' | .
umfi)nt in the protein, which is equivalent to the estimated diameter
mber of residues) of the probe protein.

fragments.

C. Construction of the Starting Lattice Chain

s used as a template tO construct the initial Jatti
s of the probe sequence were fitted to the temp

eces of the lattice chain were built by tal.cing Tto co:1:§1dt’:‘rf:lt11:)2
et jume of the model chain and the necessity of “stretching e
eXdUder? t;;z ;:;)s in the template. Then, starting from [h.ﬁ shortest' l?;)[;,
Efltclw:(?naligned chain ends were randomly inserted, again tzal;llngci;am i

ded volume. The proper geometry of the mo chalt
e ical distances between side groups close along the chain) W el
2?111}1131?85132 C;\ili‘ll-bllild'lllg procedure. For good alignments, this procet:

1y

i i “or extremel
produces good models that need very little refinement. For o L)
alignments, it may

fail; in these (very rare) cases a less restrictive @
1l for a larger : plate could be used.
allows for )

deviation from the tem
f the Initial Mod!

The threading alignment wa
models. First, the aligned par

dicted

D. Restrained Lattice Folding: Optimization 0

Carlo method

ica exchange Monte
phC 24 ace Of redUC_ ]

i -d in Section II. D, the re . :
e the conformational sp

to be an efficient tool for searching
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E. Building the Average Models procedu_res of molecular mechanics. For tl
n, several independent simulations (10-20) were executed. was omitted. - the data reported in this work, this ste
the second pass, 200 conformations Were stored in a W
jon time. The collected structures were averaged using
ure. After the first pass. those struc-

u’y (DG}! pl’OCed
ted, and the final DG conformation | pjscher’s d
ischer’s databz el
ase of protein sequences and structures [34] i
is a standard

For each probe protei
From each simulation in
constant interval of simulat
a two-step distance geome

G. Summar i
Earli{z :f‘]Reelllts on Fischer Database and Con i :
ersion of Generalized Comparative n;cl:;r;.s"“ with an
€ ll]g

tures far away from the average Were rejec
was constructed from the remaining set of str.uctures.Interestingly,DG averaging - _
always led to @ lower RMSD from the native than the average RMSD for the enchmark set for validation of threadin
original set of conformations from the lattice simulations. Sometimes the : pROSPECTOR recognizes a majorit 0% z}pp roaches. As mentioned previousl
structures from DG were close to the best structures seen in the folding we would like to test our generalize):j cotn;e ;:alta ol Bequoties Satct i Hen):
simulations. Alternatively, our recently developed clustering procedure (1971 Same test set. Pml.’ﬂbly, Fischer’s database [I§)4] We-mOdelmg approach on the
could be used to identify clusters of the lowest energy conformations. The methoe. It contains closely related pai p rom,lesa"ery good test for the
1 be treated as an averaged model. In the case of 5l ",'O‘feh"g cases), pairs of weakly relateIch i O.f proteins (typical of homolog
o8 Gmilar ones. As suggested above proteins, and some pairs of very \Jvell::l‘y
- , One may expect ARy
that for ver
y closely

centroid of this cluster can the
ve modeling, the tWO approaches are essentially equiva- ]
Eh omologous pairs of :
proteins, our method is not recommended. Ind
. Indeed, the

folding, the clustering procedure is more powerfulin | - f
1d from the sometimes-diverse results of ab initio ok gBOmCtrlC(ﬂ(ll fidelity of the lattice model is in th
accuracy (due to deficienci e range of 1 A
B e reduced char;i[tl;{e(s)fofhthe force field and tg other gct?)r:(sl e lTlOdel
. e model) is P associated
could be estimated to b ; 15 probably sipnif
s , ca ;
e o template Strui ?Lflrou_t 2-3 A. Also, for very weaklgy analgsc}.’ "5 fmd
alignment is sparse or wi o far away from the probe structur L S,
sequence, the method hen alignment covers only a small fi © and when the
o lhe’ omplate a;;]n:)led here will not provide good mJSLItIOH tc])f the probe
ate prohibit the requisi els: The restraint
modeled structure. I : quisite large-scale rearra ;
B vement of the ?ml;ljos]:t 11_1thermediate cases, one may ex;f;menls or e
el with r a qualitati
based models. respect to the quality of the initial ?h]raelzlalda'uve
The above e i e
Xxpectat
[rsiosy modelri)ng wlilensllare based on an earlier version of th i
tucture [199]. The te t] attice folding in the neighborhood ofe I;c’eﬂel‘allzed
M Lo an anto 121 . [1 ecsi;ultsdof the earlier approach are Surtn : temp]ate
ated modeline b marized ir
mplates as starti - g by Mogsljer |2 i :
- artin : ler [203] (ust .
fodeller. While 111‘3g ﬂlljlonl:}lls) lsf compared with lattice m(ode]llgn::he [greaél e
clude that in SUE DS aen given in thi | g refined by
i s : ' is table is
ualtative n;turectjlflzool cases the improvement of the Lhresalzllialll, OHZ oy
Taba. G , as expected, already- g el 12
= 1nitia] E)g:r?'l; ott ]fm prove. The threading pl‘oceillgoo[dl ;nlcidds R
nts for these 12 pai e used to
PROSPE e 12 pairs produced . generate the
e P CTOR " ced worse align
o, threading algori Ermexs on averape th;
e“‘?g Fischer’s database.gTo gx'n llihm employed for the more massigve 1'm
2 ,1 Is that were not properl kel COMDUE OW e CIples i
g alignm perly detected by PROSP plete, for the
o ents) was enforced, that i ; ECTOR, the match (and
sul tn as a template, but rzn‘h hl& the highest-scoring structural matcl
RS0t for the proteins from Fi ert e correct structural template was u dl
ischer’s database are compiled in Tablels\e/ .

generalized comparati
lent. However, for ab initio
identifying the most plausible fo

lattice-folding simulations.

tion of Detailed Atomic Models

econstruction of the atomic details from
pons and the side chains. The onl
ters of mass. The initial loc

F. Reconstruc

ure was designed forr
of the alpha car

ns of the side-chain cen
proximately reconstructe

fect. Therefore, the positions of alpt

A very fast proced
the known positions
constraints are the positio
alpha-carbon trace geometry that is ap

