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At the heart of protein–protein interactions are protein–protein
interfaces where the direct physical interactions occur. By develop-
ing and applying an efficient structural alignment method, we
study the structural similarity of representative protein–protein
interfaces involving interactions between dimers. Even without
structural similarity between individual monomers that form di-
meric complexes, ∼90% of native interfaces have a close structural
neighbor with similar backbone Cα geometry and interfacial con-
tact pattern. About 80% of the interfaces form a dense network,
where any two interfaces are structurally related using a transitive
set of at most seven intermediate interfaces. The degeneracy of
interface space is largely due to the packing of compact, hydro-
gen-bonded secondary structure elements. This packing generates
relatively flat interacting surfaces whose geometries are highly
degenerate. Comparative study of artificial and native interfaces
argues that the library of protein interfaces is close to complete
and comprised of roughly 1,000 distinct interface types. In contrast,
the number of possible quaternary structures of dimers is esti-
mated to be about 104 times larger; thus, an experimentally deter-
mined database of all representative quaternary structures is not
likely in the near future. Nevertheless, one could in principle exploit
the completeness of protein interfaces to predict most dimeric
quaternary structures. Finally, our results provide a structural ex-
planation for the prevalence of promiscuous protein interactions.
By side-chain packing adjustments, we illustrate how multiprotein
specificity can be attained at a promiscuous interface.

All major cellular processes in living cells (e.g., transcription
and cellular communication) are dependent on protein–pro-

tein interactions. These interactions can be permanent (e.g., glu-
ing together the components of a cellular machine) or transient
(e.g., relaying signals along a biological pathway) (1). To fully
understand the molecular mechanism of protein–protein interac-
tions, it is necessary to obtain atomic structures of representa-
tive protein complexes. Indeed, because protein complexes are
often biologically more relevant and because certain structurally
disordered proteins can only be solved upon complexation with
their partners, structural genomics is gradually shifting its focus
from solving the structures of individual proteins to their com-
plexes (2).

Protein–protein interfaces (abbreviated as protein interfaces
or interfaces below) are regions where two proteins make direct
physical contact. Because interfaces are directly involved in pro-
tein–protein interactions, many investigations have studied their
physical and chemical properties (see refs. 3–5). Just as in the
folding of individual proteins, hydrophobic interactions are domi-
nant at protein interfaces (4).

The tertiary structures of proteins have been extensively studied
(see recent refs. 6–8). One may view the collection of all possible
tertiary structures as a protein structural space.Understanding the
nature of this space not only advances our fundamental knowledge
about proteins but has profound implications for protein structure
prediction and design. It has been noted that proteins adopt a
finite number of tertiary structures, based on the fact that physical
principles limit the number of ways of packing secondary struc-
tures (9). Consistent with this notion, it was estimated that there
are about 1,000 structural folds in protein domains (10). Recent

studies suggest that the library of single-domain protein structures
is likely complete, continuous, and above the percolation thresh-
old, largely due to the packing of compact, hydrogen-bonded sec-
ondary structural elements (11–13). Because many structural
properties of real proteins are reproduced by a library of compact,
hydrogen-bonded homopolypeptide structures, evolution is not
necessary to explain these features.

The same questions regarding the space of protein tertiary
structures can be asked about protein quaternary structures. Is it
likely complete? Can one explain the observed space of structures
just by the principles of physics, or does evolution need to be in-
voked as well? Here, we focus on quaternary structures of dimers;
i.e., a complex formed by two protein monomers. To compare two
quaternary structures, one needs to align the two structures. One
early study, which measures the relationships of dramatically
simplified dimeric protein structures, concludes that homologous
proteins (with >30% pairwise sequence identity) form structurally
similar complexes (14). Based on this and data from high-through-
put experiments, it was estimated that there exist about 10,000
types of protein quaternary structures, only a small fraction of
which have been solved (15). However, comparison of the global
structure of complexes does not differentiate similarity at an inter-
face from that in noninterfacial regions.Rather, if one is interested
in protein–protein interactions, it makes sense to compare only
the interface regions directly responsible for these intermolecular
interactions and study their structural space.

