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ABSTRACT: Virtual ligand screening is an integral part of the
modern drug discovery process. Traditional ligand-based, virtual
screening approaches are fast but require a set of structurally diverse
ligands known to bind to the target. Traditional structure-based
approaches require high-resolution target protein structures and are
computationally demanding. In contrast, the recently developed
threading/structure-based FINDSITE-based approaches have the
advantage that they are as fast as traditional ligand-based approaches
and yet overcome the limitations of traditional ligand- or structure-
based approaches. These new methods can use predicted low-
resolution structures and infer the likelihood of a ligand binding to a
target by utilizing ligand information excised from the target’s
remote or close homologous proteins and/or libraries of ligand
binding databases. Here, we develop an improved version of
FINDSITE, FINDSITEfilt, that filters out false positive ligands in threading identified templates by a better binding site detection
procedure that includes information about the binding site amino acid similarity. We then combine FINDSITEfilt with
FINDSITEX that uses publicly available binding databases ChEMBL and DrugBank for virtual ligand screening. The combined
approach, FINDSITEcomb, is compared to two traditional docking methods, AUTODOCK Vina and DOCK 6, on the DUD
benchmark set. It is shown to be significantly better in terms of enrichment factor, dependence on target structure quality, and
speed. FINDSITEcomb is then tested for virtual ligand screening on a large set of 3576 generic targets from the DrugBank
database as well as a set of 168 Human GPCRs. Excluding close homologues, FINDSITEcomb gives an average enrichment factor
of 52.1 for generic targets and 22.3 for GPCRs within the top 1% of the screened compound library. Around 65% of the targets
have better than random enrichment factors. The performance is insensitive to target structure quality, as long as it has a TM-
score ≥ 0.4 to native. Thus, FINDSITEcomb makes the screening of millions of compounds across entire proteomes feasible. The
FINDSITEcomb web service is freely available for academic users at http://cssb.biology.gatech.edu/skolnick/webservice/
FINDSITE-COMB/index.html

■ INTRODUCTION
Virtual ligand screening has become an integral part of modern
drug discovery processes for lead identification.1 It utilizes
computational techniques, is easily automated, and, in principle,
can be high-throughput. It is attractive to the drug discovery
community because experimental high-throughput screening
has bottlenecks in data analysis and assay development.2

Traditionally, there are two broad categories of virtual ligand
screening: (a) ligand-based and (b) structure-based. Ligand-
based virtual screening is fast, but it requires a set of ligands that
are known to bind to the target; this limits its large-scale
application. Here, compounds are ranked by their similarity to
known binding ligands. Molecular similarity can be computed
using 1D, 2D, or 3D molecular descriptors such as finger-
prints.3−5 The most popular similarity measure for comparing
chemical structures represented by means of fingerprints is the
Tanimoto Coefficient.6 Structure-based virtual screening
utilizes the structure of the target, docks drug molecules to
potential binding pocket/sites, and evaluates the binding
likelihood using physics-based or knowledge-based scoring

functions.7 The advantage of structure-based methods is the
ability to discover novel active compounds without prior
knowledge of known active ligands. Disadvantages are the
requirement for high-resolution structures of the target protein
that are not always available, as is the case for G-protein
coupled receptors (GPCRs) and ion-channels. Structure-based
virtual screening is also computationally expensive. This
precludes their application to screen millions of compounds
across thousands of proteins even when protein structures of
requisite quality are available.
To overcome the shortcomings of traditional ligand-based

and structure-based methods for virtual ligand screening,
recently, novel threading/structure-based approaches that
eliminate the prerequisites for known actives and/or high-
resolution structure of a given target have been developed.8−17

The basic assumption of these methods is that evolutionarily
related proteins have similar functions and thus bind similar
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ligands. It was shown that this assumption is useful even for
evolutionarily remote proteins.8,14 Threading/structure is used
to detect a possible evolutionary relationship between a target
and those proteins that have known binding ligands. If the
target protein does not have an experimentally solved structure,
threading followed by structure refinement will also provide a
model. Subsequently, the structures of the threading detected
holo PDB18 templates (structures with bound ligands), along
with their bound ligands, are aligned onto the target structure
by structural alignment methods.19,20 Template ligand positions
are then clustered to infer the binding pocket location and pose
of the target’s ligands, and the ligands of the top-ranking cluster
(best predicted pocket) are utilized for compound similarity
search against a ligand library in a similar way as in traditional
ligand-based methods. Thus, threading/structure-based meth-
ods inherit the advantages of the speed and lack of the
requirement of high-resolution protein structures of ligand-
based approaches, and yet, like structure-based methods, do not
need known binders to the target protein. Other methods that
overcome the need for high-resolution structures and computa-
tional demand of docking approaches have also been
developed.21−23 These methods utilize predicted target

structures and sample binding conformations in coarse-grained
protein and ligand representations. The scoring functions for
ranking binding conformations are usually knowledge-
based.21,23 Their accuracy for virtual ligand screening is
comparable to traditional structure-based docking approaches
with all-atom representations and scoring functions.21