SICHO center-of-mass positions is not per
carbons are optimized in the first step. This is done by 2 gradient-optlmiza

procedure using a very simple force field to improve the local geometry. A the*
next stage, positions of backbone atoms are reconstructed according to the
Cu. trace conformation. In this step, the vector normal to the plane define

three consecutive al d. This vector is almost parallel to
peptide bond plane. b

pha carbons is calculate
ptide bond ¢
positioned quite accurately. i

Thus, the remaining atoms of the pe
Next, positions of side €

conformations of the side chains ar¢ chosen from a representative
rotamers. For rigid amino acids (e.g. phenylalanine), there is 2
conformation in the database. There are up to 20 conformations for al
flexible side chains (€2 lysine). The conformation of the rotamer depen
the distance between the Co atom and the center of mass of the side chai
local chain conformation (i.e. Co—Ca—Ca. angle). Next, as afi

reconstruction procedure, the side chains are rotated around
center-of-mass bond—to avoid excluded volume conflicts. This p

produces reasonable structures; however, the packing of side chains &l
atom reconstruction is not optimized. This can be done by one of the
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4-Carbon RMSD from Native for Models Bu.ilt rn?m the' Initial Threading Alignments and Refined Compliation of Results . TABLE V
by Lattice Simulations® of Generalized Comparative Modeling on Protei
Probe/Template Proteins Threading -+ Modeller SICHO + Modeller e Database AT
laba_/lego_ 443 4.86 Target Template c]cl,%.zglzz[ Agﬁ;cd RBem Lowest First
T TR e
1hom_/11fb_ 782 370 iaba‘ lego 90.81 6.;; § 1 9.26 937 900
1stfl/1molA 6.40 5.95 ey ﬁgb‘“ 64.05 18.36 13?? 2 475 395
1uk_/2rhe_ 7.23 417 T L 30—29 16.32 1578 }gig 2145 2238
Wi gw pmooume am o oms o oni oo
2pey Pigsa 6.56 441 Lot 2plv1 93.59 12'5;1 e 365 3.07 138;
2sarA/9mt 10.28 7.83 Lopen e 66.67 789 b 1081 1070 1080
30d4_f2rhe. 6.74 6.39 ok lyce_ 85.35 13 4.93 6.27 545 571
Sfd1_/2fxd_ 25.67 12.40 L e 89.63 518 o 575 534 530
R e it | ol ImolA 70.37 ' 4.04 5.69 5.45 5.
aThe first column gives the PDB codes of the probe and template proteins detected by the threading d ]c!arA 2mnr_ 92.97 ;gg il 8.00 7.79 7;1
algorithm. The second column gives the results of automated comparative modeling using the feid_ 2rhe_ 55.93 19-76 277 5.35 4.90 4.7:8;
threading alignments as a template definition. The RMSD is given for the alpha-carbon trace. The -~ lepel. leolA 81.40 15‘71 14.05 18.88 18.44 1('97
right column contains the results of SICHO modeling followed by a refinement using the Modeller = lorl lede_ 47.75 7&0] 12.30 13.43 13.58 13]'
program. In the refinement stage {he lattice models were used as a “template” for Modeller. Origina 1¢sbA 2rxA 51.65 I’J '46 21.35 24.21 24.09 ,4';,;
alignments are the same for both approaches compared in the table. = ':::;B Lh!;g_ 92.52 ;74 I;.;? 15.94 16.47 ;5:30
o _ ) . Ifc1A 2;:;1 78.13 1325 9.27 18'33 3.01 3.08
Similar to the earlier version [199] of the comparative homology modeling IfiA lubg 2?-?2 12.99 2.63 e 10.32 10.10
there are essentially three possibilities. First, when the threading model is very E 3cox_ 74,01 10.94 8.53 10.28 :g:é £
good the lattice modeling does not improve the overall quality of the molecular lgky_ 3adk_ 85.48 1 g '23 14.03 17.74 17.80 : 2'14
model; however, “‘no harm” to the quality of the model by application of th 2rxA 54.89 “'43 6.13 8.75 6.36 3'33
entire methodology could be assumed. Then, there are Cases of topologicall ";']’;EA 80.00 3.55 g'gg 14,75 1374 15.06
correct templates with moderate overall distance from the true probe structt e g;’;g 1.62 1.50 ;gg 426 413
Here, in most cases a qualitative improvement of the model quality cou]d_:' i 8 zh;pg 95 1 . 715 4.90 5:50 slg; ik
observed. Finally, for very bad initial models the final models are still not 2cyp_ 77.60 !f'gg 3.20,. 435 507 28;
satisfactory; the accuracy is too low to be sure that the overall fold has b IbovA 59.00 9.99 Gt 17.14 1550 16,53
properly recovered. Some of these models can even contain topological e 3 11:1%3 96.97 262 25]; e 12.16 10.21 9.47
A number of very interesting observations can be extracted from analysis i it gg-gi 14.48 1405 1 ;;g 266 2.65
the data compiled in Table V. The first is that the lowest energy criterion 108 3grs_ .17 5.56 4.14 489 1;1.;1; s
selection of the final model is not the best one. On the contrary, the distan Trsa_ 98.08 ];‘-g? 13.61 14.15 14.12 13.31
geomelry averaging or clustering procedures almost always provide model ;?P‘L 70.27 16.84 ]3-03 3.53 351 3'73
better accuracy. The (w0 methods (DG and clustering) lead to essential Jg:l]afi 89.22 g ggc]’) 18.02 1700 17.81
same (on average) quality of molecular models and are quite consistent. At layh: _':"é ig 6.28 3,91 ;g? 4.28 4.46
same time, it should be pointed out that the structure selection is not pél £ ImolA 69f s 18.13 16.89 18:52 ls'g? o
Usually the structures generated by clustering or DG are worse than th e - ltea_ 56.92 13-35 4.97 7.38 7.07 lgl%
structures observed in simulations. Definitely, better methods of selec il;h;B 93.33 5'68 18.20 21.60 2151 20-;6]
) of the best structures from th er{ 66.87 288 3-;3 3.98 3.62 3.45
lanz,; 32-33 4.61 2;35 ggg 8.60 8.94
83 2527 22.60 23.68 22'3;) 2?23