A simple strategy for such a comparative study is to align
protein monomers from two dimeric complexes with a standard
structural alignment algorithm and then compare the geometry
of the interface residues (16–18). Obviously, this requires that
proteinmonomers have similar structures; otherwise, the structur-
al alignments are random and unreliable. A more powerful ap-
proach is to directly align the interface regions (19, 20). This could
identify interesting cases where similar interfaces are observed
among proteins with unrelated monomeric structures. Keskin
and Nussinov have found complexes with similar interface geome-
try but dissimilar global structures, especially involving α-helical
interfaces (21). However, in their studies, residues neighboring
interfacial residues (that may not be in the interface) are consid-
ered in alignments, and the sequential ordering of residues (the
order that interfacial residues appear in the original protein
sequences) is used for evaluating interface similarity. Although
these requirements are useful for inferring biological relationships
between two complexes, they might underestimate the geometric
similarity between evolutionarily unrelated complexes.

To address these limitations, we have recently developed
iAlign, a computational method for the structural comparison
of protein–protein interfaces (20). When applied to compare
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interfaces following sequential orders, iAlign accurately discerns
interface similarity between complexes whose monomeric struc-
tures are at least somewhat similar. Here, by iteratively employing
a shortest augmenting path algorithm, we extend iAlign to non-
sequential interface alignments; this is necessary for identifying
geometric similarity in protein complexes whose monomeric
structures are very different. In what follows, we study the geo-
metric similarity across the structural space of known protein–pro-
tein interfaces.We first present results of comparing experimental
(native) interface structure formed by proteins whose monomers
adopt different structures and show that most native interfaces
have a close structural neighbor with similar backbone Cα geome-
try and interfacial contact pattern. To understand the possible
origin of this interface similarity, we build artificial complexes
from a library of randomly generated, compact homopolymeric
structures and compare the structure of their interfaces to native
interfaces. The likely numbers of distinct interface structures and
of dimeric quaternary structures are then estimated. The connec-
tivity of protein interface space is also analyzed. Finally, an exam-
ple how multispecificity is achieved through use of a structurally
promiscuous interface is presented.

Results
Similarity Among Native Interfaces Across Protein Folds. In a dimeric
complex, an interfacial residue in a protein is defined if at least one
heavy atom of the residue is within 4.5 Å of a heavy atom in the
other protein. The protein–protein interface of the dimer is the
collection of all interfacial residues. The structures of two pro-
tein–protein interfaces are compared using the program iAlign,
with the nonsequential alignment mode enabled as described in
Methods.

As previously (22), we select a nonredundant (pairwise se-
quence identity <35%) set of 1,519 protein–protein complexes,
with experimentally determined crystal structures and Structural
Classification of Proteins (SCOP) annotations (23). Their pro-
tein–protein interfaces are termed “native” interfaces. Because
most large interfaces are formed by multidomain proteins, we
enforce an interface size cutoff of 150 amino acids to obtain a
representative set of 1,374 native interfaces from mostly single-
domain monomers involved in protein–protein interactions. This
set is named PDB150.

Becausewe are interested in detecting similar interfaces formed
by monomeric proteins without any significant structural relation-
ships, for each PDB150 member, we search for its most similar
match from the 1,519 nonredundant interfaces subject to the fol-
lowing conditions: The two complexes (i) lack protein domains
within the same SCOP fold, (ii) share no significant sequence
similarity [PSI-BLAST E-value >1 (24)], and (iii) share no signif-
icantly similar monomeric structure [the best template modeling
score (TM-score) for all combinations ofmonomers fromdifferent
complexes is <0.4 (25)]. Interface similarity is evaluated by the
interface similarity score (IS-score) as reported by iAlign. Fig. 1
shows the statistics of 1,374 pairs of closest interface matches.