Since threading/structure-based approaches eliminate the
prerequisite for a known set of binders and a high-resolution
target structure, they open up the possibility of proteomic-scale
drug discovery, since 75% of the sequences in a typical
proteome can be reliably modeled.24 Proteomic-scale virtual
ligand screening is attractive because it could contribute to the
understanding of the molecular basis of diseases.25 However,
threading/structure-based methods for functional analysis have
to a large extent focused mainly on protein function and/or
binding site predictions, with just a few applications to virtual
ligand screening that involve kinases and HIV-1 protease
inhibitors.9,10,26 Large-scale benchmarking tests of these
methods for virtual ligand screening of generic targets and
systematic comparison to traditional structure−based ap-
proaches have not yet been carried out.

Figure 1. Flowchart of FINDSITEfilt. Replacing the steps in dotted-line box with those in the solid-line bordered box gives the original FINDSITE
approach.
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An obvious limitation of previous threading/structure-based
methods is the requirement that for the protein target of
interest, the PDB must contain a significantly number of, at
worst, evolutionary distant holo PDB18 templates structures.
This makes them inapplicable to membrane proteins, as well as
any other class of proteins, (e.g., ion channels) for which an

insufficient number of PDB holo templates exist. To address
this significant limitation, we recently developed FINDSITEX.26

FINDSITEX utilizes experimental ligand binding databases such
as the ChEMBL27 and DrugBank28 databases and does not
require experimental holo structures; rather, the structures of
the templates are modeled and virtual holo templates are

Figure 2. (a) Flowchart of FINDSITEX and (b) overview of FINDSITEcomb.
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constructed. It is thus useful for targets such as GPCRs and
other membrane proteins.
In this work, we improve FINDSITE8 for virtual ligand

screening by developing an approach that selects better ligands
from the threading identified PDB templates. The improved
method, FINDSITEfilt, is then combined with FINDSITEX into
a composite method, FINDSITEcomb that will generalize the
threading/structure-based FINDSITE approach for generic
targets. Here, FINDSITEX utilizes two publicly available
protein-small molecule binding databases: ChEMBL27 and
DrugBank.28 In the Methods section, we describe how these
ideas are implemented. Then, in the Results section, we
compare the performance of FINDSITEcomb with two freely
available traditional docking approaches, AUTODOCK Vina29

and DOCK 6,30 on the DUD-A Directory of Useful Decoys
set.31 We then benchmark FINDSITEcomb for virtual ligand
screening on a large set of generic drug targets from
DrugBank28 and Human GPCR targets from the GLIDA
database.32 Finally, in the Conclusions and Outlook section, we
discuss current and future work.

■ METHODS
Figure 1 shows the flowchart of the improved version of the
FINDSITE methodology, FINDSITEfilt. Figure 2a shows the
flowchart of FINDSITEX, and Figure 2b shows an overview of
FINDSITEcomb. We describe these methods in what follows.
Improving FINDSITE for Ligand Virtual Screening

Using Heuristic Structure−Pocket Alignment. The
flowchart of original FINDSITE8 approach can be found in
Figure 1 by replacing the steps in the dotted-line box with those
in the solid-line box. The original FINDSITE employs template
identification, structure superimposition, and binding site
clustering as follows: First, for a given target sequence,
structure templates are selected from the PDB template
library18 by the threading procedure PROSPECTOR_3.33

Templates are ranked by their Z-score (score in standard
deviation units relative to the mean of the structure template
library) of the sequence mounted in a given template structure
using the best alignment as given by dynamic programming.
Only those templates with a Z-score ≥ 4 and a TM-score ≥ 0.4
to the target structure/model are used. The TM-score34 is a
structural similarity measure that lies between 0 and 1, with a
value of 1.0 for identical structures. For a pair of randomly
related proteins its average value is around 0.15, with the best
average random value of 0.30. A TM-score ≥ 0.4 means two
structures are significantly similar, with a P-value of 3.4 × 10−5.
Subsequently, template structures bound to ligands are
identified and superimposed onto the target protein structure
using the global structure alignment algorithm TM-align.19

Then, the centers of mass of ligands bound to threading
templates are clustered according to their spatial proximity,
using an 8 Å cutoff distance. This cutoff maximizes ranking
accuracy and accommodates some structural distortions. The
geometrical center of each cluster corresponds to the center of
a putative binding pocket. Finally, the predicted binding
pockets are ranked according to the number of threading
templates that share the common binding pocket (cluster
multiplicity). For virtual ligand screening, FINDSITE selects
ligands that occupy the top ranked binding pocket from the
identified ligand-bound threading templates. Hereafter, these
ligands will be designated as “template ligands”. The 1024-bit
version of Daylight fingerprints35 is used to represent the
ligands and compounds in libraries. Then, the Tanimoto

