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ABSTRACT

Motivation: Protein–protein interactions play an essential role in
many cellular processes. The rapid accumulation of protein–protein
complex structures provides an unprecedented opportunity for
comparative studies of protein–protein interactions. To facilitate
such studies, it is necessary to develop an accurate and efficient
computational algorithm for the comparison of protein–protein
interaction modes. While there are many structural comparison
approaches developed for individual proteins, very few methods are
available for protein–protein complexes.
Results: We present a novel interface alignment method, iAlign, for
the structural alignment of protein–protein interfaces. New scoring
schemes for measuring interface similarity are introduced, and
an iterative dynamic programming algorithm is implemented. We
find that the similarity scores follow extreme value distributions.
Using statistical models, we empirically estimate their statistical
significance, which is in good agreement with manual classifications
by human experts. Large-scale tests of iAlign were conducted
on both artificial docking models and experimental structures. In
a benchmark test on 1517 dimers, iAlign successfully detects
biologically related, structurally similar protein–protein interfaces at
a coverage percentage of 90% and an error per query of 0.05.
When compared against previously published methods, iAlign is
substantially more accurate and efficient.
Availability: The iAlign software package is freely available at
http://cssb.biology.gatech.edu/iAlign
Contact: skolnick@gatech.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Virtually all biological processes are dependent on protein–
protein interactions. The role of protein–protein interactions can be
structural, e.g. stabilization of homo-oligomers or macromolecular
assemblies and/or functional, e.g. inhibition of antigens or enzymes
(Goodsell and Olson, 2000; Nooren and Thornton, 2003). Given the
essentiality of protein–protein interactions for a cell, one ultimate
goal of current research is to identify and elucidate all protein–
protein interactions (Russell et al., 2004). Toward this goal, one
promising avenue and necessary task is the structural determination
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of all representative protein–protein complexes at high resolution.
Over the past two decades, there has been an exponential growth
in the number of solved protein complex structures (Tuncbag
et al., 2008). As structural genomics initiatives select more protein
complexes as targets, it is anticipated that the growth rate of protein
complex structures will be further accelerated (Bravo and Aloy,
2006; Strong et al., 2006).

These rich structural data allow us to characterize protein–protein
interactions at the atomic level. By analyzing various properties
of a protein–protein interface, such as hydrophobicity, hydrogen
bonding, buried surface area, topology, planarity, compositions and
so on, one can gain insights into the mechanisms of protein–protein
recognition (Janin et al., 2008; Jones and Thornton, 1996; Keskin
et al., 2008). However, these analyses are typically performed for
individual protein complexes, and they do not provide detailed
structural alignments between protein complexes.

It is well known that the structures of proteins are more likely to be
conserved than their sequences (Chothia and Lesk, 1986). Therefore,
structural comparison often provides evolutionary insights that
are not obvious in sequence comparison. In the era of structural
genomics, structural comparison is very relevant because significant
structural similarity may guide the study of biological relationships,
e.g. whether two proteins are evolutionarily related and/or fulfill
similar functions (Redfern et al., 2008). Consequently, many
computational tools have been developed for structural alignment
of individual proteins, such as DALI (Holm and Sander, 1993), CE
(Shindyalov and Bourne, 1998) and TM-align (Zhang and Skolnick,
2005). Extensive classifications of protein domains based on their
structural, sequence and functional similarity have also become
available, such as SCOP (Murzin et al., 1995) and CATH (Orengo
et al., 1997).

Since protein–protein interactions are responsible for the stability
and/or function of protein complexes, it makes sense to directly
compare the interaction modes of protein complexes and to
categorize these complexes according to their interaction modes.
One simple strategy is to utilize the alignments of individual
protein structures and define interaction modes by the orientation
of two complexes and/or the overlap in the interfaces (Aloy
et al., 2003; Kim et al., 2006; Shoemaker et al., 2006). While
these studies are informative, they have two assumptions: first,
the individual corresponding proteins from two complexes are
sufficiently similar in structure. Second, the combination of
individual protein alignments produces a good interface alignment.
However, these assumptions are often not true in biologically
interesting cases. One example is shown in Figure 1. Two-headed
tomato inhibitor-II (TI-II) simultaneously inhibits two molecules of
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Fig. 1. Complexes of TI-II/subtilisin. (A) Cartoon representation. The
coordinates were taken from a crystal structure (PDB code 1oyv). Two
subdomains (1 and 2) of TI-II are shown in blue and green, and the two
subtilisins are shown in red and orange. Molecular visualizations were
generated with VMD (Humphrey et al., 1996). (B) The topology diagram of
TI-II and interacting β-strands from subtilisins. The dashed line represents
residues (74–85) with missing coordinates. (C) Interface alignment of two
complexes by iAlign. The alignment has a RMSD of 0.4 Å and a P-value of
3×10−15. For clarity, non-interface regions are dimmed.

protease subtilisin (Barrette-Ng et al., 2003). The two interaction
sites, located in the two subdomains of TI-II, are well separated
(Fig. 1A). Obviously, these two interaction sites cannot be aligned
in the comparison of the inhibitor against itself. Moreover, due to the
different topologies exhibited in the two TI-II subdomains (Fig. 1B),
most structural alignment programs only detect weak similarity
between them, and cannot properly align the two interaction sites
even when one attempts to align the two subdomains. In contrast, it
is straightforward for iAlign to identify highly significant similarity
between the two protein–protein interfaces (Fig. 1C), suggesting that
the same inhibition mechanism is employed.