The mean (SD) of the IS-scores is 0.317 (0.039), compared with
0.207 (0.036) of IS-scores for the best alignments among random
interfaces (see Methods). About 88% of native interfaces find a
match with a significant score (P-value <0.05); these interface
pairs have amean rmsd (SD) of 3.55 (0.49)Å, amean (SD) residue
coverage f res of 86% (10%), and a mean (SD) contact coverage
f con of 52% (9%), respectively. The values of f res and f con are cal-
culated by normalizing the numbers of aligned contacts and
aligned residues over the total numbers of interfacial residues
and contacts of the query. These results suggest that one can find
a structurally similar interface for the vast majority of native inter-
faces even when it is formed by monomers with unrelated
structures.

How can structurally unrelated monomers form similar inter-
faces? As illustrated in Fig. 2, inspection of similar interface pairs
reveals three reasons for their structural degeneracy. The first
is the constraint that they perform a similar function. The most
well-known examples are serine protease/inhibitor complexes,
such as subtilisin and trypsin-like proteases, which have structu-
rally similar active sites for cleaving protein peptides. A common
scheme is adopted by their inhibitors to block the active sites, yield-
ing highly similar protein–protein interfaces among protease/
inhibitor complexes. As shown in Fig. 2A, despite the fact that
none of these proteins have a similar global structural fold (best
monomer TM-score of 0.37), the two protease/inhibitor com-
plexes have a highly significant IS-score of 0.49 (P ¼ 1.5 × 10−5).

Second, it is known that physical constraints limit the total
number of distinct structural folds for protein domains (9, 12). Ob-
viously, the same constraints may restrict the valid ways of packing
pairs of proteins; this is the second reason for detecting structural
similarity between unrelated interfaces. Fig. 2B–D shows three
examples of β-sandwich packing, α-helical bundle packing, and
a mixture of α/β packing where the interfaces are very similar;
yet, the monomers in the two dimers are structurally different.

The third reason for the existence of similar interfaces between
different protein structures is due to the fact that most protein
interfaces are rather flat; it is relatively easy to identify similar geo-
metric matches, especially when nonsequential arrangements of
interfacial residues are allowed. One can even find similar inter-
face geometries between pairs of complexes whose secondary
structures are completely different. Fig. 2E shows an interface
alignment between an all-α and an all-β complex with a 0.34
IS-score, 2.7-Å rmsd, and 89% residue coverage. The existence
of comparable interface geometries across different types of sec-
ondary structures explains why some promiscuous proteins can
recognize, with the same set of residues, partners in completely
different folds (see the example of the histone H3 complexes be-
low). Fig. S1 provides another two examples. Analysis of the 1,374
pairs of interfaces shows that the IS-score and the planarity of pro-
tein interfaces are correlated with a Pearson correlation coeffi-
cient of 0.49 (Fig. S2). On the other hand, interfaces for which
we did not find a significant similar match usually have one side
enveloped by the other or have intertwined complex structures.

Fig. 1. Closest match to the representative set of
1,374 protein–protein interfaces, with rmsd scatter
plots of residues aligned between two interfaces ver-
sus (A) fraction of aligned residues f res and (B) frac-
tion of aligned contacts f con. Each point is color-
coded according to interface similarity measured
by the IS-score. Histograms of rmsd, f res, f con, and
IS-score are shown in bar plots surrounding the scat-
ter plots. The mean IS-score of best random interface
alignments is indicated by an arrow in the IS-score
histogram. The same scheme is employed in Figs. 3
and 4.
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Artificial Versus Native Interfaces. The results described above
strongly suggest that structural space of protein interface is dense
andhighly connected. To further examinewhether this observation
can be rationalized by the limited ways of packing relatively flat,
bumpy surfaces, we generated 20,000 artificial protein–protein in-
terfaces and compared them with native interfaces from PDB150.
Because these artificial interfaces are not subject to evolutionary
pressure, we can explore whether the library of interfaces just
reflects the physics of packing bumpy protein structures or if
evolution must be involved.

