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INTRODUCTION

In the quest to determine all protein-protein interactions in a given pro-

teome, recent high-throughput technologies have enabled substantial pro-

gress.1–3 Drafts for different model systems are emerging, though many

details are still missing.4–7 The mapping of protein-protein interactions,

however, is just a starting point toward revealing their functional roles in liv-

ing biosystems. In order to understand protein-protein interactions, it is nec-

essary to structurally characterize all representative protein complexes at high

resolution.8

Despite rapid growth in the number of structurally solved protein com-

plexes,9 the pace of structure determination lags far behind the pace of the

detection of protein-protein interactions. To fill this gap, many computa-

tional approaches have been proposed for predicting the structures of protein

complexes. They can be roughly categorized into two types: Template-Based

(TB) and Template-Free (TF). In TB approaches,10–15 one first builds a

homology model based on a solved template structure, and then refines the

model. In TF approaches,16–23 also known as protein-protein docking

methods, one docks unbound components that form the target complex.

Both methods have advantages and disadvantages. TB approaches generally

have higher accuracy, but suffer from low coverage because of their depend-

ence on the availability of template structures. Although the issue of low

coverage might be overcome by the recognition that the structural space of

protein-protein interfaces is highly degenerate,24 in practice identifying

which protein pairs actually interact is very challenging. On the other hand,

TF approaches can deal with a novel target whose quaternary structure does

not match any solved template structure, but there is no guarantee of high-

quality docking models, particularly when bound structures undergo signifi-

cant conformational changes from the unbound structures.25 Furthermore,

TF approaches require the information that two input proteins interact; that

is, they are not reliable in predicting whether two proteins interact or not,

largely due to the limitations of force fields used for evaluating interaction

energy.26 By comparison, TB methods usually contain (explicitly or implic-

itly) an evolutionary component, which prefers templates sharing conserved

biological interactions with target proteins. Thus, in addition to predicting

the structure of protein interactions, TB methods may be used to predict

whether two proteins interact.

To benchmark the performance of docking methods, a community-wide

experiment, known as CAPRI, has been carried out.27–29 One central task is
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ABSTRACT

With the development of many compu-

tational methods that predict the struc-

tural models of protein-protein com-

plexes, there is a pressing need to

benchmark their performance. As was

the case for protein monomers, assess-

ing the quality of models of protein

complexes is not straightforward. An

effective scoring scheme should be able

to detect substructure similarity and

estimate its statistical significance. Here,

we focus on characterizing the similarity

of the interfaces of the complex and

introduce two scoring functions. The

first, the interfacial Template Modeling

score (iTM-score), measures the geomet-

ric distance between the interfaces,

while the second, the Interface Similar-

ity score (IS-score), evaluates their

residue-residue contact similarity in

addition to their geometric similarity.

We first demonstrate that the IS-score is

more suitable for assessing docking

models than the iTM-score. The IS-score

is then validated in a large-scale bench-

mark test on 1562 dimeric complexes.

Finally, the scoring function is applied

to evaluate docking models submitted

to the Critical Assessment of Prediction

of Interactions (CAPRI) experiments.

While the results according to the new

scoring scheme are generally consistent

with the original CAPRI assessment, the

IS-score identifies models whose signifi-

cance was previously underestimated.
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to measure the quality of a predicted docking model,

using its target structure, usually a solved crystal struc-

ture, as the gold standard. Furthermore, in the case of

template-based modeling, it is also critical to measure

the quality of both the template and the final model.

Thus, any improvement or deterioration resulting from

the ‘‘refinement’’ procedure, designed to improve over

the template alignment, can be evaluated. For these pur-

poses, one needs to derive effective structure comparison

metrics. The CAPRI assessors employed complex criteria

based on the Root Mean Square Deviation (RMSD) and

the fraction of conserved native contacts fnat.29 While

these criteria are convenient, they have three limitations:

The first is that RMSD is often dominated by the largest

deviations, and hence, may overlook substructure similar-

ity. The second is that the statistical significance of a

given RMSD value is length dependent.30 The third is

that the thresholds employed for model quality classifica-

tion are often subjective, in the sense that an assessment

of the statistical significance of the given structural com-

parison metric is lacking.