example, based on all-atom structures
folding trajectories need to be developed.
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roposed here is mor
Alignment Aligned Best Lowest First it is still feasible i re complex and more computationall i
Target Template Coverage Part RMSD  ° Energy DG Cluster worth the i e in large-scale applications. The ke ¥ demanding; however
1mncri . ! i i i
e ¥ o e e o e ; Ll eased computational cost? To answe Y question 1s, Are the results
e ipaz# 62-79 2 it e e 7 : \ o 1;10 els for the Fischer database protei 1 this question, we compared
: . . : : . : - ' results o i ; €ins i ’
ey Sk 05.83 502 i T4 444 b B dgeperallzed comparative modeling desc [%4] s Ta,b]e VI, where the
2L 8fabB 94.37 1030 7.04 772 878 831 compared with models generated by Modell JHeie St Reniboponsate
2ebp_ 2Niv_ 80.94 10.72 9.50 066 1007 1035 exactly the same templates and the same ali er. Both procedures started from
JphmA  1M0pA e 1526 159 1820 2T 175, e . TOR. If we consider all models, then e eil:lg"mems generated by PROSPEC
hpdA 2 533 6.44 41 7 83 | e . ’ om i
2; r:m‘ 41[:1): e R e o i o 132; g}\ig DCE;zelsésw:);se in 103, and the same in twoi:;fo?;ls better than Modeller
2mtaC lycc_ 6531 1433 14.04 16.01 1649 1651 Mod IS an 10 A are considered, then GeneC- only templates whose
2omf_ 2por_ 82.06 23.61 21.82 23.51 2345 2407 cases, Mode lﬂr‘ performs better in five cases, and Qmp perfonns belier in 29
2pia_ 1fnr_ 79.44 15.72 15.64 17.29 1677 1824 case. However, in the latter, the two structu : Zn they perform the same in one
e ! r i
ipn.!_ lgshaA ;?23 12.2‘; 1.2'; 116-311 §-92 10.89 el of yely good (or good) templates t}:cs ¢ iffer by a small amount. In many
OZi;A vsr:;:;s §6.49 6.45 551 6.42 6-716; 23; STllar quality. The situation changes when thewf? melthOdS Eaferite mosls .
4585 B * \ = i : . - when, con ; 0molo
2sga_ aptp_ 98.82 17.74 9.78 1187 1049 119 e Isequemly’ the threading models become gy becomes weaker and
25im_ 1nsbA 66.14 14.34 16.52 1079 1857 1741 ~ structure. In these cases, the models generated b mpie;distnt from the probe
2snv_ dptp_ 84.11 14.28 12.78 14.07 1384 13303 ~ of noticeably better accuracy. W | by GeneComp are almost al
3cdd 2rhe 92.78 7.02 5.98 7.40 715 @ ‘methods lead t . We can most likely ignore th always
- ihe. ggn Le 3-58 4-91 o 4.05‘ - o very bad models. It is safe to gnore the cases when both
3m$ s 8612 07 35t 41 436 32; _hhizwb?fwnmmkm12mﬁ14£ﬁmnmem§yﬂ?tmmEiS”WMth
— ‘ : : : . : i mo : . I ; L
3rubL 6xia_ 74.13 o9 2226 w19 24D G els for structural genomics is at least ProSeSiruEtare, The Nty
4sbvA 2bvA 97.49 18.68 17.73 1847 1853 depends somewhat on protein size—a very la problematic (of course, it
sfdl_ 2fxb_ 55.66 10.95 10.70 12.13 11.99 ‘_’efﬁﬂ topology with this high RMSD). H rge protein may still be of a correct
8ilb_ afgf_ 7397 1131 1077 1258 1288 I 'a model that is 4 A from the true ;Wever’ there is quite a difference
ructure and a 6 A
model (or even

ore between a 6 A model and 10 A

o : modelﬂ). As can easi ‘om L

asels) SigniﬁCT:lllatl[? \I;I(,);Z ;I::f(:: lxl'ange of 4-8 A, the Genecgilzerliﬁl[:ﬂg (1)11;1 l'he -

,t_lcal difference is 1-2 A; fiztviet::rn it:e H;C'dels MOd:”l;r njf(;::

erestin , Sl e 5 4

B foflty]{et::ﬁ ;];2(;!::2[ generated by GeneComssf;Lc;flealjtlmu;h i

o Whenur:: than.the. RMSD of the original a[i)éne[cilv? amonts,
B odeting Waszoguahtatwe improvement with respect :ggl*]'mm&
e thserved. The lattice simulations improv blml?le

ge the proposed method leads to qualita}tjivelz gz:::;

ular models wi

el s with pr

i g pronounced conse

- uence

P diction and other aspects of pr(?teomicss Yo stEmergedl proiein

aThe first two columns contain the PDB codes of the target and template proteins, respectively. The
late is given in column 3. The fourth col

percentage of a target sequence aligned to a temp
provides RMSD (all values for alpha-carbon traces) for the aligned part of the template from “tue
structure of the target—2 measure of the alignment quality. The fifth column gives the best RMSI
for the model chains observed in a set of sparely written trajectories (a few hundred phmograbﬁs}
gives the RMSD for the lowest energy (according 10 the SICHO force field

The sixth column
conformation observed in the trajectories. The RMSD values in the two last columns corres

{he average structures obtained via distance geometry and clustering algorithm. The
averaging are almost equivalent, with slightly better performance of the DG approach. In numie
cases, the final models for the entire structure are better (as measured by

crysta]logrnphic structure) than the initial threading models—that is the aligned part.

H. Comparison to Modeller VI. AB INITIO FOLDING

Recently, several tools were developed for the fast building of all-atom ¢
proteins by various means of comparative niodeling. Probably, the mOst =
is Modeller, developed by Sali and Blundel [195]. Modeller allows for
throughput modeling of protein structures on a genomic scale.

A. Description of the Method

,.. 0 fOl‘ ll'b [IH[.![() l (l ame
|eth d . - s

5 : 0 lng Of Small globu]ar i

g protclns employs thc sa

00ls as 1r ge elal]g:ﬁ(l com v m (I I e 1Ic 10W-
1 .
par&[l e ’
(0] Clll’lg. h Ie d
. , NOwW I 18 p ;
Helences O‘ course (6) thﬁ [+ no tem late to restrict t]le
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166 JEFFR pl conformational search. The generic and protein-independent components of the
TABLBVE 1 Automated Modeling vid Modellert —} ¢ ce field for the lattice models are the same, and the protein-specific potentials
<on of Generalized Comparative Modsling 77 _ +DG+Modeller pave a similar form [202]. The difference is that in ab initio folding they are less
W specific. For the test purposes, all homologous (and analogous) proteins have
W 7 bzen excised from the structural database used to derive the potentials. As a
Laaj_ 2%75 6.66 ;{gz : result, the number and accuracy of the predicted contacts are lower, as is the
1aba_ 1 45 21.56 17.35 accuracy of the short-range terms. As before, a conservative prediction of
laep_ 17.46 18.56 13.15 the regular elements of secondary structure was used to bias the short-range
larb_ 13.16 12'212 33 interactions. Thus the requirements for the folding simulations are much higher.
11‘;3“& 3.07 1021 12'282 A much larger number of independent simulations were executed to check the
bt 1(;.12 10.34 5-.30 reproducibility of the results and to provide a representative sample for the
1bgeB 534 5.84 5.93 clustering procedure and final fold selection.
1c2rA 5'_45 5.93 7.76 The selection of the initial conformations for the REMC simulations requires
lcauB 719 3?} 4.91 some comment. In principle, random expanded conformations could be used.
112;?:; 4.90 20:19 112‘:}, However, this slows down the convergence of the process. For this reason, a
iy 11831;1; 15.62 23'_9;3 different strategy was adopted. Having a prediction of secondary structure,
lepel 21,09 25.89 16.45 ~gapless threading of structures of comparable size is performed using the
lerl_ 1647 1637 3.00 matching fractions of the predicted secondary structure to the actual secondary
1dsbA 3.01 13’2; 10.18 structure of the templates as a scoring function. Of course, all homologous and
lli:;B 10.32 15.02 Eﬁ analogous proteins were removed from the pool. Fifty lattice chains were built
Lfel A 1&3 ﬁ 11.27 17'.66 using the 50 best scoring structures as templates. While these starting structures
1fxiA 17.80 18.86 6.45 (different from the probe fold, they may have the proper element(s) of
lgal_ 6.36 1152 13.66 dary structure that may serve as a fast nucleation site for the folding
bgky— 13.74 A 4.09 rocess. In the preliminary simulation runs, 50 replicas were used. The second
1A 4.06 1.57 : : - il
:f‘?p_ 4.26 173 505 ions used the top 20 (20 lowest-energy replicas) as the input pool. The
{hom_ ;3‘_’; 6.95 520 ation results from the last iteration of the lattice-folding algorithm were
1hrhA 507 5.84 1568 ject to a clustering procedure [197] that was also used to make the final fold
L 15.59 i 1022 i .
lgah 1021 10-3?5 271 . L :
1tsD 266 12.38 14.68 B. Results of Ab Initio Folding 0.:1.%’8 Test Proteins
11[‘2?;(:, 13.';:3 4.93 12:"0'2 s of 28 globular proteins were selected as the test set for the ab initio
lmup._ 14'.12 14.48 1.50 I tocol. The set is representative of single-domain small proteins. It
Inpx_ 151 5.14 1791 alpha proteins with o;/B-, o + B-, and B-type folds. In about 50% of the
Jonc_ 16.89 449 -
losa_ 1132 439 ;
Ipfc_