Details of interface generation are given in Methods. Briefly,
we selected 244 randomly generated, compact polyvaline struc-
tures from previous work (13), converted them to all-atom mod-
els using random protein sequences, and conducted rigid-body
docking for 2,000 combinations of these 244 artificial protein
models. The docked models were clustered, and the top 10 cluster
representatives for each docking pair, totaling 20,000 models,
were chosen as the artificial protein complexes.

We first search for the closest interface match among artificial
interfaces for each native interface of PDB150. Fig. 3 shows the
statistics of 1,374 pairs of closest interface matches. The mean of
the IS-scores is 0.291, slightly lower than the mean value of 0.317

from comparison among native interfaces themselves. Neverthe-
less, about 83% of native interfaces find an artificial interface
match with a significant score (P < 0.05). These interface pairs
have a mean (SD) rmsd of 3.50 (0.39) Å, a residue coverage
f res of 76% (15%), and a contact coverage f con of 48% (12%),
respectively. Two representative examples of similar interface
alignments are shown in Fig. 3C and D; in the former, the arti-
ficial and real monomers have a similar structure and interface
packing (with monomeric TM-score of 0.51 and an interface
IS-score of 0.43), whereas the latter are between structurally
dissimilar monomers (best monomeric TM-score is 0.35) with
similar protein interfaces (0.29 IS-score).

Next, we ask the reverse question: Can one find a similar native
interface for each artificial interface? Fig. 4 shows the statistics
of 20,000 pairs of closest interface matches. The mean of the
IS-scores is 0.308; about 89% of artificial interfaces have a native
interface counterpart with a significant score (P < 0.05). These
interface pairs have a mean rmsd (SD) of 3.46 (0.34) Å, f res
of 88% (8%), and f con of 51% (6%), respectively. Again, these
results are comparable to the comparison among native inter-
faces, suggesting that the vast majority of artificial protein–pro-

Fig. 2. Examples of similar protein–protein interface
pairs identified by iAlign. Coordinates of structures
were taken from the PDB. The template (cyan/or-
ange) and target (blue/red) proteins are (A) subtilisin
BPN/chymotypsin inhibitor 2 (PDB code and chain IDs:
1tm7_EI) and streptogrisin B/ovomucoid inhibitor
(1sgy_EI), (B) ribokinase (1vm7_AB) and heme-de-
grading enzyme PC130 (1sqe_AB), (C) farnesyl pyro-
phosphate synthetase (1rtr_AB) and HemAT
(1or6_AB), (D) aspartate racemase (1jfl_AB) andDCoH
(1dcp_EF), and (E) Rop (1f4m_CD) and allene oxide cy-
clase (1z8k_AC). In E, interfacial alignments are illu-
strated separately for each side of the interface;
and the Cα atoms of aligned residues are represented
in spheres. For clarity, interface/noninterface regions
are shown in solid/transparent colors, respectively.
Molecular images were created with VMD (32).

Fig. 3. The closest matching artificial interface to
each of the native interfaces from PDB150. Scatter
plots of rmsd for interfacial residues aligned be-
tween two interfaces versus (A) fraction of aligned
residues f res and (B) fraction of aligned contacts
f con. Each point is color-coded according to the IS-
score. Histograms of rmsd, f res, and f con are shown
in bar plots. Two examples are shown: (C) HI0074
(PDB and chain IDs: 1jog_AB), where the monomer
structures of the artificial and real structures are si-
milar, and (D) thrombin/antithrombin (1tb6_HI),
where the closest monomer structures are dissimilar.
The experimental andmodel complexes are shown in
blue/red and cyan/orange, respectively. The Right
snapshot shows the optimal interface alignment re-
ported by iAlign; the Cα atoms of aligned residues are
shown in a Van der Waals representation, and the
noninterface regions are dimmed.
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tein interfaces have a native counterpart already deposited in the
Protein Data Bank (PDB).