The problem of model quality assessment is not

unique to protein docking experiments. An analogous

situation was encountered in the evaluation of structural

models predicted for monomeric proteins. In the recent

Critical Assessment of Protein Structure Prediction

(CASP), several commonly used scoring functions

include the Global Distance Test (GDT) score,31 the

MaxSub score,32 and the TM-score.33 The statistical sig-

nificance relative to random of both the GDT and the

MaxSub scores are sensitive to the size of the target pro-

tein.33 As a result, one often cannot tell whether a raw

score indicates a significant prediction. By contrast, the

TM-score corrects for length effects. Based on the statis-

tics obtained from comparing random protein structures

at various lengths, a TM-score of 0.4 or higher indicates

a significant prediction.33 Other statistically rigorous

treatments also have been undertaken to calculate the

significance (i.e., P values) of protein models.34,35

Previously, we introduced the iTM-score and the IS-

score in iAlign,36 a program for the structural comparison

of protein-protein interfaces based on interface structure

alignments, where the equivalence of target and template

residues is not a priori specified. It has been shown that

the IS-score is an effective metric for evaluating structural

alignments of protein-protein interfaces.24,36 In this

study, we examine both scoring functions for measuring

the quality of docking models. The key difference between

the previous study and the current one is that iAlign does

not require any previously specified sequence correspon-

dence, whereas in the current scenario, the mapping of

equivalent target-template residues is specified in advance.

As a result, one needs to adjust the random background

and recalibrate the statistical models, as detailed below.

Furthermore, we performed large-scale benchmark tests

to compare and validate our scoring schemes and applied

the IS-score to docking models submitted to the CAPRI

experiments.

METHODS

A heavy-atom distance cutoff of 4.5 Å is employed to

define an interfacial contact. A protein-protein interface

is the collection of all residues with at least one interfa-

cial contact between pairs of proteins.

Scoring function and search algorithm

Assuming that a native (target) structure has L interfa-

cial residues, the iTM-score of a corresponding docking

model is defined by comparing the geometric distances

of the native interfacial residues of the model and the

native structure,33,36

iTM� score ¼ 1

L
max

XNa

i¼1

1=ð1þ d2i =d
2
0Þ

" #
ð1Þ

where Na is the number of superimposed native interfa-

cial residues, di is the Euclidean distance between the Ca

atoms from the ith superimposed residue pair, and the

empirical scaling factor d0 � 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LQ � 153

p � 1:8 is

introduced to correct for length effects. Note that the

definition of the iTM-score is exactly the same as used

for assessing the model quality of the global structure

alignment of monomeric proteins.33 However, the TM-

scores of interfaces and of individual proteins have a dif-

ferent level of statistical significance at the same numeri-

cal value (see below). To avoid confusion, we use the

term iTM-score to denote the TM-score of interfaces and

reserve the notation TM-score for the global comparison

of a pair of structures.

In order to calculate the distance di, a subset of corre-

sponding residues are superimposed using the Kabsch

algorithm,37 which minimizes their pairwise root-mean-

square deviation, RMSD. Since there are many ways to

select the subset, the notation max in Eq. (1) indicates

that the iTM-score is the maximum out of all possible

superimpositions. A heuristic iterative extension algo-

rithm is employed to calculate the iTM-score,33 similar

to the one used for calculating the GDT-score31 and

MaxSub.32 Briefly, we select fragments of size Lsub 5 L,

L/2, L/4, . . ., 4, respectively. When Lsub is less than L,

initial fragments are selected by sliding continuously

along the native interface. Starting from an initial frag-

ment of size Lsub, the corresponding residues within Lsub
in the model and native interfaces are superimposed.

Then, all model/interface residue pairs within a distance

less than d0 are collected and superimposed again. The

process is iterated until the rigid-body transformation

converges.

