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Ncw approaches to protcin functional inference based on protein structure and evolution
arc described. First, FINDSITE, a threading bascd approach to protcin function prediction,
is summarized. Then, the results of large scale benchmarking of ligand binding site
prediction, ligand screening, including applications to HIV protease, and GO molecular
functional inference arc presented. A key advantage of FINDSITE is its ability to use low
resolution, predicted structures as well as high resolution cxperimental structures. Then,
an cxtension of FINDSITE to ligand scrcening in GPCRs using predicted GPCR
structurcs, FINDSITE/QDOCKX, is presented. This is a particularly difficult casc as
there are few cxperimentally solved GPCR structures. Thus, we first train on a subset of
known binding ligands for a set of GPCRs; this is then followed by benchmarking against
a large ligand library. For the virtual ligand screcning of a number of Dopamine receptors,
cncouraging results arc scen, with significant enrichment in identified ligands over thosc
found in the training sct. Thus, FINDSITE and its cxtensions represent a powerful
approach to the successful prediction of a variety of molccular functions.

1. Introduction

One of the key goals of Systems Biology is to understand the function of all
molecules in a cell and how they interact on a system-wide level [1]. In that
respect, we specifically focus on computational tools designed to elucidate
biochemical function. By detecting evolutionary relationships between proteins,
sequence-based methods can provide insights into the function of about 50% of
the ORFs in a given proteome [2], with the remainder being too evolutionarily
distant to accurately infer function based on sequence information alone [3].
Thus, the prediction of the function of these unannotated ORFs is a significant
challenge. However, since protein structure is more conserved than protein




sequence [4], it can play an essential role in annotating genomes [5], including
lead compound identification for subsequent use in drug discovery [6]. Of
course, the key question is whether one can use low-to-moderate resolution
predicted structures or if high-resolution experimental structures are required [7,
8]. This issue also has implications for the requisite scope of structural genomics
that aims for high-throughput protein structure determination [9]. If low-to-
moderate resolution models were to prove useful for functional inference, then
the value of contemporary protein structure prediction approaches would be

significantly enhanced [10].

Amino acid sequence
..LLADQGQSWKEVVTVEWQEGSLKASYGQLPKQDLTLYQSNTILR...

v
/Threading lcmplates\ / Protein modeling \

A

4___.—
N
Clustering of ligands
J
v
/ Binding sites  Binding residues  Ligand templateh
e, ‘
T
AR
?Kv-( 8 i
— ‘\-‘. 2
AT
Molecular function /

Figure 1. Overview of the FINDSITE threading-based protein functional inference algorithm.
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2. FINDSITE: A threading based approach to protein functional
inference

A systematic analysis of known protein structures grouped according to SCOP
[11] reveals a general tendency of certain protein folds to bind substrates at a
similar structural location, suggesting that evolution tends to conserve the
functionally important region and a subset of ligand binding features [12]. If so,
it should be possible to develop an approach for ligand binding site
identification that is less sensitive than pocket-detection methods to distortions
in the modeled structure. Thus, we developed FINDSITE [7], a method for the
prediction of ligand-binding sites and protein functional annotation based on
binding site similarity among superimposed groups of template structures
identified from threading [13]. A schematic overview of the methodology is
shown in Figure 1. For a given target protein, PROSPECTOR_3.5 [14]
identifies ligand-bound structure templates. Then, holo-templates are
superimposed onto the predicted (or experimental, if available) target protein
structure using the structural alignment algorithm TM-align [15]. Upon
superimposition, the clustered centers of mass of the ligands bound to the
threading templates identify putative binding sites, and the predicted sites are
ranked according to the number of templates that share a common binding
pocket. FINDSITE also specifies the chemical properties of the ligands that
likely occupy the binding site. To assess its validity, we employed a
representative set of 901 proteins with < 35% sequence identity to their
templates and generated models using the structure prediction algorithm
TASSER [16].

2.1. Ligand binding site prediction

We evaluated the performance of both the LIGSITE®*® [17] pocket-detection
and FINDSITE threading-based approaches on a non-redundant benchmark set
of 901 proteins in terms of the accuracy of ligand-binding site prediction and the
ability to correctly rank identified pockets in both crystal structures and protein
models. The results of ligand binding site prediction are shown in Figure 2. In
Figure 2A, we employ the target protein’s crystal structure. For LIGSITESS,
the native structure is scanned to identify binding pockets. For FINDSITE,
predicted template models (with sequence identity <35% to the target) are
superimposed onto their crystal structure and the most populated binding site is
selected. FINDSITE performs better than the pocket-detection method in both
overall accuracy and ranking ability of identified pockets. When the native
crystal structure is used, using the best of top five identified binding pockets, the
success rate is 70.9% and 51.3% for FINDSITE and LIGSITE®C, respectively.
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template ligands can be selected even when the crystal structure is unavailable