In a second strategy, one can extend a structural alignment
algorithm for individual proteins to the entire protein complex, e.g.
MM-align (Mukherjee and Zhang, 2009). An intrinsic limitation
of such an approach is that it does not differentiate between
interface regions from non-interface regions.As a result, a significant
similarity score does not necessarily mean that two complexes
have similar interaction modes. An illustration of this issue is
the following: Suppose that a protein A forms complexes with
two different partners B and C. Assuming no significant structural
changes of A, the comparison of two complexes A/B and A/C will
lead to a significant score because of the alignment of A to itself,
yet A may associate with B and C in totally different ways. This is
particularly problematic when the size of protein A is much bigger
than the sizes of B and C. Thus, the similarity between these two
A proteins dominates the structural comparison, regardless of the
actual interaction modes, which could in fact be quite different.
In addition, the alignment of full complexes does not necessarily
provide the best alignment of interfaces. In the TI-II/subtilisin
example mentioned above, the two interaction sites on the inhibitor
still cannot be properly aligned by MM-align.

Thus, the development of a dedicated method for comparing
protein–protein interfaces is necessary for studying protein–protein
interaction modes. An early approach employed a geometric hashing

algorithm (Tsai et al., 1996). More recently, methods that compare
physical chemical interactions, non-covalent interactions or contact
maps have been proposed in I2I-SiteEngine (Shulman-Peleg et al.,
2004), Galinter (Zhu et al., 2008) and CMAPi (Pulim et al., 2008),
respectively. None of these studies, however, provides an assessment
of statistical significance of the interface similarity. Moreover, these
methods were tested on small datasets, and it is not clear how well
they perform in large-scale benchmarks. In particular, it has not been
established that interface comparison is useful for the detection of
biological relationships.

To address these issues, we present a novel method, iAlign, for
the structural comparison of protein–protein interfaces. Below, we
first introduce scoring functions for measuring similarity between
protein–protein interfaces. We then describe the alignment algorithm
and statistical models for the estimation of statistical significance.
Large-scale benchmark tests were performed on both docking
models and experimental structures. In addition, iAlign is compared
with MM-align and I2I-SiteEngine. Finally, we discuss both the
advantages and limitations of our approach.

2 METHODS
We adopt a common definition of a protein–protein interface (Janin et al.,
2008): an interfacial contact is defined if the two residues from two separate
proteins have at least one pair of their respective heavy-atoms within 4.5 Å. A
contact is, therefore, defined at the residue level. A protein–protein interface
is the collection of all residues that have at least one interfacial contact. The
length (or size) of an interface is the number of amino acids constituting the
interface.

2.1 Similarity measure
In a typical scenario, one compares a query protein–protein interface against
a template interface from a library of interfaces. Suppose a query of length
LQis aligned to a template of length LT . We consider two scoring functions for
measuring interface similarity in iAlign. The first is the Template Modeling
score (TM-score; Zhang and Skolnick, 2004),

TM-score= 1

LQ
max

[
Na∑
i=1

1/(1+d2
i /d2

0 )

]
(1)

where Na is the number of aligned residue pairs, di is the distance in Å
between the Cα atoms from the i-th aligned residue pair and the empirical
scaling factor d0 ≡1.24(LQ −15)1/3 −1.8. The constants in d0 were obtained
through fitting the distribution of Cα distances in random alignments (Zhang
and Skolnick, 2004). In order to calculate the distance di, aligned residues are
superimposed with the Kabsch algorithm (Kabsch, 1976). The notation max
denotes that the TM-score is the maximum of all possible superpositions.
A heuristic iterative extension algorithm is employed to calculate the TM-
score (Zhang and Skolnick, 2004), similar to the one used for calculating the
GDT-score (Zemla, 2003) and MaxSub (Siew et al., 2000). The definition
of the TM-score is exactly the same as used in measuring an alignment of
individual proteins by TM-align (Zhang and Skolnick, 2005) or of complexes
by MM-align (Mukherjee and Zhang, 2009). To avoid confusion, we denote
iTM-score for the TM-score of two interfaces compared by iAlign, mTM-
score for TM-score of two monomeric proteins compared by TM-align, and
dTM-score for TM-score of two dimeric complexes compared by MM-align.
Note that these TM-scores have different levels of statistical significance at
the same numerical value (see below).

The iTM-score only considers geometric distances. We further introduce
the Interface Similarity score (IS-score), which not only measures geometric
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distance, but also the conservation of interfacial contact patterns. The IS-
score is derived from the iTM-score as follows:

IS-score= S+s0
1+s0

(2)

S = 1

LQ
max

[
Na∑
i=1

fi
(1+d2

i /d2
0 )

]
. (3)

Here, the contact overlap factor fi ≡ (ci/ai +ci/bi)/2, where ai and bi are the
numbers of interfacial contacts of the template and of the query interface at
the i-th position of the alignment, respectively, and ci is the number of pairs
of overlapped interfacial contacts at the same position (see Supplementary
Fig. S1). A pair of interfacial contacts overlaps if the residues forming these
contacts are aligned in the two pairs of chains. The scaling factor s0 ≡0.18−
0.35/L0.3

Q is introduced to make the IS-score length independent (see below).
The constants in s0 were obtained by fitting the distribution of raw scores of
unrelated interfaces. Both the iTM/IS-score range from 0 to 1 and identical
structures give the maximum score of one.