Estimate of the Number of Distinct Dimer Structures. The fact that
most native interfaces are in the library of artificial interfaces
and most artificial interfaces are in the library of native interfaces
suggests that the library of interfaces is close to complete. If so, the
result has profound biological and practical implications. Let us
consider all geometrically possible quaternary structures of
dimers. From the clusters obtained from docking simulations,
we estimate that there are on average about 30 representative in-
teractionmodes (IS-score P > 0.05) between each pair of artificial
protein folds. Based on previous work (25), we estimate that there
are on the order of 2,000 statistically distinct monomeric protein
structures below 200 residues and that each pair has 30 different
quaternary arrangements. Thus, we obtain ∼60 million statisti-
cally distinct quaternary dimeric structures from docking all dis-
tinct monomer structures against each other. This enormous
number suggests that the library of solved dimeric structures is
not likely to be complete for quite a long time. However, from
the interface geometry point of view, the results above suggest
that almost all interfaces are related to a structurally similar native
interface from PDB150. In fact, there are about 1,000 types of
interfaces after complete linkage clustering (at an IS-score P of
0.001). This is a remarkable reduction from 60 million geometri-
cally possible dimeric structures to 1,000 known native interfaces.
Note that the estimate of number of possible quaternary structures
ignores evolutionary selection, which likely dramatically reduces
the number of dimeric structures utilized by nature in practice.

Connectivity of Interface Structural Space. We further investigate
the connectivity of the structural space of PDB150 following
the approach previously applied to single-domain proteins (13).
Because the IS-score is nontransitive between query and tem-
plate, we consider a directed graph consisting of interfaces as
nodes and their structural relationships as edges. A template
interface is pointed to a target interface through a directed edge
with a path length of one, if the corresponding IS-score is higher
than a predefined threshold. Likewise, an interface IA is at most a
kth neighbor of interface IB, if there exists a path from IA to IB
with minimum path length ≤k. Thus, it takes at most k-1 inter-
mediate structures to walk from IA to its kth neighbor IB. Fig. 5A
shows that about 80% of all directed pairs are eighth neighbors at
a significant IS-score threshold of 0.27. Similarly, if one examines
the largest strongly connected component (LSCC), a subgraph
where all nodes are bidirectionally connected to no more than
kth neighbors, 80% of interfaces belong to the LSCC at the
IS-score of 0.27 and k ¼ 8 (Fig. 5B). The relative size of LSCC
gradually decreases to 1% (at k ¼ 8) as one increases the IS-score
threshold to 0.34, which appears to be a critical threshold. Below
the threshold, dense connections are formed among a significant
number of interfaces in the structural space, which may be con-
sidered as continuous. Note that we excluded pairs of dimers

where any of the monomers are structurally similar in this ana-
lysis. Their inclusion makes the space of interfaces even more
well-connected (the relative size of LSCC is 90% at an IS-score
of 0.27). Thus, the connectivity of interface space is a generic
feature of protein structures that does not require evolution.

Promiscuity Versus Multispecificity. The degeneracy of protein–pro-
tein interface structures is consistent with the observation that
many proteins have promiscuous interactions with other proteins
that involve the same interface. Note that promiscuity does
not necessarily conflict with multispecificity, because the latter
requires consideration of the identity of the interfacial amino
acids and their detailed side-chain interactions. This is illustrated
by the following example.