The second scoring function is the Interface Similarity

score (IS-score), which measures not only geometric
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distances but also the conservation of interfacial contacts.36

The IS-score is derived from the iTM-score as follows,

IS� score ¼ ðS þ s0Þ=ð1þ s0Þ ð2Þ

S ¼ 1

L
max

XNa

i¼1

fi=ð1þ d2i =d
2
0Þ

" #
ð3Þ

Here, the contact overlap factor fi � ðci=ai þ ci=biÞ=2,
where ai is the number of interfacial contacts observed at

the ith position of the native interface, bi is the number

of interfacial contacts observed at the corresponding

position in the model, and ci is the number of interfacial

contacts conserved in both interfaces. If ci 5 0, fi is 0,

regardless of the value of bi. The scaling factor

s0 � 0:14� 0:2=L0:3Q is introduced to make the means of

the IS-scores length-independent among randomly

selected interfaces (see below). Note that the scaling fac-

tor is slightly different from what was derived previously

in iAlign.36 The adjustment is introduced to correct for

a small shift in the means of the IS-scores among ran-

dom interfaces. The search algorithm for calculating the

IS-score is essentially the same as describe above for the

iTM-score.

Both the iTM/IS-score give a maximum score of one

for a perfect model.

Statistical significance

The statistical significance of the IS-score is estimated

by comparing 24,120 randomly selected interface pairs of

same lengths (see Data Set). In each pair, interfacial resi-

dues at the same positions in respective sequences are

arbitrarily assigned as equivalent. Figure 1(A) shows the

means of the IS-scores and iRMSD values of unrelated

interfaces. Without applying the scaling factor, the raw

IS-score calculated using Eq. (3) decreases exponentially

as the length of the interface increases. Likewise, the

mean random iRMSD value increases exponentially as

the interface size increases. By comparison, the rescaled

IS-scores are approximately length-independent at a

mean value of 0.10. It should be noted that the mean of

random IS-scores calculated here is smaller than the

mean of random IS-scores calculated previously with the

program iAlign.36 The reason is that iAlign does not a

priori impose a one-to-one sequence correspondence.

Therefore, iAlign usually finds a better correspondence

(or alignment), which gives a higher IS-score even for

randomly related interfaces.

Since the IS-scores are maxima, the extreme value dis-

tribution is a suitable statistical model for describing

their distribution. As shown in Figure 1(B), the probabil-

ity density function of the IS-scores calculated from

the random background follows the extreme value

distribution,

Figure 1
Distributions of randomly selected protein-protein interface pairs. (A) Mean of IS-scores and interfacial RMSD values versus the size of protein

interfaces. Horizontal dashed lines are located at 0.1. (B) Distribution of the IS-score among random interfaces. The histogram is the observed

score distribution, and the solid line is the fit according to the Gumbel distribution [Eq. (5)]. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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f ðzÞ ¼ exp z � expðzÞ½ � ð4Þ

where z denotes the Z-score given by z 5 (s 2 l)/r. The
variable s denotes the IS-score; l is the location parame-

ter, and r is the scale parameter. The corresponding P

value of the score can be calculated according to the

formula

P ¼ 1� exp � expð�zÞ½ � ð5Þ

The scores from random interfaces were fit to Eq. (4).

The resulting P values and their corresponding IS-scores

are given in Table I. The calculated P values according to

the statistical model agree with the empirical values

obtained by ranking the IS-scores of 24,120 random

interface pairs. One may use these scores to quickly esti-

mate statistical significance.

An improved estimation of statistical significance is

obtained by modeling the distributions of scores at spe-

cific lengths. Figure 2 shows the observed and modeled

distributions at various lengths. Each distribution is

modeled by the Gumbel distribution described in Eq.

(4). The location and scale parameters can be estimated

through linear regression fits,

l ¼ a þ b lnðLÞ
r ¼ c þ d lnðLÞ ð6Þ

The parameters a to d, given in Table II, were obtained

by linear fitting to the location and scale parameters,

which were obtained through maximum likelihood esti-

mates with the EVD package in the statistical platform R

(available at: http://www.r-project.org/).

Analysis measures

In addition to the iTM/IS-score, we also define com-

mon metrics adopted for evaluating docking models.29

The smaller/larger of the two monomers in a binary

complex are termed as the ligand/receptor of the com-

plex. Let Nc denote the number of interfacial contacts

observed in the native complex structure, and n the

number of native interfacial contacts preserved in the

docking model. The fraction of native contacts is fnat :
n/Nc. The interfacial RMSD, iRMSD, is the RMSD of the

Ca atoms of interfacial residues observed in a native

structure with respect to their positions in a docking

model, and the ligand RMSD, lRMSD, is the global

RMSD of the Ca atoms of all ligand residues. The

iRMSD is calculated after superimposing these native

interfacial residues, whereas the lRMSD is calculated after

superimposing the receptors.