2.2 Alignment algorithm
The algorithm of iAlign is a further development of the original algorithm
implemented in TM-align (Zhang and Skolnick, 2005). Although the
algorithm is heuristic, as shown below, the algorithm is sufficiently accurate
and highly efficient for practical use. Briefly, the algorithm has two major
phases: in the first phase, several guessed solutions are generated through
gapless alignments or secondary structure comparison. In the second phase,
starting from a guessed alignment, dynamic programming is iteratively
applied. The best alignment according to either the iTM-score or IS-score
(whichever is specified by the user) is retained.

Four initial alignments are generated during the first phase: (i) the first
initial alignment is the gapless alignment that gives the best iTM/IS-score of
two interfaces. (ii) the second initial alignment is the best secondary structure
match. The match is obtained through dynamic programming with a scoring
matrix whose elements are 1 for residues with identical secondary structure
and 0 otherwise.Agap penalty of −1 is used. (iii) The third initial alignment is
obtained by superimposing fragments of interfaces, similar to ideas suggested
in Fr-TM-align (Pandit and Skolnick, 2008) and MM-align (Mukherjee and
Zhang, 2009). Let Lmin ≡min(LT , LQ). The interfaces are partitioned into
fragments with a length of min(Lmin/20, 5). Superposition is performed for
all fragment pairs with at least one pair of residues having identical secondary
structure. Corresponding to each fragment superposition, a scoring matrix
[Equation (4)] for dynamic programming is calculated and applied to align
the two full-length interfaces. The global alignment with the highest iTM-
score is the third initial alignment. (iv) After the first three initializations
and dynamic programming iterations, the best alignment gives a distance
matrix with elements 1/[1+(dij/d0)2]. The elements of the distance matrix
and of the secondary structure matching matrix are summed with weight 0.5,
leading to a new scoring matrix for dynamic programming, which generates
the fourth initial alignment.

In the second phase, the above four initial alignments are subjected to
dynamic programming iterations for which the scoring matrix is defined as

Sij =
{

1/(1+d2
ij/d2

0 ) for TM-score

(fij +δ)/(1+d2
ij/d2

0 ) for IS-score
(4)

Here, dij is the distance between the i-th residue of one structure and the j-th
residue of the other structure, and fij ≡ (cij/ai +cij/bj)/2, where ai and bj are
the numbers of interfacial contacts of the i-th and j-th residues, respectively,
and cij is the number of pairs of overlappable contacts. A contact between
residues i and m is defined overlappable to a contact between residues j and
n, if the distances between both i and j, and between m and n are less than
an empirical distance d∗ ≡1.5[min(LT , LQ)]0.3 +3.5 and <8 Å. The small
constant δ, set at 0.01, is introduced to prevent a score of zero.

Application of dynamic programming with the scoring matrix defined
in Equation (4) yields an alignment. The iTM/IS-score is subsequently

Fig. 2. Distributions of iTM/IS-scores of randomly selected, similar length
interface pairs. (A) Mean of scores versus the length of interfaces. Horizontal
dashed lines are located at 0.156 and 0.206, the means of iTM/IS-scores
across all lengths. (B) Distributions of iTM/IS-scores. Dashed lines are the
observed probability densities, and solid lines are modeled values according
to the Gumbel distributions.

calculated for the alignment, and the superposition corresponding to the
iTM/IS-score is used to obtain a new scoring matrix, which in turn generates
a new alignment. The procedure is repeated until the alignment converges,
typically within 10 rounds, or reaches an upper limit of 30 iterations. A gap
opening penalty score of -0.6 without any gap extension penalty is used.

Interface alignment is complicated by the fact that the order of protein
chains may be important. Given two interfaces with four chains A/B and
A′/B′, there are four ways to pair the chains: (i) A/B versus A′/B′, (ii) B/A
versus B′/A′, (iii) A/B versus B′/A′ and (iv) B/A versus A′/B′. When a
highly significant alignment exists, the first two pairings (i–ii) lead to the
same alignment as does pairs (iii–iv). However, for interfaces with low/no
similarity, each of the respective pairings might yield different alignments.
This is because the algorithm for the iTM/IS-score calculation is dependent
on chain order. To guarantee an identical alignment regardless of chain order,
iAlign considers all four ways of chain pairings. We then pick the pairing
whose score is the best. In addition, cross-chain alignment [e.g. A to B′ or B
to A′ in (i)] is prohibited by assigning large penalties in the scoring matrix
[Equation (4)].

Above, we have described the procedure for sequential structural
alignment, i.e. the alignment of interfacial residues follows their sequential
order. An algorithm for non-sequential alignment has also been developed for
iAlign (details will be published elsewhere). Below, we only present results
from sequential alignments.