Histone protein H3 is one of the four nucleosome core pro-
teins. Within the core, the N-terminal domains of two H3 proteins
associate as a dimer (Fig. 6A). The H3/H3 homodimeric interface
is a promiscuous interface that is also recognized by the chaperon
protein Asf1 (Fig. 6B), which facilitates histone deposition, ex-
change, and removal during nucleosome assembly/disassembly
(26). Although Asf1 has a completely different structure from H3
(all-β versus all-α), Asf1/H3 and H3/H3 share very similar pro-
tein–protein interfaces with a 0.43 IS-score (P ¼ 2.2 × 10−4),
2.5-Å rmsd, 100% f res, and 74% f cons (Fig. 6C). How can H3 ex-
hibit multispecificity to its homo partner H3 and to Asf1 at essen-
tially the same interaction sites? One obvious way is that the
aligned contacts have similar physical properties; e.g., the hydro-
phobic interactions involving two aligned residues, Leu109H3 and
Val94Asf1. The latter are important for the stability of the Asf1/H3
complex as shown by mutagenesis (27). Less obvious is what hap-
pens when two aligned residues have different properties. Then,
subtle side-chain conformational changes canmodify the environ-
ment to enable favorable interactions in both scenarios. One
example is the pair of aligned interfacial residues His133H3 and
Val92Asf1; both contact the same set of residues from their partner

Fig. 4. Closest matches found in the native interface
set PDB150 to each of the 20,000 artificial protein–
protein interface models.

Fig. 5. Connectivity of the structural space of interfaces. (A) The fraction of
at most kth neighbor pairs of interfaces versus IS-score (ISS). The fraction is
calculated as nk∕½NðN − 1Þ�, where nk is the number of kth neighbor pairs and
N is the total number of interfaces (nodes). (B) The relative size of the LSCC at
different kth neighbor cutoffs.

22520 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1012820107 Gao and Skolnick



H3 (Fig. 6D). Interactions between Val92Asf1 and H3 are mainly
hydrophobic (Fig. 6 D and E), whereas His133H3 forms polar
interactions with Asp123 (Fig. 6 D and F), which is screened from
Val92Asf1 by Lys122 and Leu126 but is exposed to His133H3 after
swing movements of both Lys122 and Leu126 (Fig. 6D). Thus, the
plasticity of the protein’s surface side chains plays an important
role in providing the multispecificity exhibited by a promiscuous
protein interface.

Discussion
Aloy et al. have estimated that there are∼10;000 types of protein–
protein interactions, based on the data from high-throughput
experiments and the assumption that proteins with more than
30% sequence identity share similar interaction modes (14, 15).
Although their estimate is reasonable for categorizing homolo-
gous protein interfaces, it does not necessarily mean that there
exist 10,000 protein interface structures with unique geometries.
Because two nonhomologous protein domains may have a similar
structure (9, 12), one might expect that a similar phenomenon is
observed for protein interfaces. Indeed, as demonstrated above, it
is quite common to observe structurally similar interfaces among
complexes formed separately by structurally unrelatedmonomers.
For 89% of the 1,347 interfaces in a representative library, when
interfaces formed by monomers with related structures are ex-
cluded, one can on average find a direct structural neighbor that
has a 3.6-Å rmsd with 89% residue coverage and 53% contact cov-
erage. Moreover, about 80% of interface pairs are completely
connected by a path of at most seven intermediate structures
at a significant structural similarity level. In this sense, the struc-
tural space of interfaces is continuous and highly connected.

The degeneracy of protein interfaces could have three origins.
First, a common function constraint (e.g., protease/inhibitor com-
plexes) may lead to convergence in interface space even though
the participants of complexes do not share individually a common
global fold (thus, it is unlikely that they evolved from a common
ancestor). Second, physical constraints, such as the limited ways
of packing hydrogen-bonded secondary structures within each
monomer, give rise to similar interfaces. The same physical prin-
ciples are also responsible for the degeneracy of single-domain,
monomer protein structures (9, 12). Third, protein interfaces are
more flat compared to globular protein folds, and residues con-
tributing to the same interfacial geometry need not follow the
same order in the protein’s sequence.