W-resolution folds of correct topology were obtained as one of a number
; lates for GeneComp (RMS o Sters, The results are compiled in Table VII that also contains the RMSD
: « Table V) were used as starting temp A MSD for the models €609 L beststructures observed during simulations at the lowest temperature
aThe same alignments (SZ Modeller. The last column provides RMS ?  almostall 25 e : ' system as well as the RMSD of all structures that cluster [197]. It is
Ddech:? if:nﬁzd;fﬂ‘a‘?‘e complete mode s O:u:[:;(: ?:ng:geg;?&ed ‘by l:dodeller, _ 5 LAL Simulations generate a small subset of very good structures fo;- the
;ic‘:nted by GeneComp ar¢ mor"al'“.:tc;‘.::,?i;mie (sce the text for EXP‘a“‘:i:r“g)i'nal . fj 28) of the tested proteins. Unfortunately, the fold selection
cases the improvement !;1 22.:113: (compare columns 2 and 4) lc"\dd:lsmwnh local a0 Fly selects structures close to the very best ones. The discrepancy is
GeIIEC(;::me:;;:]SintzlsiJcaﬁng the consistency of the GeneComp mOGEE %
molecu .

‘E an in the case of template-restricted folding. It could be proven
hat to obtain a 3 A : i : i
o0 TR i 2 structure by random in a set of trajectories
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ucT .
Summary of Ab Initio Folding Results aboult 54% of the cases) the simulati LR 16
i efficient fold selection ulations are successful. Agai
Protein Best Lowest-Energy RMSD of Centroid underway. An al 'mefhod needs to be devel . Again, a different, more
n . An alternative : eloped; sucl ’
Name RMSD RMSD of Each Cluster b Qe And recently being explored 1 efforts are currently
' : ail and then : red is the ,
1cSa_ 4.86 10.87 11.20 11.63 5.70 8.75 distance-dependent potent?z]c)nllclg the structures using a Telhod of inserting
lecewl 6.71 10.08 877 13.84 1529 12.00 11.66 not foldable, b of mean force [2 a recently devel
, bu 04 o oped
lcis_ 4.98 11.52 10,41 10.34 9.36 9.67 1043 681725 I o e t1fas_, Igpt_,Imba_ are folda[m 1. If this is done, then lstifl) i
tetf_ 7.10 11.06 10.72 11,40 11.54 et proteins successfully folded €, giving a total of 17 (i.e., 6 s
tfas_ 5.30 8.55 9.30 7.47 11.68 10.15 11.89 636 12.87 Gk €., 61%)
1fc2C 291 734 721761335 v
1ftz_ 2.65 8.79 478 6.52 3.05 7.11 6.50 8.18 II. COMPATIBILITY OF REDUC
1gpt_ 492 745 758 8.66 9.70 9.59 ED AND ATOMIC MOD
1hmdA 5.02 10.57 10.36 12.95 14.20 12.52 5.51 < A. Reproducibili ELS
fife_ 6.53 9.23 1157 9.24 13.64 1171 1212 1141 - ucibility of Structural Detail
fixa_ 4.02 6.62 6.36 6.92 9.28 10.65 10.53 educed models have a long histo i
Tlea_ 323 11.85 10,93 9.95 8.32 8.44 5.82  globular proteins, whereas othe ry. Some reproduce just the
1mba_ 9.61 1272 12,63 15.28 12,01 15.44 13.51 of protein structure. The SIC;{%T‘Ore complex) models maint d.o"’erﬂ]] fold of
1poh_ 2.90 12.63 12.76 11.91 3.87 R T—— ; model, b Is maintain some detail
I' I , ] ase 5 118
1pou_ 270 498 3.95 9.88 9.93 10.93 11.61 ey df . esidue, appears at first glanc d on just a single center of
1shaA 3.94 13.07 13.82 12.08 12.75 9.00 1049 6.00 first. Fi , due to its flexibility, the model i € to be a drastic simplificati
1shg_ 4.40 9.00 $.99 9.06 rst. First of all, the mesh size of the is more accurate than it may : o
1stfl 547 10.19 206 12.86 11.17 13.68 11.99 16.74 ~ which means that a simple fit of h““deﬂymg cubic lattice is e ly i cFy
[ : ud A
1tfi_ 7.62 9.48 10.15 8.88 10.56 10.20 ,smlcture has an average ' the lattice model to a d ,-q il to 1.45 A,
1thx_ 2.97 12.72 12.83 11.27 3.89 13.04 14.40 B s of mass. D ge accuracy of 0.7-0.8 A wi etailed PDB [171]
i S ol ot i o cbk. ue to the coarse-grained c'ha with respect to the side-chain
Jubi_ 3.05 10.98 1071 10,51 11.57 12.07 8.13 1054 e y, by a pure ab initio approach racter of the potentials, corr
256DA 3.09 373 352 8.38 14.88 1001 1491 12.13 curacy. Very small proteins or peptid ) structures are of somewl o
2azaA 3.83 720 575 12.86 13.01 14.00 13.30 13.30 e native structure. The accu ptides could be folded to 1.5 A to 2 1at Jower
2pey_ 3.72 1.75 5.567.12 11.39 13.46 13.19 : ccumulation of errors ac wracy of larger proteins d 5A102.0A from
2sarA 8.45 13.11 1071 11.92 1218 1271 14.10 13.93 14.10 1379 lded structures have‘ ;sli/?st he structure. For 100-resid ecreases due to an
SEdl_ 8.67 12,53 1220 10.84 12.48 1094 14.35 14.26 ooki an D in -residue proteins
i 7.36 6 : oking for elements of s the range of 3.5-6.5 A fi ), properly
6pti_ 5.36 & 68 10.81 10,99 10.14 9.14 celiracy is of _becondary structure : rom native. When
of the same range as for ve as helices and p-hairpins, th
k] e