and its molecular function is unknown. Figure 3 presents the cumulative
distribution of enrichment factors calculated for the 901 representative target
proteins that have <35% sequence identity to the closest template protein. For
accurately predicted binding sites (whose center of mass is < 4 A from the
experimental one; this holds for 70.9% of the target proteins), in 78% of the
cases, FINDSITE performs better than random. The ideal enrichment factor (all
native-like compounds in the top 1% of the ranked library [7]) was observed for
50% of target proteins. For less accurately predicted binding pockets, ligand
selection is notably worse (the ideal enrichment factor was obtained for 12% of
the cases and is better than random for 34%). Finally, a case study examined the
performance of FINDSITE in virtual screening for 895 active HIV-1 protease
inhibitors in a 123,331 compound library. Again, if only templates with <35%
sequence identity to the target are used, the enrichment factor of the top 1% of
compounds is 40.
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Figure 3. Cumulative distribution of enrichment factors resulting from the ligand-based virtual
screening against the KEGG compound library using ligand templates sclected by FINDSITE. Target
proteins are divided into the two subsets with respect to binding pocket prediction accuracy (the
distance between the top-ranked pocket and the center of mass of the native ligand <4 A and >4 A).

2.3. Molecular Function Inference

The relatively high accuracy of the ligand selection procedure encouraged us to
investigate the transferability of specific functions of the threading templates to
the target. We use Gene Ontology [20], GO, to describe molecular protein
function. From the benchmark set, we selected 753 proteins for which a GO
annotation is provided by Gene Ontology [20] or UniProt [21]. The procedure
for molecular function prediction employs the superimposed group of holo-
templates selected by threading as previously used for binding site detection and
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ligand selection. For benchmarking purposes, only predicted threading
templates with <35% sequence identity to a target protein are used. For each
target protein, all GO annotations are identified for the threading templates that
share the top-ranked predicted binding site using the GO and UniProt databases.
Then, the target protein is assigned a function with a probability that
corresponds to the fraction of threading templates annotated with that molecular
function. For a probability threshold of 0.5 (i.e. at least one half of the threading
holo-templates must be annotated with the same GO term to transfer it to the
target protein), the maximal Matthew’s correlation coefficient of 0.64 is found.
This corresponds to a precision (True Positives / (True Positives + False
Positives)) of 0.76 with a recall (True Positives / (True Positives + False
Negatives)) of 0.54. In addition, we calculated predictive metrics with respect to
individual GO identifiers. When the closest template has <35% sequence
identity, FINDSITE distinguishes between enzymatic and non-enzymatic
function, with a precision and sensitivity of 0.93 and 0.89, respectively.
Moreover, many molecular functions that cover a broad spectrum of molecular
events including both enzymatic and binding activities are accurately
transferable from the templates selected by threading to the target proteins. See
SI, Table 1 of ref [7] for an assessment of the best predictions, with the full set
of predicted functions found in [22]. Thus, FINDSITE is an encouraging
approach for the prediction of protein function, ligand binding sites and ligand
screening.

3. Application of FINDSITE/QDOCKX to GPCR ligand screening

For a given target protein, a binding pocket-specific potential can be derived by
FINDSITE from a set of weakly homologous ligand-bound templates to
improve the ligand docking accuracy [7, 23]. For most globular proteins, the
requisite evolutionary related template structures can be identified by a
threading approach that employs a strong sequence profile component [24]. For
GPCRs, the limited number of experimentally solved structures requires
construction of a synthetic protein structure/ligand library compiled from GPCR
models complexed with small molecules as predicted by ligand docking. For
selected GPCRs, known binders extracted from ligand databases (Drug Bank
[25] and the MDL Drug Data Report [26]) are used to model the receptor-
ligand complexes by low-resolution ligand docking using the Q-Dock ligand
docking/screening algorithm [27]. The first pass of the docking simulations
employs a generic force-field for protein-ligand interactions derived from the
non-redundant dataset of ligand-bound proteins from the Protein Data Bank,
PDB [28]. To improve binding mode prediction, the generic contact potential is
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amplified at highly conserved amino acid positions (taken from GPCR class-