2.3 Statistical significance
The statistical significance of iTM/IS-scores is estimated through comparing
about 1.8 million random interface pairs (Section 2.4). Figure 2A shows
the means of both iTM and IS-scores of random interfaces of similar
lengths. For a given length, we consider all random pairs whose lengths
are between 95% and 105% of the length. The raw iTM-score is calculated
using a fixed value of d0 at 4 Å, and the raw IS-score is calculated using
Equation (3). Without applying proper scaling factors, the raw iTM/IS-scores
decrease exponentially as the length of interfaces increase. In contrast, proper
scaling yields approximately length-independent iTM/IS-scores. The means
of iTM/IS-scores for random interfaces of similar lengths are 0.206/0.156,
respectively.

As shown in Figure 2B, the scores from the random background (RB)
follow Gumbel distributions [Equation (5)], also known as type I extreme
value distributions. These distributions are over maximum values and,
therefore, are suitable to our cases since the iTM/IS-score are the maxima
of many structural alignments. The statistical models allow us to calculate
the P-values of scores, as proposed previously (Levitt and Gerstein, 1998).
A list of P-values and corresponding iTM/IS-scores is given in Table 1. For
example, an iTM/IS-score of 0.31/0.21 indicates a similarity at a significant
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Table 1. Statistical significance of the scores for interfaces alignments

P-value 5×10−2 1×10−2 1×10−3 1×10−4 1×10−5 1×10−6 1×10−10

iTM-score 0.270 0.311 0.368 0.426 0.484 0.542 0.773
IS-score 0.191 0.214 0.247 0.279 0.311 0.343 0.473

P-value of 0.01. One may use these scores to quickly estimate statistical
significance.

A more accurate estimation of statistical significance is achieved through
modeling the distributions of scores at specific lengths. Since the scores are
asymmetric for interfaces of different lengths, due to score normalization,
we calculate the P-value that corresponds to the higher score, namely, the
score normalized by the smaller interface. This gives a single P-value for a
pair of interfaces. Supplementary Figure S2 shows the observed and modeled
distributions of scores at various lengths. Each distribution is modeled by
the Gumbel distribution,

P(z)=exp[z−exp(z)] (5)

where z= (s−µ)/σ. The variable s denotes the iTM/IS-score; µ and σ are
the location and the scale parameters, respectively. These parameters are
estimated through linear regression fits

µ=a+bln(LQ)+cln(LT )

σ =c+d ln(LQ)+f ln(LT ).
(6)

The parameters a to f , given in Supplementary Table S1, were obtained
by linear fitting to the location and scale parameters, which were obtained
through maximum likelihood estimates with the EVD package in R
(http://www.r-project.org/). Finally, the P-value is calculated using the
formula

P-value=1−exp[−exp(−z)]. (7)

2.4 Datasets
The three datasets used in the study were derived from the M-TASSER
template library (Chen and Skolnick, 2008). The library consists of 1838
dimeric protein–protein complexes, non-redundant at 35% sequence identity.
Since coiled–coil complexes are trivially similar, we removed the 48 such
complexes from the library, resulting in 1790 complexes.

2.4.1 Random background RB is a set of ∼1.77 million pairs of interfaces
curated from all-against-all comparison of 1790 complexes. For each pair
of complexes, the structural similarity of individual proteins that form the
complexes was assessed with TM-align, which reports mTM-score between
individual proteins. There are four combinations of individual proteins from
two dimers. We discarded the pair of complexes if the maximum mTM-score
among these four combinations is higher than 0.35. Note that for mTM-score
a value of 0.35 suggests that two protein structures are dissimilar (Zhang
et al., 2006). The protein–protein interfaces of the remaining complex pairs
are the RB chosen for estimating the statistical significance described above.

2.4.2 Dimer1517 From the template library, we collected 1517 dimers
that have SCOP assignments (version 1.75). The set consists of 327
heterodimers and 1190 homodimers. We further examine all-against-all pairs
among Dimer1517. According to SCOP, protein domains within the same
superfamily are biologically related (Murzin et al., 1995). Two complexes
are considered to have related protein–protein interfaces, if (i) at least one pair
of their interacting domains has the same SCOP superfamily assignments,
and (ii) the two protein–protein interfaces share strong structural similarity.
To avoid self-testing iAlign, we designed an alternative procedure to assess
interface similarity for complexes that have one pair of domains from
the same SCOP superfamily. In this procedure, alignments of each of

the monomers in one dimer to the monomers in the other dimer were
obtained with TM-align. From these alignments, one can count the number
of overlapped contacts and calculate the contact overlap ratio, which is the
count divided by the smaller number of total interfacial contacts between
the two complexes. A minimum contact overlap ratio of 0.3 is required for
assigning related interfaces. In these related pairs, the best mTM-score is
usually higher than 0.5 between individual proteins from these complexes.
On the other hand, two protein–protein complexes have a pair of unrelated
protein–protein interfaces, if (i) none of their interacting domains has the
same SCOP superfamily assignments, or (ii) the contact overlap ratio is zero
and the fraction of aligned interface residues over the shorter length of the
two interfaces is <0.15. This cutoff was conservatively chosen to tolerate a
scenario where a small fraction of interfacial residues are aligned by chance.
The second condition incorporates complexes with similar global structures
but dissimilar interaction modes. In total, 1128 pairs of biologically related
and ∼1.15 million pairs of unrelated interfaces were classified. The remaining
3167 interface pairs are ambiguous cases that cannot be confidently classified
by analyzing the global structural alignments of individual proteins, and they
were therefore discarded for this analysis, although many have significant
iTM/IS-scores according to iAlign.