Data sets

Random background

The random background for statistical significance

analysis was derived from the M-TASSER template

library.11 We first obtained all-against-all pairs of all di-

meric complexes. A pair of dimers was then selected, if

any two monomers, one from each dimer, have a global

sequence identity <30% and a global TM-score <0.4.

This selection led to a set of globally unrelated dimer

pairs. Since IS-score requires that the two interfaces have

the same length, we randomly removed interfacial resi-

dues of the longer interface, if the two interfaces are of

different size. The removal was carefully done by requir-

ing that all remaining interfacial residues maintain at

least one interfacial contact. To prevent possible over-rep-

resentation of any given dimer, we further required that

no dimer appears more than 20 times in the final selec-

tions. The procedure yielded 24,120 pairs of interfaces,

which were used for estimating the statistical significance

of the IS-score. In each pair, two interfacial residues were

assigned as equivalent if they appear at the same posi-

tions in respective sequences after removing all non-

interfacial residues.

Decoy set

For the comparison between the iTM-score and the

IS-score, we used a decoy set from the Dockgound.38

The decoy set was curated from docking models gener-

ated with unbound protein structures for 61 target com-

plexes. We further define a near native docking model if

it has lRMSD �5 Å and fnat > 30%, and define an incor-

rect model if it has lRMSD >5 Å and fnat 5 0%. The

procedure produced 425 near native models and 5,232

incorrect models.

Docking set

From the M-TASSER template library,11 we selected

1,526 complexes whose individual proteins are less than

500 amino acids in length. Rigid-body docking using the

Table I
Statistical Significance of the IS-Scores Derived from 24,120 Pairs of

Random Interfaces

P value

IS-score

Model Empirical

0.05 0.125 0.120
0.01 0.142 0.134
0.005 0.149 0.141
0.001 0.166 0.160
1e-04 0.190 0.187
1e-05 0.214 —
1e-06 0.238 —
1e-08 0.286 —
1e-10 0.334 —
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bound structures from the complexes were subsequently

carried out with the program FT-Dock23 using default

parameters. The top 100 docking models, ranked by

shape complementarity, were retained for validating the

statistical significance of the IS-scores. In total, we col-

lected 152,600 models by pooling together the top 100

docking models from all complexes.

CAPRI models

The docking models for recent CAPRI targets were

downloaded from the official web site (available at:

http://www.ebi.ac.uk/msd-srv/capri/). We selected ten

recent protein-protein targets (T242T36, except for can-

celled T26, and RNA/protein targets T33 and T34), for

which the docking models were available to the public.

Figure 2
Distributions of the Z-score among random interfaces of various lengths. Long dashed lines are the observed probability density, and the short

dashed lines are direct fits using the Gumbel distributions. Solid lines are probability densities calculated for the IS-scores with statistical models

described by Eqs. (4) and (6). LT represents the length of query, and NS is the number of samples. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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The criteria adopted by the CAPRI assessors for model

quality evaluation are the following29:

� High: fnat � 0.5 & (lRMSD � 1 Å || iRMSD � 1 Å),

� Medium: (fnat � 0.5 & lRMSD > 1 Å & iRMSD > 1

Å) || (fnat � 0.3 & fnat < 0.5 & lRMSD � 5 Å &

iRMSD � 2 Å),

� Acceptable: (fnat � 0.3 & lRMSD > 5 Å & iRMSD >
2 Å) || (fnat � 0.1 & fnat < 0.3 & lRMSD � 10 Å &

iRMSD � 4 Å),

� Incorrect: fnat < 0.1 || (lRMSD > 10 Å & iRMSD >
4 Å).

The notions & and || denote logical conjunction and

disjunction, respectively. It should be noted that the

CAPRI assessors employed distance cutoffs of 5 and 10 Å

to define interfacial residues separately for calculating fnat
and iRMSD. In this study, we only used the final assess-

ments (i.e., High, Medium, Acceptable, and Incorrect)

provided by the CAPRI assessors.

Availability

The data sets and IS-score software package including

the source code are freely available at http://cssb.biology.

gatech.edu/isscore.

RESULTS

IS-score versus iTM-score

We first compare the performance of the IS-score and

iTM-score on evaluating the quality of docking models.