2Bold indicates that this protein is foldable; that
native less than 6.5 A.

containing a few thousand photographs is practically impossible. Thus
model force field and the sampling scheme do a reasonably good job in
eighborho
native state. At the same time, the force field lacks a sufficient discrimf
a large num!
es have ele

misfolded fragments of structure; sometimes 1%

protein-like regions of conformational space, including the n

ability to select the closest-to-native fold generated from
competing protein-like structures. These competing structur
native topology with

mirror images of native-like folds.
Overall, though, if one defines a successful simulatio

topology whose backbone RMSD is less than 6.5 A, then in 15/28 ‘

is, one of the clusters has an average RMSD frof

n as one wi

ry small proteins .
vgnumgelrasrotems or slightly better and
are given for the si
-carbon coordi very crude ar fos the side-chain
il rdinates as a simple combinati e and’simple reconstructi
_ Kattstical analysis of t} ination (with the coeffici ion of
Secutive side-chain ce 1e structural database) of th clents extracted
atic error (there is nnters_ This estimation is conta ¢ positions of three
: 0 i ming y
ned by threc Corr:;)rrect.mn from deviation of [he]; “f’c.] by a small
ated to et‘ré,poi?d"lg side-chain united atom C)dlb(zjn mL
I'S In i . S) an
T reduction of the att‘helmde-cham positions. Compensw some
*inside” the seconda solute error of Cus because th ating for
> Ot mass. Consequent] Iy structure elements defined b the main-chain
m,alier error in the z’ ,e _rrOrs in the side-chain positiony Lo 8¢ esshiet)
de a-carbon trace iIs) t;”lo”s of the «-carbons. As a r. SltfﬂnSlare L35 &
. i esult, the accur
’ acy

irtu : e sam :
al chain of the side gmu;’;sﬂr slightly better than the accuracy of tt
. he

HE:S between 1.0 and 2.0 A. The ab
15 of mass. Our model employs ao
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The level of local (and global) accuracy of the model is sufficient to allow for
roductions of the most important structural details. First, the
acted from the model are very similar to

he side chains extr
lculated from the crystallographic structures, assuming a

4.5 A cutoff for contacts between heavy atoms of the side chains (side groups
are considered to be in contact when any pair of their heavy atoms are at a
distance smaller than the above cutoff). The overlap with native for properly
folded structures is 85-90%. There aré some excess contacts in the lattice
models, and some contacts are missed due to the spherical shape of the model
side chains and the statistical character of the cutoff distances for the mode]
residues. More interestingly, the model hydrogen bond network (properly
ulated from the estimated coordinates of alpha carbons) of the main chain
ar (85-90%) accuracy with the main-chain hydrogen bonds
SP procedure [205] to the corresponding native structures,
n bonds (the weaker ones) are ignored in this comparison,
because the model does not allow for H-bond bifurcation. As in real proteins,
the model structures have very regular networks of hydrogen bonds. Helices,
except for their ends, exhibit a regular pattern of two hydrogen bonds per -
residue. The sameé is observed for internal B-strands in B-sheets. The edge'-_?:
strands usually have @ single model H-bond per residue. Sometimes, even

patterns characteristic of -bulges are reproduced with high fidelity. The model =
f H-bonds is explicitly cooperative. This leads to protein-like
cooperative folding. Interestingly, misfolded structures also look very protein-
like unless they violate some “rules” of protein folding—Tfor example, the

handedness of the p-a—P connections [206].

The protein-like geometry of such a simple mo
design of the force field that has two distinct types of components: s€
dependent (or even protein—speciﬁc), which drive folding toward a specific fo
and generic, which strongly bias the model chain toward the average prote
like local conformationa preferenc

the a-carbons are r :
e i
malepotafils forﬁ(;let('i using the distance restraints typical for i
the remaining atoms pflmlzatlon ot tic Gackbone geomeﬂ ﬂI i o o
of : . .
packbone fragments Fin;llrlli ma[]'l;) chain are reconStI’uc:legy u S?nthe nﬁgl stage,
: . . ) F 5 ; a librar
build the side-grou A EBIGK wissidetr] s 2 ok
p conformations th D rotamers is empl
model. The side- s that are the most i hing oved (o
group geomet d : consistent with th i
pecause the gross o ry and packing can b s ¢ lattice
verlz i € optimi : =
close as possible to ?t?es alrﬂ by definition excluded bIJJ/ Plajii:l l’t;:ﬂtlvely =
approximation of the packi attice chain (which itself eXhibiE:st € rotamers as
to the crystallographic S‘ll‘u::f in ;’:‘prolein). When starting from ?f relasonable,
. ;i re, this reco < he lattice fit
structure that differ nstruction process r
Further minimizaticfnog average by about 1 A RMED ﬁisrrllm;]lms A full atom
improvement of the mo)c/ie;h?hc HARMM force field [207] l[ezfd orlgind aie;
expected for all COnforIna{" € same accuracy of all-atom Ll .Sma“
iamewhiar diffuse tons generated during the lattice si reCOPS[mC“OH is
speed leads to structureslzuthpm%dure that h§15 an advan[aoem(:;-lla“ons' .
L at are about 1.5 A from the ori :ain I computational
Bl tational spoed O; [‘hletys;)églultisca]e simulations of%rozie?ll"atom model.
. ; . n systems. Tt
i time-scales characterist O model enables simulations . The
coints of MC lrajec[oarr;C([;nS“c of real protein folding ﬁ:ost:jlthgt (‘:OITeSPOHd
] ; , one can £ 3 cific interesti
detailed MD simulati perform all-atom ; Ealing
< ations. Anothe vy . reconstruction, foll
use the all-atom . r possibility that is 0 0 Lowed Ty
the “best,” models (derived from lattice structur now being explored is to
he““best,” possibly closest to n ructures) as a me
simulations by the SICHO model

quite accurate rep
contact maps of t
the contact maps ca

calc
coincides with simil

assigned by the DS
Bifurcated hydroge

fom lat ans of selectir
» Structures generated in lattice foldi:ig

network ©

C. o
Feasibility of Structural Refinement

del is enforced by the pro 1

quen - As discussed i
‘ in other parts of this chapter (see Sections VII
ns I and IX), low-