2.4.3 Dimer597 A subset (597) of Dimer1230 is curated by limiting the
lengths of individual proteins within 200 amino acids. The subset contains
373 related pairs and 176 875 unrelated pairs.

3 RESULTS
We first tested iAlign on docking models and obtained encouraging
results (Supplementary Material). Below, we describe the result of
detecting evolutionarily related, structurally similar protein–protein
interfaces, and comparison with MM-align and I2I-SiteEngine.

3.1 Predicting biologically related interfaces
We benchmark the performance of iAlign in detecting biologically
related protein–protein interfaces from experimental structures. The
SCOP superfamily classification and structural similarity are used to
decide whether two complexes share biologically related interfaces
(Section 2.4.2).

Using either the iTM-score or the IS-score as the similarity
measure, iAlign estimates a significant P<0.01 for all related
protein–protein interfaces, except for one case (Fig. 3A). On the
other hand, about 0.8/1.8% of unrelated pairs have a significant
iTM/IS-score with an estimated P<0.01. The cumulative fraction
of unrelated interface pairs according to their SCOP classification
is the observed, or ‘ideal’, P-value. Ideally, the observed P-value
should match the P-value estimated by iAlign from Equation (5). In
the regime above 1×10−4, the P-values according to our statistical
model are in good agreement with the observed P-values. In
particular, corresponding to estimated P-values of 0.01, 0.001 and
0.0001 for the iTM-score, the observed P-values are 0.009, 0.0009
and 0.0001, respectively. This excellent agreement is a bit surprising,
because we did not use the SCOP classification as the RB for deriving
our statistical models. In the regime below 1×10−5, however, there
is some separation between the estimated and the observed P-values.
This is largely attributed to the existence of structurally similar yet
evolutionarily unrelated pairs, such as four-helix bundles. Overall,
the result shows that iAlign identifies significant similarity between
related interfaces, and that the estimates of statistical significance
are reasonable. The results are consistent between homodimers and
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Fig. 3. Detection of biologically related protein-protein interfaces (RPPIs)
from unrelated protein-protein interfaces (UPPIs) among 1517 dimers.
(A) Cumulative fraction of complexes versus the estimated P-values for
iTM/IS-scores (iTMS/ISS) by iAlign. The cumulative factions of unrelated
pairs are the observed P-values. The black line represents the ideal match
between the estimated P-values and the observed P-values. (B) Coverage
versus EPQ curves using different criteria for predicting RPPIs (see text).

heterodimers (Supplementary Fig. S5), though the estimated IS-
score P-values for heterodimers are closer to the ideal P-values than
the estimates for homodimers.

Figure 3B shows receiver operating characteristic (ROC) type
curves, which analyze the performance of various criteria (e.g. IS-
score) for predicting related protein–protein interfaces. Given a
threshold for a criterion, the positives/negatives are those interface
pairs satisfying/dissatisfying the criterion. True positives and true
negatives are related and unrelated interface pairs (Section 2.4.2)
that are correctly predicted as positives and negatives, respectively.
Based on these binary predictions, coverage is the fraction of true
positives correctly predicted as positives, and error per query (EPQ)
is the number of false positives divided by the total number of
query interfaces (Brenner et al., 1998; Levitt and Gerstein, 1998).
Compared with the false positive rate adopted in a typical ROC
curve, EPQ provides a better measure in the high accuracy regime,
which is relevant to practical applications because the amount of
unrelated pairs is enormous. In our benchmark tests, we assessed
five criteria: the iTM/IS-score and their P-value, and dTM-score,
the TM-score from comparing global structures of complexes by
MM-align (Mukherjee and Zhang, 2009). All three types of scores
are all asymmetric, in the sense that two different values are possible
for a pair of structures of different lengths. In benchmarks, the
higher score was chosen. In the case of MM-align, two sets of
runs were conducted with the default setting and with the –I option,
respectively. The latter adds a heavy weight to interface regions in
an alignment.

It is evident that P-values of the iTM/IS-score always achieve
better performance than the scores themselves (Fig. 3B). At 0.005
EPQ, for example, the P-value of the iTM/IS-score gives 0.68/0.70
coverage, compared with 0.65/0.56 coverage yielded by the iTM/IS-
score. At an extremely low EPQ of <0.005, the P-value of IS-score
produces the best performance among all prediction schemes. In
the EPQ regime from 0.005 to 1, the P-value of the iTM-score
performs the best, but the difference is very small between the
two P-values. At the same EPQ of 0.05, for example, P-values
of the iTM-score and IS-score give coverage values of 0.92 and
0.91, respectively. Moreover, regardless of the similarity measure
employed, interface alignments by iAlign always provide better

discrimination than global alignments of complex structures by MM-
align, with the difference being most notable in the highly confident
regime relevant to practical applications. At 0.01 EPQ, for example,
dTM-score produces 0.60 coverage, which is considerably lower
than 0.79/0.76 coverage by P-value of iTM/IS-score calculated
with iAlign. Heavily weighting the interface region gives MM-
align slightly better performance, but the improvement is small, for
instance, ∼4% increase in coverage at 0.01 EPQ.