For this comparison, we selected 425 near native and

5,232 incorrect docking models from a Dockgound decoy

set generated with unbound protein structures (see Meth-

ods). As shown in Figure 3(A), the distributions of the

IS-scores for near native and incorrect docking models

are well separated. Near native docking models all have

an IS-score above 0.17, and 97% of the IS-scores >0.25,

whereas incorrect models all have the scores <0.12. By

comparison, an overlapping regime in the iTM-scores is

observed between near native and incorrect models.

Incorrect docking models have their iTM-scores ranging

from 0.33 to 0.68; and a peak is observed at 0.5. The

peak is due to the superimposition of one side of the

protein interface. Most unbound protein structures used

for docking are structurally very close to their bound

structural forms. In these cases, at least half of a native

interface can be superimposed to its counterpart in

a docking model, despite the fact that the other side of

the interface is far away from it native position in an

Table II
Parameters for Calculating the Location and Scale Parameters in Eq. (6)

Parameters

IS-score

LQ < 55 LQ � 55

a 0.0806 0.0794
b 0.0034 0.0033
c 0.0277 0.0794
d 20.0040 20.0054

Figure 3
Comparison of the iTM/IS-scores for assessing the quality of protein docking models. (A) Score distributions of incorrect docking models and of

near native docking models. iTMS and ISS denote iTM-score and ISS score, respectively. (B) ROC curves of sensitivity versus false-positive rate.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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incorrect model. Such superimposition gives a significant

iTM-score >0.4, as overlapping the score regime of the

near native models from 0.4 to 0.9.

The performance of IS-score and iTM-score is further

displayed in the Receiver Operating Characteristic (ROC)

curves [Fig. 3(B)], where the sensitivity is the fraction of

near-native models, and the false-positive rate is the frac-

tion of incorrect models. The ROC curves were obtained

by varying the thresholds of the iTM/IS-score. The IS-

score has a perfect ROC curve with the value of AUC0.2

(Area Under Curve up to a 20% false-positive rate) of 1,

whereas the iTM-score has an AUC0.2 value of 0.76.

Figure 4
Quality assessments of 152,600 docking models generated for 1,526 protein complexes. (A) Number of docking models according to the IS-score P

values. Box plots of docking models according to (B) fraction of native contacts preserved in models, (C) interfacial, and (D) ligand RMSDs. The

lower, middle and upper quartiles of each box are the 25th, 50th, and 75th percentile; whiskers extend to a distance of up to 1.98 times the
interquartile range. Outliers and means are represented by circles. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Overall, the analysis demonstrates that a similarity metric

based purely on geometric distances has an intrinsic flaw

for evaluating docking models and that the IS-score

yields a much more accurate assessment by taking inter-

facial contacts explicitly into account.

Discriminating docking models

To further examine whether the IS-score returns a rea-

sonable estimate of statistical significance, we further per-

formed large scale tests on a total of 152,600 docking

models for the 1,526 target complexes. Each model was

assessed according to the IS-score with respect to the

native structure. As expected, the vast majority (96%) of

these models have an insignificant IS-score with P >
0.01, while a small fraction (3.2%) of docking models

resemble the native structure at a high level of similarity

with P < 1 3 10210 [Fig. 4(A)].

As shown in Figure 4(B,C), all docking models within

2.5 Å iRMSD from native structures or with a fnat value

>30% have a significant P better than 1 3 1026, mostly,

better than 1 3 10210. Conversely, almost all interfaces

with P < 1 3 1026 have an iRMSD of less than 2.5 Å

and a fnat of more than 30%. In rare exceptions, a dock-

ing model has a significant P < 1 3 1026, while exhibit-

ing a relatively high iRMSD/lRMSD >3/8 Å and low

native contacts <30%. These cases are from docking very

large complexes with usually more than 150 interfacial

amino acids. Two cases are shown in Figure 5. Despite a

high lRMSD of 9.5 Å, visual inspection suggests that the

docking model shown in Figure 5(A) resembles very well

the native structure, validating the estimated high P value

of 6.5 3 10223. In Figure 5(B), the docking model has a

P of 5.4 3 1027, due to the maintenance of 22 native

contacts, despite a different orientation from the native

docking pose.

