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SI Methods
Alignment Algorithm. Previously, we described the heuristic algo-
rithm implemented in iAlign for finding the optimal sequential
alignment between two interfaces (1). Briefly, the algorithm has
two major phases: In the first phase, several guessed solutions are
generated through gapless alignments, secondary structure com-
parison, and fragment alignments. Starting from these guessed
alignments, dynamic programming is iteratively applied during
the second phase. The scoring matrix of dynamic programming
is defined as

sij ¼
�
1∕ð1þ d2ij∕d20Þ for the iTM-score
ðf ij þ δÞ∕ð1þ d2ij∕d20Þ for the IS-score.

[S1]

Here, dij is the distance between the ith residue of one structure
and the jth residue of the other structure, and f ij ≡ ðcij∕aiþ
cij∕bjÞ∕2, where ai and bj are the numbers of interfacial contacts
of the ith and jth residues, respectively, and cij is the number of
pairs of overlappable contacts. A contact between residues i and
m is defined as overlappable to a contact between residues j and
n if the distances between both i and j and between m and n are
less than an empirical distance d� ≡minð1.5½minðLT;LQÞ�0.3þ
3.5;8Þ Å. The small constant δ, set at 0.01, is introduced to prevent
a score of zero. The best sequential alignment according to a
specified scoring function (iTM/IS-score) is reported.

To allow a nonsequential alignment between two interfaces,
iAlign continues to the third phase of iteratively searching for
an optimal nonsequential alignment. The problem of finding an
optimal nonsequential alignment (or match) is converted to the
linear sum assignment problem (LSAP), which is also equivalent
to the problem of finding a maximum weight matching in a
weighted bipartite graph. To solve LSAPefficiently, we implemen-
ted the shortest augmenting path algorithm (2), which has a
polynomial time complexity of OðN3Þ, where N ¼ maxðLT;LQÞ.
In our scenario, the goal of the LSAP procedure is to minimize
the object function,

min∑
Na

k¼1

tϕðkÞφðkÞ; [S2]

where ϕðkÞ and φðkÞ define the functions mapping the kth aligned
position to the original residue index in the query and the template
structure, respectively, and the cost function tij ≡ 2 − sij, where sij is
given by Eq. S1. The negative sign is introduced because we search
for the minimum in LSAP instead of the maximum in dynamic
programming, and the addition of 2 meets the requirement of
nonnegative cost.

Application of the LSAP procedure with the scoring matrix
defined in S2 yields an alignment. The match between two resi-
dues is pruned if their distance is larger than d�, which essentially
introduces insertion/deletions. The iTM/IS-score is subsequently
calculated for the alignment, and the superposition correspond-
ing to the iTM/IS-score is used to obtain a new cost function,
which in turn generates a new alignment. The procedure is re-
peated until the alignment converges or reaches an upper limit
of 30 iterations.

Statistical Significance. The statistical significance of IS-scores
from nonsequential alignments is estimated by comparing about
1.8 million random protein–protein complex pairs, selected such
that the two complexes lack structurally related monomers; i.e.,
their monomeric TM-score <0.35 (1). The means (SD) of the
maximum iTM/IS-scores for random interfaces are 0.278ð0.071Þ∕
0.207ð0.031Þ, respectively.

We further estimate the statistical significance by modeling
the distributions of IS-scores using Gumbel distributions, which
are over maximum values and suitable to our cases because the
IS-scores are the maxima of many alignments. Fig. S4 shows the
observed and modeled distributions of scores at various lengths.
Each distribution is modeled by the Gumbel distribution

PðzÞ ¼ exp½z − expðzÞ�; [S3]

where z ¼ ðs − μÞ∕σ. The variable s denotes the IS-score; μ and σ
are the location and the scale parameters, respectively. These
parameters are estimated through linear regression fits

μ ¼ aþ b lnðLQÞ þ c lnðLTÞ σ ¼ cþ d lnðLQÞ þ f lnðLTÞ:
[S4]

The parameters a to f , given in Table S1, were obtained by
linear fitting to the location and scale parameters, through max-
imum likelihood estimates with the EVD package in the R
project (http://www.r-project.org/). Finally, the p-value is calcu-
lated using the formula

p-value ¼ 1 − exp½− expð−zÞ�: [S5]

Graph Analysis. The shortest path between a node and the rest of
the nodes in a graph is computed with Dijkstra’s algorithm (3).
The search of the largest strongly connected component (LSCC)
at the kth neighbor cutoff is converted to the problem of search-
ing the largest clique in an undirected graph and subsequently
solved with a branch-and-bound algorithm (4).
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Fig. S1. Additional examples of similar protein–protein interface pairs with different secondary structure types identified by iAlign. Coordinates of structures
were taken from the Protein Data Bank. The template (cyan/orange) and target (blue/red) proteins are (A) oxidoreductase (1jay_AB) and serine acetyltrans-
ferase (1t3d_AC), and (B) DPP-IV (2buc_AB) and RNA triphosphatase Cet1p (1d8i_BC). The Right snapshot shows the optimal interface alignment reported by
iAlign. The interfacial alignments are illustrated separately for each side of the interfaces; and the Cα atoms of aligned residues are represented in spheres. For
clarity, the interface/noninterface regions are shown in solid/transparent colors, respectively.
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Fig. S2. Planarity of protein–protein interface versus interface similarity measured by IS-score. The IS-score is of the best match found for each representative
interface from PDB150. Planarity is defined as the root-mean-square deviation of Cα atoms from the best-fit plane through the interface. The best-fit plane is
calculated through principal component analysis with the program SURFNET (1).

1 Laskowski RA (1995) SURFNET—A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graphics 13(5):323–330.
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Fig. S3. Means of both iTM-scores and IS-scores among random interfaces of similar lengths. For a given length, we consider all random pairs whose lengths
are between 95 and 105% of the length. All scores were calculated for the optimal nonsequential alignments with different scaling factor d0. Seq iTM/IS-scores
denote iTM/IS-scores calculated with the scaling factor d0 originally used for sequential alignment, whereas nonseq iTM/IS-scores denote iTM/IS-scores calcu-
lated with adjusted d0. The adjustment yields approximately length-independent iTM/IS-scores.
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Fig. S4. Distributions of the IS-scores from nonsequential alignments among random interfaces of various lengths. Dashed black lines are the observed prob-
ability density, and the solid black lines are direct fits using the Gumbel distributions. Blue lines are the probability densities calculated for the IS-scores with
statistical models described by Eqs. S3 and S4. LQ and LT represent the length of query and length of template, respectively, and NS is the number of samples
from unrelated interface pairs.

Table S1. Parameters for calculating the location
and scale parameters in Eq. S4

IS-score

Parameters LQ < 55 LQ ≥ 55

a 0.1776 0.2017
b −0.0038 −0.0160
c 0.0113 0.0163
d 0.0397 0.0432
e −0.0031 −0.0032
f −0.0009 −0.0013
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