The difference between interface alignment and global alignment
of complexes is not surprising because interface similarity is not a
priori equivalent to global similarity, though the two are correlated.
As shown in Supplementary Figure S6A, more than half of
complex pairs with significant interface similarity at a P<0.01 have
an insignificant dTM-score <0.4. Nevertheless, highly significant
interface similarity often leads to highly significant global similarity.
The number of complexes with dissimilar global structures drops
dramatically when a significant P-value threshold <1×10−5 is
employed, though there are exceptions with one example provided in
Supplementary Figure S7A. On the other hand, as we mentioned in
Section 1, a high dTM-score does not guarantee interface similarity.
For example, among dimer pairs with dTM-score >0.6, ∼15% of
them have dissimilar interfaces with an insignificant iAlign P<0.01
(Supplementary Fig. S6B). These are complexes sharing very similar
global folds but dissimilar interaction modes. Such false positives
are significantly reduced through interface similarity evaluation,
which is the main reason for the better performance of iAlign than
MM-align. One example is shown in Supplementary Figure S7B.

3.2 Comparison with I2I-SiteEngine
The performance of iAlign is compared with a previously published
interface alignment method in I2I-SiteEngine (Shulman-Peleg et al.,
2004). The I2I-SiteEngine demands relatively large computing
resources. To reduce computing costs, we selected a subset
(Dimer597) of Dimer1517 by limiting the length of the individual
protein chains to 200 residues. I2I-SiteEngine reports two scores
for each of top 10 alignments, the Match-score (M-score) and the
Total-score (T-score), the former normalized by the Total-score of
query compared with itself. For a pair of interfaces, we conducted
two runs with each interface as the query, and then selected the best
M-score or T-score among all top alignments.

As shown in Figure 4A, the coverage-precision (also known
as recall-precision) curve evaluates the accuracy of two methods.
The coverage is the same as above, and the precision is defined
as the fraction of true positives (both pairs of complexes have
evolutionarily related, structurally similar interfaces) among all
positives predicted. Clearly, iAlign has substantially higher accuracy
than the I2I-SiteEngine. At 80% precision, iAlign can identify 85%
of true positives according to the P-value of the IS-score, whereas
I2I-SiteEngine can only identify 21/47% of true positives with the
M/T-score, respectively. At a higher precision of 90%, iAlign has a
coverage value of 75%, about five/two times the coverage of 15/39%
by the M/T-score.

Regarding the requisite computer time, iAlign is about two orders
of magnitude faster than I2I-SiteEngine (Fig. 4B). We collected
the total computing time statistics for iAlign, and statistics of total
and essential computing time for I2I-SiteEngine. Note that the total
computing time does not include the time for generating input files,
which one needs to construct only once. The essential computing

2263

 at G
eorgia Institute of T

echnology on S
eptem

ber 16, 2010
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[11:27 11/8/2010 Bioinformatics-btq404.tex] Page: 2264 2259–2265

M.Gao and J.Skolnick

Fig. 4. Comparison of iAlign with I2I-SiteEngine. (A) Coverage versus
precision curves from tests on the set Dimer597. (B) Box plots of runtime
costs of iAlign (blue) and I2I-SiteEngine (green). The left and right box
plots represent the overall runtime of iAlign and I2I-SiteEngine, and the
middle plot represents the runtime of essential computing as reported by
I2I-SiteEngine. Medians are represented by thick horizontal black lines.

time of I2I-SiteEngine includes only costs for hashing, matching
and scoring. All runs were conducted on the same cluster composed
of 2.4 GHz AMD Opteron 8431 processors. The median total time of
iAlign is 0.087 s, about 146/89 times shorter than 12.66/7.75 s, the
median total/essential computing time reported by I2I-SiteEngine.

4 DISCUSSION
Comparative studies of protein structures provide valuable insights
into the biological relationship between proteins, especially those
with distant evolutionary relationship undetectable from sequence
information alone. During the past two decades, many computational
methods have been developed for protein structural comparison;
some well-known examples include DALI (Holm and Sander,
1993), CE (Shindyalov and Bourne, 1998) and TM-align (Zhang
and Skolnick, 2005). However, these methods are designed for
comparing the global tertiary structures of individual proteins.
Considering that protein–protein interactions play an essential role
in a cell, structural comparison of protein–protein interfaces may
provide additional insights that are not obvious in standard structural
comparisons of individual proteins. The main purpose of this work is
to introduce iAlign, an accurate and efficient computational method
for protein interface comparison, and to demonstrate that such a
comparison is indeed helpful for deciphering biological relationships
between proteins.

Like structure comparisons of individual proteins, it is important
to define a measure that effectively characterizes the level of
structural similarity. One advantage of the TM-score, first introduced
for measuring the similarity between monomeric protein structures,
is that the TM-score is approximately length independent for
globular structures (Zhang and Skolnick, 2004). This property
allows one to estimate statistical significance according to the
values of the score (an mTM-score >0.4 is considered significant).
However, it is not clear whether the TM-score can be applied to
protein–protein interfaces, which are often flat and discontinuous.
We show that the interfacial TM-score (iTM-score) can be applied to
measure the similarity between protein–protein interfaces, and that
the property of length independence is still maintained. In addition,
we designed a new measure, the IS-score, which compares not only
geometric distances, but also contact patterns not considered by the
iTM-score. As a result, the IS-score is more specific and significantly

better than the iTM-score in differentiating closely related protein–
protein complexes, e.g. near-native docking models (Supplementary
Results).