:_ SO] tio Od IS 0]
¥
resolu n m els C Uld be SlICCCSSiU“y empl()yed 1n the IU[]CU()“&] annotation ()1
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]- g ) 118 I)p]l ns. “16 SICI]O 1 d .
["Ddel Ihe Wldel S a catio nmo C] 18 Of ]”.ed S ]
]“[ resolution

1 stiffness. The
e conformational spac

This way a vast majority of the irrelevant portion of th
the high coordination lattice (containing 646 possible side-chain

virtual bonds) model is efficiently avoided during the sampling

B. Reconstruction of Atomic Details

HO model exhibits good compatibility with detailed
on of the all-atom structures
tion is about 0.8 A RMSD for the side-c
nstruction of all the o-C
g, is the reconstruction 0

The lattice SIC
models. Projecti
the accuracy of the projec
mass or for the coarse recO
interesting, and certainly more challengin
details from the lattice models. A couple of similar pro
been developed for this purpose (200]. In one, the crude estimated €0

onto the lattice model is trivi
hain cente

arbon positions:
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—side-cha
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ation and a more

al structures. S
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- ution lattice model s

o ; S, several stri ]

SUb;::sstu[ly refined to experimental rf:;ulcm'reb

- qu-e?t]ylextended using ESMC to rr? 1_1(;'"“
zipper folding thermodynamics as wgll :; 312



DRZEJ KOLINSKI

JEFFREY SKOLNICK AND AN

nently shown that the

e native state [209], and it was subsed
lemented by a generalized Born/surface area
h the lattice-based force field [210]. These

although it is NOW unclear how soon the gap
igh-resolution all-atom structures for

prediction of th
CHARMM force field, when supp
treatment, 18 highly correlated wit
studies are extremely encouraging,
between low-resolution Jattice folds and h

larger proteins will be closed.

viiL. FROM STRUCTURE TO BIOCHEMICAL FUNCTION
ply Protein Function?
folds but different functions [211,212], deter- |
mining the structure of a protein does not necessarily reveal its function. The =k
most well-studied example 18 the (co/P)s barrel enzymes, of which triose

phosphate isomerase (TIM) is the archetypal representative. Members of this
family have similar overall structures but different functions, including differing
active sites, substrate gpecificities, and cofactor requirements [213,214]. An
analysis of the 1997 SCOP database [211] shows that the five largest fold families

are the ferredoxin-like, the (a/P) barrels, the knottins, the ;mmunoglobulin-like;
and the flavodoxin- 122, 18,13, 9,and 9 subfamilies, respec:

like fold families with
tively. In fact, 57 of the SCOP fold families
[15]. These data only show the tip of the iceberg:
composed of protein families, and each individual family can
different functions. For example, the ferredoxin-like superfamily contain
families identified as Fe-S ferredoxins, ribosomal proteins, DNA-bindin
proteins, and phosphatases, among others. More recently, 2 much more detailet
analysis of the SCOP database has been published [215], which finds b
function—structure correlation for some structural classes, but also finds a numos
of ubiquitous functions and structures that occur across a number of fa
The article provides useful analysis of the confidence with which structure
function can be correlated [21 5]. Fora number of functional classes, kno
of protein structure alone is insufficient information to assign the specific d¢

of protein function.

A. Does Knowledge of Protein Structure Alone Im

Because proteins can have similar

B. Active Site Identification
that the active sites in proteins are better conserved!
so, then one should be able o identify not Onb’d
me global fold and same biochemical activity, oW
{ different global folds. Nussino¥.
hat ‘the active sites of eukaryo!!
s exhibit similar struc

of S. cerevisiae protei‘

It has been suggested
overall fold 271 ¥
ancestors with the sa
proteins with similar functions bu

workers empirically demonstrated t
proteases, subtilisins, and sulfhydryl protease
[216]. Furthermore, in a recent modeling study

A UNIF

FIED APPROACH TO THE PREDICTION OF PROTEIN STRUCTURE |
sites were found to be E 173

in the study of the cataln;g:;e[rc'ozsewed than other regions [27]; this
[217] have created Stﬂlctumlla of the o/} hydrolases [11]. Ke’SL] a Waj?so seen
showed, for the 20 most fr:nﬁlogs ofa.number of Prosite sequ)t:nzg mc::.of"nmn
structure is rather distinct [3] c’ll";m Prosite patterns, that the associatedl Tand
active sites are structurall e results provide clear evidence th: ocal
y more highly conserved than other regio nest lftlt enzyme
of a protein.

Cc I
delitlﬁ(:atloll 0[ ACtNG Sltes m Experllllelllal :;tl uctur €s

Several groups have i : ;
engineering OP; inser[inldfentlﬁed funlct:onal sites in proteins with
achieved for several g functional sites into new locations, and tth ‘e, god. 'oF
i : , an g
accurate site descri tome{al hinding sites [218-226). Howeve SLE)CCBSS i dics
: B that signiﬁganisac:f bzrckcliaone and side-chain atoms wer;,usezaulse highly
. omic detail is required i ) ed, this fueled
to identify protein functi S equired if protein structure |
tion. Similarly, detailed side-chain aCtivLuri 1Sdto be used
site descriptors

p ﬂnd re[a[ed pl'Otell']S were emplO ed to ide tf f
nt llnCtiOI]a]

sites [227], while more au
s ; tomated methods fi i
'r _strugu;rcs ¢ ave been developed [37.216.228 (;r3 Iqi]ndmg spatial motifs in protein
- Unfortunately, sucl equire R
protein side chaji{ns an; i?:t-h ods require the exact placement of at ithi
are inapplicable to the inexact, low-resoluti i
, low-resolution predicted

structures generated b
y the state-of-tl ;
s (sco Secti -the-art ab initio foldi
. Al in ‘ i
sequence identity of then:e =N The mehody e feqﬁifirflid hion the
B acative modell QI:}I?HCG of interest to solved structures i il
. g T @adises U es 18 too low t
B cvcloped “F ! ss this need, Skolnick N
o - ; 4 nick and F
e appﬁfab]e . bzgt,h ]lr?e;cact descriptors of protein func:ilo}:::m'w oy
; high-resoluti i sites [5]
ution (backbone RMS A o, SR .
5 d _ al structures &
4-6 A from native) structures. These fiel[;(: I?W-
: s iptors