Virtually all insignificant models at P > 0.01 has an

iRMSD >3 Å and fnat < 10%. About 1% of docking mod-

els exhibit an interface that bears a significant similarity to

the native interface with a P between 0.01 and 1 3 1026.

These model interfaces typically have a iRMSD between 5

and 10 Å and preserve 10% to 30% of native contacts.

They usually overlap a part of the native interface.

Assessing CAPRI models

Finally, we applied the IS-score to assess the quality of

docking models submitted by various research groups for

10 recent CAPRI targets. The results of the IS-score eval-

uations are compared to the official assessments provided

by the CAPRI organizers, who categorized each model

into one of four groups: Incorrect, Acceptable, Medium,

and High, according to iRMSD, lRMSD, and fnat (see

Methods). A total of 2,874 Incorrect, 117 Acceptable, 59

Medium, and 16 High quality models for these ten tar-

gets were evaluated. Consistent with the CAPRI assess-

ments, the overall distributions of the four groups of

docking models are clearly separated according to either

the IS-scores or their P values (Fig. 6). The means of the

IS-scores/Log10P are 0.08/20.21 (I), 0.26/25.7 (A), 0.48/

214.0 (M), and 0.69/221.2 (H), respectively.

Figure 5
Two docking models for (A) a putative citrate lyase (PDB code: 1xr4, chain A and B) and (B) an aminotransferase (PDB code: 1dty, chain A and

B). In each snapshot, the two chains from docking model are colored in cyan/orange, and the corresponding chains in the native structures are

colored in blue/red. For clarity, interface/noninterface regions are shown in solid/transparent colors, respectively. Overlapped interface regions are
indicated by a green background in (B). Molecular images were created with VMD.39 The length of the interface and the number of interfacial

contacts are denoted as Nres and Ncon, respectively.
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Out of 192 models with better or acceptable quality,

174 (91%) and 185 (96%) have a significant P < 0.01

and 0.05, respectively. Only seven Acceptable models

have a P > 0.05. These models, from targets T24, T25,

T27, and T29, have about 10% to 15% native contacts

correctly modeled. However, the numbers of preserved

native contacts are small, considering that their native

interfaces consist of about 40 native contacts or less. On

the other hand, a total of 263 models have a significant

similarity to their target interface at a P < 0.01 or better.

Among these significant models, 89 were assigned as

Incorrect. Most of these significant Incorrect models are

from targets T26 and T32, which have relatively large

interfaces with more than 60 native contacts. The differ-

ence between the CAPRI and IS-score assessments can be

attributed to two main reasons. First, the CAPRI assess-

ment uses fnat and RMSDs, with a size-dependence issue,

whereas the IS-score takes the length effect into account.

Second, the IS-score only considers interface similarity

but ignores global orientation. A slight rotation could

lead to a large lRMSD, despite the fact that the iRMSD is

relatively small. An example of an Incorrect model with

significant interface similarity is shown in Figure 6(C).

Visual inspection suggests that the model has good inter-

face similarity at iRMSD of 4.3 Å and 27% fnat. However,

a slight tilt around the interface leads to a large lRMSD

of 12 Å.

Figure 7 shows the quality of individual docking mod-

els for each target. For all targets with the exception of

T25, unbound or homology structures were provided as

Figure 6
Distribution of CAPRI models according to (A) the IS-score P values and (B) the IS-score. Legends indicate model quality provided by the CAPRI

assessors. (C) One example (model ID: T26_P41.M02) of CAPRI docking models for target T26. The model was categorized as Incorrect according

to the CAPRI assessors, but shows significant interface similarity. The coloring scheme is the same as that employed in Figure 5.
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the starting structures for docking experiments. Overall,

it is clear that higher ranked models have better quality,

consistent with the official assessments. In particular, for

targets T35 and T36, where only one Acceptable model

was found, these two Acceptable models were the best as

assessed by the P-value of the IS-score. Additionally, cor-

responding to the assessment that no Acceptable model

was found for T28, the top ranked docking model of the

same target has a marginal P value of 0.047.