Comparison of computationally generated artificial protein in-
terfaces and experimentally determined native interfaces further
suggests that the crowded structural space of protein interfaces is

mainly the consequence of packing compact, hydrogen-bonded
secondary structure elements within each monomer that results
in relatively flat interacting surfaces. Because the order of the
residues in the monomer is irrelevant from the point of view of
creating an equivalent interface, the resulting surface geometries
are highly degenerate. For 83% of native interfaces, one can iden-
tify an artificial interface with a average rmsd of 3.5 Å, 76% re-
sidue coverage, and 48% contact coverage. Conversely, for each
artificial interface, one can locate a native interface with an aver-
age rmsd of 3.5 Å, 88% residue coverage, and 51% contact cover-
age. The slight difference in residue coverage is mainly due to
large native interfaces (>100 residues), especially with inter-
twined structures, that cannot be recovered by rigid-body docking
of compact single-domain monomers used to generate the library
of artificial interfaces. Comparison of artificial versus native in-
terfaces also argues that the structural space of protein interfaces
is close to complete in terms of geometric similarity and can be
explained solely due to physics and does not require evolution or
functional constraints. Geometrically complementary interfaces
are a generic feature of protein structures, which evolution takes
advantage of to yield specific constellations of interacting resi-
dues that give rise to stable quaternary structures.

The observation that the vast majority of artificial interfaces
have native-like geometries may provide a structural explanation
for why there exist many nonspecific protein interactions; e.g., as
seen in high-throughput yeast two-hybrid experiments (e.g.,
ref. 28). In a crude view, docking artificial protein models simu-
lates nonspecific encounters between proteins. Beause forming a
native-like interface is quite likely, the probability of finding a
physically favorable yet biologically irrelevant association is high.
The same reasoning might explain the structural basis for promis-
cuous proteins, which recognize multiple partners with essentially
the same set of interfacial residues. To achieve specificity, specific
sequence information is required both to select a compatible
protein scaffold and to fine-tune the side-chain packing. Thus,
it is possible to possess multispecificity with small local geometric
adjustments within a promiscuous interface.

A final implication of this study is that the library of interfaces is
close to complete, despite that fact that the library of quaternary
dimer structures is not. Considering that there exist tens ofmillions
of possible quaternary dimeric structures among all possible pro-
tein folds, the reduction of their interfaces to about 1,000 types is
remarkable. A promising way of predicting protein–protein inter-
actions is to dock the protein and then filter the docked conforma-
tions by only allowing native-like interfacial geometries. The
subset of interaction poses is then ranked by a sequence-depen-

Fig. 6. Interface comparison between a histone H3
dimer and an Asf1∕H3 complex. Cartoon representa-
tions of (A) histone H3s (mauve/green, 1tzy_CG) and
(B) Asf1∕H3 (orange/cyan, 2hue_AB). (C) The optimal
interface alignment between two complexes. The Cα

atoms of aligned residues are shown in spheres, and
the interface/noninterface regions are shown in a so-
lid/transparent ribbon representation. (D) Val92Asf1
and His133H3 (ball-and-stick representations) are
two aligned residues that contact the same set of in-
terfacial residues (licorice representation, color-
coded by residue type) from the opposite H3 mole-
cule. Movements of side chains of D123 and L126
in two complexes are indicated by black arrows. Sur-
face representations of opposite interfacial residues
in contact with (E) Val92Asf1 and (F) His133H3.
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dent energy term. Here, the challenge is to rank the possible inter-
actions tominimize the false positive rate.Work in this direction is
in progress.

Methods
Interface Similarity Measure.We previously introduced two scoring functions,
the iTM-score and IS-score, to quantify the similarity between two aligned
protein–protein interfaces (20). Although the iTM-score considers the match
of backbone Cα atom geometry, the IS-score incorporates both the geometry
of Cα atoms and the patterns of interfacial contacts. Given a query interface
with residues i ¼ 1…LQ, a template interface (from a library of structures)
with residues j ¼ 1…LT , and an alignment (k ¼ 1…Na) between the query
and the template, the iTM-score is