3 / hy lO]

mles 11 n lllIt, l[h com ﬂlﬂb[e IBSLI][S

nilar [8]. Here
- , the FFF .
ilnalar accurately identified all di
ger data ” ified all disulfi -
set of 1501 proteins, the FFF again aCCLlr(:::e?;l'(clloreq; i’
identified

mentally verifi i v usin
. ed, this would highlight the advantages of using
a si
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structural descriptors 10 analyze multiple functional sites in proteins. In slutaredoxn, 1 REDICTION OF PROTEIN STRUCT
. : i e . ot g, (0 , lego, w e URE
lgagﬁular,mf\:n;;mn Frc?dxcn&n would notf be 1r651[3”t0ted 1t(ti) Te _prllrr(;ordml. A 5.78‘& Toas predicted whose backbo 175
e fnctions e o iy o POt || enstion,the st of comectly fldd s sl L
‘ £ i folded structu correctly folded el could be used f :
. : - o res were Ided structures a or function
D. Reqmrements of Sequence—Structure—-Functmn Prediction Methods activity [8,10]. The FFF l;s C,ree“Bd with the FFF fo;ng a set of 55 incorrectly
} fun ¥ 4 i i
Any sequence—structureffunction method that does function prediction by structure but not in a Iibrar;n;ly identified the active %it:as?lﬁge oxidoreductase
. 3 . rinciple de i incorrec . n the corr
Jnalogy relies On three key features. First, the function of the template protein gf Slrﬁcturemfonstranon that inexact mojgsfolded ones [15]. This ise;?tly folded
must be known- gecond, the active site residues must be identified and associated function rom sequence can be used produced by the ab initi proof-of-
with the function of the protein. Third, a crystal structure of a protein that for the prediction of b‘predlc[mn
contains the active site must be solved so one can excise the active site for F. Use of Threaded S e
constmctingthe corresponding three—dimensional active sit€ motif. Evolutionary £ tructures to Predict Biochemi
T i i jction i uire that the -iteri 1 portant pa emical Functi
2255?“1{::?6;1:’;: I:l:(t)ls'(:ldfsrtz?llt ‘r:gmc?lfc:e: tJt:ls [s:;zgn‘d esliouzdube Sgiclcil:lctierlon , 1! conserved residues couf)d IF;“T’ Laticop demonsirated b e
because,functions can be modified dgr'm evolution The third rec 1.1'1rf:aS Wel‘l, : even when the threading S] eriheaiingpmdicionsto gy e
unique to structure-based approaches 10 ffnct'on edict'on Based 3) ﬂéﬁ‘jﬂt gk [picsHon wWas whether or s insignificant [30] Vior'remly identify globins
2 :2 e o e tp{[} . bf 1, pr ct'l ._t g on studiesto | Over the past few years not this result could be ge[]e-" 'hlle suggestive, the ke
a ,b‘ kb, ,RN,léanl ication of an enzlyme s a :‘\.re sl'ej requires a nlodg]_ 7 15, and, as discussed =1We have been exploring thi l_dllzeq on a genomic scqley
whose bac one rom native near the active sites is about 4-6 A for e ire—funchi : helow, we demonst g this issue in great detail ke
structures generated by ab ffliifn foldipg. This predicted structure quality is du predict biochcllol“ paradigm, when approra'te that the use of the s(ei [8,10-
to the fact that the errors in the active site geomgry found in the predicte BLOCKS [ 7361’;1?::’,?]1 f;lnc[i()n with a muc[;lﬂﬂtel};l employed, allows lgznc@
dom. However threading doesn h 236,237], the best ; smaller fal . e to
’ ave develo competin se-positive ra
Rt ped a very promisin ¢ sequence-based appr rate than
function annotation sing approach to the probl proach. Indeed, we
: em of genon :
ne-scale

matic rather than ran
tructure, if

structure tend to be syste
suffer from this problem because, in the predicted s :
he active site residues, nczhfmtlcio?a: ?redistion tirsu rr{nade.rlri; it does; : B hodology i as foll
e te ate’s native $ cture. Threadi : . i s follows:
P e : threading algorithm could, i WS-'W(: use PROSPECT
the acti ild, in principle, be used) t ORI [57] (although, any
’ o identify the ’
set of 20

not include t
the local geome

__stmctures that are 5 i
; templa[e joata l(l::::) Lllarest scprmg matches between t}
= ._eﬂ'c._h function). Then eq(ffior]"g functions times five i;c e b i -
S geometr,y ;f [hstructure was searched for :;St PN o s
e FFE. If a match to the FFF Eilécfi:is ? el
) ind, then for those

1 the vicinity ©
score includes @ seque
odeling is done. Never:#

models, the quality

try is the same as in

can have alignment problems, but lo

gite—these can often be overcome i
t or if Generalize

cally—at least i
f the threading
d Comparative

similarity componen
theless, in practice, for both ab initio and threading
predn.ctt.ad structures 18 l?ettcr .m the c_:{?re of the mo}ecul_e 1h_an. in the 100 equences = e
prediction of the function of a protein whose active Sit€ is in 1oolps may tion profile was ¢ mologous sequences are avai
problematic. Currently, the method has only been applied to identify Eanz T in. the onstructed [11]. If the pu[a[.avmlal?le, 5 SeBiBice consem;
active sites. Recent work described 1n gection VI suggests that at least I s e]imimfeﬁ‘é]uence subfamily to Wh?g’ ﬂcitwe site residues are 1 I‘;:t
gtructures can also be used to at least partially Dredi ated as having t . h the protei )
techniques 2 310 dic;;ci/ to have the funfﬁ{l;s pr{:cldfcted function; olzher\:f?s b{c;longs’ that
tod, 99% of the proteins i - Using this s ’ e the sequence
PROMEIS 10 1he, cight genomeseguenﬁe_skucmfeﬁfuncﬁon
hat have kno i
wn disulfide

S, 10w-resolution
f substrate and lig

nexact protein M
predicted Struct
P3 results suggest

and binding. Butin general,
odels will be necessary
from Ab Initi

that for small pr
m alway

reductase activi
brediction s€ activity were
V t'](r]:S ]ﬂre made than if:uzlctl [15]; 10% to 30% more ¢
; sult eraly vt
o I Fig. 2 ?N irehseen for the a/B-hyc?:z)‘lF: Scc[]uence—based appro;ci?:ql[?na]
I R e it ases [11]. s [15];
Ly ot e 11 cisuinde omidoreduetaees 1 our s
e oxidoreductases in our ste o
ructural database

situation
the problem ©
further refine 1

E. Use of

ures o Folding

As noted abo
tertiary structure prediction gchemes can often (but far fro
inexact protein models of the global fold. Are these structures usciliEs i beine i
identifying functional sites in proteins‘? To explore this issue, using th*: quence plus Seco?:;g in the top five scoring
gram MONSSTER[191,193], the tertiary struc roteins ; \dary structur ) g structures usi o
oteins identified on app“ialz!us pair profile scoring f}i::"tg the “close”
ion of the disulfi ction. Similarl
sulfide oxidor, arly,
eductase FFF
to

structure prediction pro
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Figure 2. For the E. coli genome, the distribution of threading scores for the “close” sequen o iiﬁ* CcP
plus secondary structure/pair profile scoring function is shown in dark gray and those protein 3
identified by use of the disulfide oxidoreductase FFF are shown in light gray. ;

els (all are known tru€ positives) are indicated 1
ne to extract proteins (&8 those to
threading score would req
number of fa
s all the kno

mes. No
essfl

these threading mod
Clearly, the use of the FFF allows ©
immediate right of the maximum) when their raw
one to also include a significant (in this case overwhelming)
positives. We note that full use of PROSPECTOR1-3 identifie
disulfide oxidoreductases in the E. coli and M. genitalium geno
in general, structures whose 7Z.score is greater than 1 can be suce

active site.