Moreover, we employed statistical models to estimate the
significance of the iTM/IS-scores. In large-scale benchmark tests on
1517 dimers, our estimates agree well with the SCOP classification,
despite the fact that SCOP was not used for deriving the statistical
models. In the predictions of biological relationships, the P-values
of iTM/IS-score yield significantly more accurate results than the
scores. In general, accurate predictions were obtained by iAlign with
the P-values of both scores. For example, about 90% coverage is
achieved at 0.05 EPQ.

There is unlikely to be a consensus on the definition of the
optimal similarity metric for protein–protein interface comparison.
While geometry-based similarity measures are used in iAlign,
measures based on physical chemical properties were proposed in
I2I-SiteEngine (Shulman-Peleg et al., 2004). Benchmark results
show that iAlign is significantly more accurate and two orders
of magnitude more efficient than I2I-SiteEngine. However, the
difference in accuracy does not mean that physical chemical
properties are not important for interface comparison. The better
accuracy of iAlign is mainly due to the length independence of the
iTM/IS-score and a sound assessment of statistical significance.

It is known that the space of tertiary structures of individual
protein domains is very limited, largely because only certain ways
of secondary structure packing are physically viable (Finkelstein
and Ptitsyn, 1987). As a consequence, two evolutionarily unrelated
proteins may converge to a similar structural fold (Kihara and
Skolnick, 2003; Kolodny et al., 2006; Zhang et al., 2006).
This interesting phenomenon unfortunately creates a challenge for
predicting biological relationships from protein structure. In this
study, we demonstrate that comparison of protein–protein interfaces
may be utilized for differentiating biological relationships. This
works because protein–protein interactions are important for their
stability and/or function, leading to the conservation of a specific
interaction mode during the course of evolution.

However, we emphasize that interface comparison is not
a replacement for, but rather is complementary to, structural
comparison of individual proteins. This point can be illustrated with
one example. Suppose protein A and its homolog A′ interacts with
two different proteins B and C, respectively, and the protein–protein
interfaces of complexes A/B and A′/C are dissimilar. An interface
alignment of A/B and A′/C gives an insignificant score, whereas
an alignment between A and A′ yields a significant score. While
the score of interface similarity is still informative, indicating that
A/B and A′/C exhibit different interaction modes, the homologous
relationship between A and A′ is detected only through the alignment
of individual protein structures. Therefore, one expects that a
combination of both types of structural comparisons should provide
a more comprehensive description of protein–protein relationships
than using either comparison metric alone. Toward this direction,
considerable efforts have been invested recently in classifying
protein–protein interfaces (Kim et al., 2006; Mintz et al., 2005;
Shoemaker et al., 2006; Tuncbag et al., 2008).

Since two biologically unrelated protein complexes may display
similar interfaces (Tsai et al., 1996), the question arises in how
similar two protein–protein interfaces have to be for a reliable
prediction on their biological relationship. With the P-value
estimation provided by iAlign, one can quickly set a suitable P-value
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threshold. When scanning a large library of 10 000 interfaces, which
is the same order of magnitude as the size of the current PDB, one
expects to see one hit from unrelated interfaces at a P-value of
1×10−4. In order to reduce the number of false positives to <0.1,
one needs to set a highly significant P-value threshold of <1×10−5

for predicting biologically related interfaces from a library the size
of the PDB.

In principle, protein–protein interfaces can be geometrically
similar without following a particular sequence order. While
iAlign provides an option for permitting non-sequential alignment,
we found that the sequential alignments yield much fewer
hits across SCOP superfamilies than non-sequential alignments
(Gao and Skolnick, unpublished data). Non-sequential alignments
detect both biologically related and unrelated pairs of complexes
that have structurally similar interfaces. Restriction to sequential
alignments significantly increases the likelihood that an evolutionary
relationship (e.g. as assessed by SCOP) is detected.

Despite many efforts toward understanding the nature of protein–
protein interactions, numerous issues remain unresolved. Some
important questions include: What is the repertoire of protein–
protein interactions modes that Nature employs? How complete
is the structural space of protein–protein interaction modes in the
current PDB? How can we use structural information to accurately
predict protein-protein interactions? How can we design a protein–
protein interface for a desired function? We expect that iAlign
will be a useful tool for addressing these outstanding questions
and for developing applications involving structural comparison of
protein–protein interfaces.

ACKNOWLEDGEMENTS
We thank Dr Shashi B. Pandit for stimulating discussions and
Dr Bartosz Ilkowski for computing support.

Funding: National Institutes of Health (grant GM-48835).

Conflict of Interest: none declared.

REFERENCES
Aloy,P. et al. (2003) The relationship between sequence and interaction divergence in

proteins. J. Mol. Biol., 332, 989–998.
Barrette-Ng,I.H. et al. (2003) Structural basis of inhibition revealed by a 1 : 2 complex

of the two-headed tomato inhibitor-II and subtilisin carlsberg. J. Biol. Chem., 278,
24062–24071.

Bravo,J. and Aloy,P. (2006) Target selection for complex structural genomics, Curr.
Opin. Struct. Biol., 16, 385–392.

Brenner,S.E. et al. (1998) Assessing sequence comparison methods with reliable
structurally identified distant evolutionary relationships. Proc. Natl Acad. Sci. USA,
95, 6073–6078.