specific multiple sequence alignments provided by GPCRDB (information
system for G-protein-coupled receptors) [29]) to enforce the experimentally
known interactions with ligands. Subsequently, the known bioactive molecules
are clustered using a SIMCOMP (a chemical compound-matching algorithm that
provides atom equivalences) [30] similarity cutoff of 0.7. For each cluster of
similar compounds, a common molecular structure, “the anchor”, is then
identified. The anchor substructure is defined as a maximum set of functional
groups present in at least 90% of the ligands from a single cluster. Having a
well-defined anchor substructure, seed molecules are extracted from ligands
docked into the receptor binding pocket. Seed molecules comprise the largest
set of compounds that have their common substructures docked within a 4 A
RMSD from each other. The consensus-binding mode is derived by averaging
the anchor substructure pose in the seed molecules. Finally, in the second pass
of docking simulations, the known active molecules are re-docked into the
receptor binding pocket, but now with harmonic RMSD restraints imposed on
the consensus binding mode of the anchor substructure. The synthetic GPCR-
ligand library consists of TASSER-generated protein models with the bioactive
molecules placed into the binding pockets during the second pass of constrained
docking. Instead of the library of ligand-bound crystal structures, the synthetic
library is then used by FINDSITE to derive pocket-specific potentials for high-
throughput ligand docking/screening.

3.1. Virtual Screening Experiments

For a preliminary assessment of the ranking capability of our approach, using
the identical synthetic protein/ligand library protocol as above, we performed a
simplified virtual screening experiment against relatively small ligand libraries
for the following three dopamine receptors: D,, D3, and D,. For each target,
known bioactive molecules were extracted from the MDL Drug Data Report
[26] and divided into a training and benchmark subsets. The training subset was
used to construct 1024-bit Daylight fingerprints [18] for ligand-based virtual
screening as well as to compile the synthetic GPCR library in order to derive
pocket-specific potentials and the consensus binding modes of the common
ligand substructures. In ligand-based virtual screening, we followed the protocol
previously applied in virtual screening of HIV-1 protease [7]. For each active
compound from the benchmark set, 10 background compounds were randomly
selected from the Asinex compound libraries [31]. The goal of this study was to
examine whether virtual screening is capable of ranking the known bioactive
molecules over the background ligands. We carried out ligand- and structure-
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based screening separately for each target and then we combined the results
using data fusion techniques [32]. The results were assessed in terms of the
enrichment behavior, i.e. the fraction of known active compounds recovered in
the top-ranked fraction of the library.

We present the results for dopamine D,, D, and D, receptor screening in
Figure 4. For these GPCR targets, virtual screening performed significantly
better than random ligand selection. Moreover, we observed that the enrichment
calculated for the combined ranks from ligand- and receptor-based screenings is
typically higher than that calculated for each method alone. These results
suggest that the proposed protocol for virtual screening GPCRs may be useful in
the discovery of new biopharmaceuticals.

D2

0.6F —Coadtased ' 4
8t --mw 3
> 0.5 —0Data fusioa A
° I Random s
® 0.4 e
's . e J
[ 0.31 ,l'_:.n""‘ 1
ool /o ]
goaf .

LA A B N (A T T AN S
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Fraction of library Fraction of library Fraction of library

Figure 4. Results of ligand library screening of threc dopamine receptors, Dy, D3, and Dy, using
known binders to construct the ligand fingerprint (dotted), structure based (dash), Data fusion (solid)
and random (gray) approaches.

4. Discussion

Many methods for protein function prediction employ functional inference by
homology [33, 34]; that is, if two proteins are evolutionary related, then the
function of the protein of known function is assigned to that of unknown
function. However, for enzymes [2], because the extent of function conservation
depends on the protein family, care must be taken if the goal is both high
accuracy and coverage of sequence space. To address this issue, a number of
structure-based approaches based on three-dimensional geometric descriptors of
enzymatic function have been developed [5]; In practice, such approaches have
been restricted to enzymes and require extensive manual intervention. To
eliminate these limitations, we developed the FINDSITE algorithm [7] which
exploits the fact that binding sites are strongly conserved among evolutionary
distant proteins. The conservation of binding sites among threading identified
templates can be used to predict the target binding site, the ligands that bind to
this site and consensus GO molecular functions [20]. Since these observations
hold for evolutionary quite distant proteins (well below 35% sequence identity),
this has profound implications as to how protein molecular function evolved.

,o
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Not only is the protein’s structure conserved, but the chemical features of the
ligands that bind to the protein are also conserved. This provides a type of signal
averaging that can be exploited in ligand screening.

A clear advantage of FINDSITE is that predicted as well as experimental
structures can be used with comparable results. This is important because state-
of-the-art approaches provide useful predicted structures for > 2/3 of protein
domains in a given proteome [16, 35]. It is quite likely that there are other
functional properties that can be detected by extensions of the FINDSITE
approach, one of which, the extension to GPCR virtual ligand screening, was
described here with encouraging preliminary results. The idea is to identify
distantly related structures with common functional features and then transfer
these features to the protein of interest. Thus, this promising avenue of
investigation should help extend the range of applicability of structure-based
approaches to protein function prediction.
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