gearched for a match to a known
Importamly, using structural information, the f

than that found using sequence-based approaches. This conclusion arise

detailed comparison of the FFF structural approach and the Blocks sequ
motif approach [15]. Here, the sequences in eight genomes, including
[239], were analyzed for disulfide oxidoreductase function using-th
oxidoreductase FFF, the blocks thioredoxin block 00194 [236], and
glutaredoxin block 00195 [236]. In Fig. 3 we plot the distribution
when the B. subtilis genome is threading through these twWO blocks. B
example, if we agsume that those sequences identified by both th
Blocks [236] are “true positives,” we find 13 such sequences in the

alse-positive rate is m
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would yield a significant number of false positives. Thus, what we require is a
tures where their score 18 sufficiently significant

method that places such struc
that on subsequent filtration by
identified. This s the origin of u
TORI1, which, in combination, selects

position.
Surprisingly, despite

a functional descriptor, they can be reliably
se of multiple scoring functions in PROSPEC-
59 of 68 Fischer pairs in the top scoring

the fact that threading alg

generating good sequence—structure alignments, W&
are often accurately aligned, even for very distant matchas
would agree with the above-mentioned experimental re:
well-conserved in protein structures. Of cours
function of all its proteins experimentally annotate
how many proteins with the specified biochemical func
there yet cxperimental characterization of most of these predictions.

1X. USE OF LOW-RESOLUTION STRUCTURES
FOR LIGAND IDENTIFICATION

d, it is impossible to know
tion are missed, nor is

nts of protein function is the ability of a protein{

interact with and bind various ligands. This ability is closely related to the th
dimensional structure of the protein. Because the quality of theoretical structu
prediction methods has recently improved considerably, we are developing
docking procedure that will utilize these relatively low-quality models
proteins for the prediction of plausible conformations of receptor-small liga
complexes as well as for the prediction of interactions between parti '
subunits of a protein in the quaiernary structures. ;
Our approach 10 the problem of low-resolution docking focuses 00 th
and quasi—chemical complsmentarity between the ligand and the recep

molecules. Because the predicted structures that result from theoretical'p_"
tions usually resemble Vvery low-resolution experimental structures, i

method we use only approximate models of both the ligand and its
vakser et al. 2401 have demons{rated that by averaging t
ules it is possible 10 drive the docking Pr

real binding site, thus avoiding, in many cases, the local mini
turns out in our case that this averaging procedure allows for the €
of the numerous structural inaccuracies that result from the theorett

tions of the receptor structure.
f our docking procedure,

In the first stage ©
receptor and the ligand, are projected onto a uniform cubic
two clusters of adjacent cubes. These two clusters approximate =
poth molecules with the accuracy of the grid size. gome of the recep
(“surface” cubes) can be penetrated by the ligand, leading

One of the important eleme

ocedure 10

interacting molec

structures of both
Jattice, &

orithms have problems B §
have found that active sites =k
This observation
sults that active sites are |
e, because NO genome has the 18
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(in RMSD) and shift of the docked ligand relative 10 its position in the 181

superimposed native complex are also shown.

Two examples of docked ligands to the generalized homology modeled
receptors are shown in Fig. 4. The red is the native orientation of the ligand, and
the yellow is the best scoring match. As 18 immediately evident, the algorithm
does a reasonably good job in docking the ligand to the correct binding site in
the correct orientation. While our method is still under active development, it
has already revealed its usefulness in the successful docking calculations of
even small ligands to the theoretically modeled receptors. When complete, this
methodology could hopefully be used for the large-scale screening of the
potential ligands for the receptors predicted from genomic sequences.

X. OUTLOOK FOR THE FUTURE

A. Possible Improvements of the Structure Prediction Methodology

The methodology for protein structure prediction outlined in this contribution,
while partially successful, needs further improvement. First of all, some elements =l
of the force field of the lattice model are not yet catisfactory. The threading_r'-
algorithm PROSPECTOR, which forms the core of this approach, needs im-
provement. For example, it currently uses a very simple sequence profile, and
more powerful techniques for generating more sensitive sequence profiles [241
need to be exploited. PROSPECTOR also generates high-scoring local sequence:
fragments that are often, but not always, quite accurate. This information nee
to be incorporated into subsequent threading iterations as well as into partial seed =
structures in ab initio folding, akin to ROSETTA [242,243]. Better means: ;
assessing the quality of the alignments also need to be developed.
The most promising way to improve generalized homology modeling is-fo-
couple the strength of template restraints (o the quality of the template. Now;.
all tested cases, the template-related restraints are of the same strength. Mu
better results may be possible if, for the templates that are close to the probe
structure, the restraints were very strong. For templates that are far from
probe’s structure, the restraints should be very weak. The template shoul
used only for a loose definition of the fold topology. This requires an '
estimation of the template quality in a semiquantitative fashion. Better scotl Seear
the threading results and comparison with related cases (size of protein, - (®)
ntage of alignment, comparison of the template alignments to other related
teins, etc.) might provide necessary data for the case-dependent scaling
template-related restraints in the generalized homology modeling proce
Turning to issues associated with ab initio folding and, to a lesset
generalized comparative modeling, some elements of the force field
lattice model are not yet satisfactory. The scaling of various contribution
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perhaps, using a more complete active site librarys additional ORFans can be
assigned.

on Docking of Ligands
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relevant active sites is a must. Finally, while considerable progress has been Da iR BpEet o £ %%
i ligands . ]ow—rESOIUﬁOH 23, R. Sanchez and A. Sali, Proteins S )-I 5
oy ; uppl. 50 (1997).
ali, L. Potterton, F. Yuan, et al., Proteins 23, 318 (1993)
23, 3).
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. N . sk . i weg i
Tn conclusion, while techniques for the prediction of low-resolution struc- 26. A. Zemla, C. Venclovas, and Jy M“' ]P roteins Suppl. 30 (1999).
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ap. A iGoHem, 5.8, Bl . Acad. Sci. USA 95, 13597 (1998)

. Barrell, H. Bussey, et al., Science 274, 546 (1996) -
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biochemical function and in ligand docking. Such efforts will have to be applied 30. R. Lathrop and T. E. Smith, J. Mol 'B_lomﬂ;mmzics 15, 480 (1999).
on a genomic scale if structure-based approaches 10 function prediction are to 31, R. T. Miller, D. T. Jones, and‘J M. T:L 235, 41 (15900,
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