iTM-score ¼ 1

LQ
max

�
∑
Na

k¼1

1∕ð1þ d2k∕d
2
0Þ
�
; [1]

where dk is the distance in angstroms between the Cα atoms from the kth
aligned residue pair, and the empirical scaling factor d0 ≡ 1.24ðLQ − 15Þ1∕3 −
1.8 for a sequential alignment (29) and d0 ≡ 0.7ðLQ − 15Þ1∕3 − 0.1 for nonse-
quential alignment. The constants in d0 were obtained by fitting the distri-
bution of Cα distances in random alignments to ensure that mean of scores of
random interfaces is length-independent (Fig. S3). The IS-score is defined as

IS-score ¼ ðSþ s0Þ∕ð1þ s0Þ; [2]
where

S ¼ 1

LQ
max

�
∑
Na

k¼1

f k∕ð1þ d2k∕d
2
0Þ
�
: [3]

Here, the contact overlap factor fk ≡ ðck∕ak þ ck∕bkÞ∕2, where ak and bk

are the numbers of interfacial contacts of the template and query interface
at the kth position of the alignment, respectively, and ck is the number of pairs
of overlapping interfacial contacts at the same position. A pair of interfacial
contacts overlap if the residues forming these contacts are aligned in the two
pairs of chains. To make the IS-score length-independent, s0 ≡ 0.18 − 0.35∕
LQ

0.3 is introduced (Fig. S3). For a perfect alignment between two identical
structures, both the iTM-score and IS-score give the maximum score of one.

Alignment Algorithm. Previously, we described the heuristic algorithm imple-
mented in iAlign for finding the optimal sequential alignment between two
interfaces (20). Briefly, the algorithm originally has two phases. In the first,
several guessed solutions are generated by gapless alignments, secondary

structure comparison, and fragment alignments. Starting from these guessed
alignments, dynamic programming is iteratively applied in the second phase.
Here, to identify a nonsequential alignment between two interfaces, iAlign
continues to the third phase by iteratively searching for an optimal nonse-
quential alignment, which we have converted to the linear sum assignment
problem (LSAP). To solve LSAP efficiently, we use the shortest augmenting
path algorithm (30), which has a polynomial time complexity of OðN3Þ, where
N ¼ maxðLT ;LQÞ. For details, see SI Methods.

Statistical Significance. The statistical significance of IS-scores from nonse-
quential alignments is estimated by comparing about 1.8 million random
protein–protein complex pairs and deriving an appropriate statistical model
as described in SI Methods.

Library of Artificial Protein–Protein Interfaces. From the monomeric proteins
in PDB150, we chose 244 single-domain proteins with less than 300 residues
and <30% pairwise sequence identity. Using these 244 proteins as queries for
the structural comparison program TM-align (25), we scanned a library of
polyvaline structures previously generated with the protein structure predic-
tion package TASSER (13). Corresponding to each query monomer, the high-
est TM-score–ranked polyvaline structure was selected. We name these
query/polyvaline pairs as matched native/artificial monomer pairs. The mean
monomer TM-score of these 244 matched monomer pairs is 0.43, which is
significant but still much less than a typical TM-score >0.5 between protein
monomeric structures from the same SCOP fold. Note that we later excluded
any artificial/native interface match if these interfaces are from two com-
plexes sharing at least one of these structurally similar native/artificial mono-
mer pairs. The selected polyvaline structures were subsequently converted to
all-atom models by mutating their sequences to randomly chosen permuta-
tions of an arbitrary sequence (Escherichia coli asparagine synthetase,
PDB_chain: 12as_A). From these structures, 1,756 random heteropairs and
244 homopairs are generated, totaling 2,000 pairs. For each pair, rigid-body
docking is conducted with FTDock (31), and the top 2,500 docking models
ranked according to shape complementarity were clustered. For each dock-
ing pair, the top 10 cluster representative protein–protein complex models
were retained. Extracting interfaces from these docking models gives a total
of 20,000 artificial protein–protein interfaces.
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