Chen,H.L. and Skolnick,J. (2008) M-TASSER: an algorithm for protein quaternary
structure prediction. Biophys. J., 94, 918–928.

Chothia,C. and Lesk,A.M. (1986) The relation between the divergence of sequence and
structure in proteins. EMBO J., 5, 823–826.

Finkelstein,A.V. and Ptitsyn,O.B. (1987) Why do globular-proteins fit the limited set of
folding patterns. Prog. Biophys. Mol. Biol., 50, 171–190.

Goodsell,D.S. and Olson,A.J. (2000) Structural symmetry and protein function. Annu.
Rev. Biophys. Biomol. Struct., 29, 105–153.

Holm,L. and Sander,C. (1993) Protein structure comparison by alignment of distance
matrices. J. Mol. Biol., 233, 123–138.

Humphrey,W. et al. (1996) VMD: visual molecular dynamics. J. Mol. Graphics, 14,
33–38.

Janin,J. et al. (2008) Protein-protein interaction and quaternary structure. Q. Rev.
Biophys., 41, 133–180.

Jones,S. and Thornton,J.M. (1996) Principles of protein-protein interactions. Proc. Natl
Acad. Sci. USA, 93, 13–20.

Kabsch,W. (1976) Solution for best rotation to relate two sets of vectors. Acta
Crystallogr. Sect. A, 32, 922–923.

Keskin,Z. et al. (2008) Principles of protein-protein interactions: What are the preferred
ways for proteins to interact? Chem. Rev., 108, 1225–1244.

Kihara,D. and Skolnick,J. (2003) The PDB is a covering set of small protein structures.
J. Mol. Biol., 334, 793–802.

Kim,W.K. et al. (2006) The many faces of protein-protein interactions: a compendium
of interface geometry. PLoS Comp. Biol., 2, 1151–1164.

Kolodny,R. et al. (2006) Protein structure comparison: implications for the nature of
’fold space’, and structure and function prediction. Curr. Opin. Struct. Biol., 16,
393–398.

Levitt,M. and Gerstein,M. (1998) A unified statistical framework for sequence
comparison and structure comparison. Proc. Natl Acad. Sci. USA, 95, 5913–5920.

Mintz,S. et al. (2005) Generation and analysis of a protein-protein interface data set
with similar chemical and spatial patterns of interactions. Proteins Struct. Funct.
Bioinform., 61, 6–20.

Mukherjee,S. and Zhang,Y. (2009) MM-align: a quick algorithm for aligning multiple-
chain protein complex structures using iterative dynamic programming. Nucleic
Acids Res., 37, e83.

Murzin,A.G. et al. (1995) SCOP - a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol., 247, 536–540.

Nooren,I.M.A. and Thornton,J.M. (2003) Diversity of protein-protein interactions.
EMBO J., 22, 3486–3492.

Orengo,C.A. et al. (1997) CATH - a hierarchic classification of protein domain
structures. Structure, 5, 1093–1108.

Pandit,S.B. and Skolnick,J. (2008) Fr-TM-align: a new protein structural alignment
method based on fragment alignments and the TM-score. BMC Bioinformatics, 9,
Article 531.

Pulim,V. et al. (2008) Optimal contact map alignment of protein-protein interfaces.
Bioinformatics, 24, 2324–2328.

Redfern,O.C. et al. (2008) Exploring the structure and function paradigm. Curr. Opin.
Struct. Biol., 18, 394–402.

Russell,R.B. et al. (2004) A structural perspective on protein-protein interactions. Curr.
Opin. Struct. Biol., 14, 313–324.

Shindyalov,I.N. and Bourne,P.E. (1998) Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Eng., 11, 739–747.

Shoemaker,B.A. et al. (2006) Finding biologically relevant protein domain interactions:
conserved binding mode analysis. Protein Sci., 15, 352–361.

Shulman-Peleg,A. et al. (2004) Protein-protein interfaces: recognition of similar spatial
and chemical organizations. In Jonassen,I.K.J. (ed.), Algorithms in Bioinformatics,
Springer, Berlin, pp. 194–205.

Siew,N. et al. (2000) MaxSub: an automated measure for the assessment of protein
structure prediction quality. Bioinformatics, 16, 776–785.

Strong,M. et al. (2006) Toward the structural genomics of complexes: crystal structure
of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad.
Sci. USA, 103, 8060–8065.

Tsai,C.J. et al. (1996) A dataset of protein-protein interfaces generated with a sequence-
order-independent comparison technique. J. Mol. Biol., 260, 604–620.

Tuncbag,N. et al. (2008) Architectures and functional coverage of protein-protein
interfaces. J. Mol. Biol., 381, 785–802.

Zemla,A. (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic
Acids Res., 31, 3370–3374.

Zhang,Y. et al. (2006) On the origin and highly likely completeness of single-domain
protein structures. Proc. Natl Acad. Sci. USA, 103, 2605–2610.

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment of protein
structure template quality. Proteins Struct. Funct. Bioinform., 57, 702–710.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment algorithm
based on the TM-score. Nucleic Acids Res., 33, 2302–2309.

Zhu,H. et al. (2008)Alignment of non-covalent interactions at protein-protein interfaces.
PLoS One, 3, e1926.

2265

 at G
eorgia Institute of T

echnology on S
eptem

ber 16, 2010
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