DISCUSSION AND CONCLUSION

Currently, iRMSD and lRMSD are metrics commonly

employed in docking studies. The major advantages of

Figure 7
The quality of individual docking models submitted by different research groups for 10 CAPRI targets. The target ID is shown in the lower left

corner of each plot. The horizontal dashed lines are located at P 5 0.05 according to the IS-score. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 8
An example illustrates that local structural similarity is captured by the IS-score but not by iRMSD. The model structure is superimposed onto the

native structure in (A) top view and (B) side view. The model structure overlaps the native structure (PDB code 2cwq) in the interface region,

except for two helical segments (labeled as H1 and H2) exhibiting an almost 180 degree rotation, one of which is indicated by a grey arrow.

Interfacial regions of the native structure and the corresponding residues in the model structure are shown in solid colors, and other regions are

transparent.
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the RMSD metrics are twofold: first, the overall quality

of a docking model is guaranteed if one uses a very con-

servative RMSD criterion; second, the calculation of

RMSD is very straightforward. However, RMSD metrics

also have two significant disadvantages. First, it is well

known that the statistical significance of a given RMSD

value is length dependent [e.g., Fig. 1(A)]. As a result,

there is no straightforward relationship between RMSD

values and the statistical significance of docking models.

This is reflected in a simple fact that, at the same iRMSD

value (e.g., 3 Å), to build a docking model for a 100-resi-

due interface is more difficult than for a 30-residue inter-

face. In addition, RMSD metrics are global metrics,

meaning that local similarity may not be properly charac-

terized by RMSD. One extreme example is shown in Fig-

ure 8, where the docking model has a highly significant

IS-score of 0.43 (P 5 2 3 10218), despite a large iRMSD

value of 13.2 Å, caused by the rotations of two helical

segments. Other than the two helical segments, the re-

mainder (60%) of the interface superimposes with an

RMSD of less than 2 Å between the model and the native

structure. Obviously, the model in this example is not a

random prediction. For the purpose of assessing a dock-

ing method, it is important to differentiate such a case

from a random model prediction. Overall, one should be

cautious in using RMSD metrics to assess the quality of

a docking model.

We have introduced and examined the performance of

two scoring schemes, the iTM-score and the IS-score, for

use in assessing the quality of protein-protein docking

models. Both scores are able to detect significant substruc-

ture similarity if it exists. While the iTM-score is based

on geometric distances, the IS-score combines both inter-

facial contacts and geometric distances. In benchmark

tests of 425 near native models and 5,232 randomly

related, incorrect models, generated from rigid-body dock-

ing of unbound protein structures, the IS-score achieves a

perfect classification at an AUC0.2 value of 1, whereas the

iTM-score gives an inferior performance at an AUC0.2

value of 0.76. The main issue with the iTM-score is that

the interaction pose is not explicitly taken into account.

As a result, an artificially high iTM-score may be obtained

through the superimposition of one side of the interface,

while the other side of the interface may be far away from

its native position. The issue is intrinsic to all scoring

functions based solely on geometric distances. By compar-

ison, the introduction of the contact overlap factor in the

IS-score scheme eliminates this issue. Since the IS-score is

dependent on side chain contacts, it requires an accurate

side-chain reconstruction procedure in order to evaluate

the quality of a coarse-grained Ca model.

For a proper model quality assessment, it is important

to assess the statistical significance of predicted models.

Using random interfaces as the background, we have

derived statistical models for estimating the significance

of the IS-score. The estimation is validated on 156,200

randomly selected docking models. Virtually all highly

significant interfaces with P > 1026 are native-like, and

conversely, all native-like docking models display a highly

significant P > 1026, mostly >10210. By contrast, insig-

nificant models with P > 1026 have a iRMSD >3 Å and

a fnat < 10%. Models with P between 0.01 and 1 3 1026

have some interfacial similarity, but may exhibit a rota-

tion that gives a relatively large lRMSD.

The IS-score is further applied to evaluate the docking

models for ten recent CAPRI targets. Overall, the evalua-

tion of the IS-score is consistent with the official CAPRI

assessment. On average, the mean of the IS-scores are

0.26, 0.48, and 0.69, for Acceptable, Medium, and High

resolution models, respectively. However, it appears that

the official assessment is somewhat conservative. Accord-

ing to the P values of the IS-scores, we identified quite a

few models whose significance is underestimated. The IS-

score scheme is conceptually simple and statistically

sound. One further application of the scheme is to use it

as the objective function for method optimization.
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