Coefficient (TC)6 of two 1024-bit fingerprints is used to
evaluate the chemical similarity between the two compounds,
and compounds in libraries are ranked accordingly (the larger
the TC, the better the rank).
In the original FINDSITE, the position of the target pocket

is determined by global structure alignment (global alignment
of two full length protein structures) and the alignment
depends only on geometric properties (Cα coordinates). On
the basis of the observation that there are similar pockets in
globally different structures and between globally similar
structures that have no evolutionary relationship,36 the original
version of FINDSITE could miss some true positive and
include some false positive template ligands. The objective of
our improved approach is to filter out these false positive and
negative template ligands by a better alignment procedure and
by including amino acid type dependent information about
binding site similarity between the target and template
structures.
The improvements to FINDSITE for ligand virtual screening

are shown in the dotted-line box of Figure 1. After threading by
SP3 37 as employed in the TASSERVMT-lite structure modeling
approach,26 for each ligand bound to the threading selected
template, a template pocket structure is extracted from the holo
template PDB structure. The template pocket structure consists
of the Cα atoms of the template residues, any of whose
backbone and/or side chain heavy atoms are within 4.5 Å of the
bound ligand’s heavy atoms as well as the template residues’ Cα

atoms that are within 8 Å of the bound ligand’s heavy atoms.
The pocket usually has several dozen Cα atoms scattered along
the protein’s sequence. We shall relabel the Cα atoms
sequentially for the following alignment. Next, we apply a
heuristic structure (of the target) and pocket (of the template)
alignment method that effectively determines where the
putative target pocket should be and measures its evolutionary
closeness to the template pocket. Given the target structure
(either modeled or experimental, if available) and a PDB
template pocket, the heuristic structure−pocket alignment is
carried out as follows: (1) Initial alignment. Three Cα atoms
(consisting of three consecutive I1= I, I2 = I + 1, I3 = I + 2,
relabeled residues) of the template pocket are compared to
three Cα atoms of the target (residues J1, J2, J3 with J3 > J2 > J1);
if the lengths of all corresponding sides of the two triangles are
within 1 Å (i.e., |d(I1,I2) − d(J1,J2)| ≤ 1, |d(I2,I3) − d(J2,J3)| ≤ 1,
|d(I1,I3) − d(J1,J3)| ≤ 1), the whole template pocket will be
superimposed on to the target using the alignment I1 aligned to
J1, I2 to J2, and I3 to J3. Otherwise, the next pair of triplets is
tested. (2) Extension of the alignment based on the
superimposed structure. For each template pocket Cα atom, if
its nearest target Cα atom in the superimposed structure is
within 1 Å, the pocket residue is defined as aligned to the target
residue. (3) Superimpose the whole pocket to the target using
the alignment in step 2 and repeat 2 until the alignment does
not change. (4) Calculate the SP score (structure−pocket
alignment score) of the alignment in 2 using

∑− =SP score BLOSUM62(a, b)
aligned residue a,b (1)

where BLOSUM62(a,b) is the BLOSUM62 substitution
matrix.38 (5) Repeat steps 1−4 for all possible I1, I2, I3 and
J1, J2, J3, and the alignment with the largest SP-score is saved as
the final alignment. Notice that current implementation of the
structure−pocket alignment is sequence order dependent (thus,
circularly permuted pockets will be missed). Template pockets
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are ranked by their SP-scores, and the ligands corresponding to
the top 100 template pockets are selected as template ligands
for ligand virtual screening using the following compound
similarity score:
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where TC stands for the Tanimoto Coefficient,6 Nlg is the
number of template ligands from the putative evolutionarily
related proteins, Ll and Llib stand for the template ligand and
the ligand in the compound library, respectively, and w is a
weight parameter. The term w = 1 gives the average TC in the
original FINDSITE screening score. The second term is the
maximal TC between a given compound and all the template
ligands. Here, we empirically choose w = 0.1 to give more
weight to the second term so that when the template ligands
are true ligands of the target, they will be favored. This new
threading/structure based virtual screening approach is called
FINDSITEfilt. In contrast to the original FINDSITE,
FINDSITEfilt does not cluster the selected top (up to) 100
ligands for virtual screening. However, for binding site
prediction, spatial clustering is needed. This issue will be
addressed elsewhere.
FINDSITEcomb for Ligand Virtual Screening. In order for

our FINDSITE based approach to be applicable to all protein
classes including membrane receptors, ion-channels, etc., we
combine FINDSITEfilt that uses ligand-bound complex
structures in the PDB with the FINDSITEX approach that
utilizes binding data without complex structures. The original
version of FINDSITEX 26 that uses the GLIDA binding
database32 was originally developed for GPCR targets. Here,
we extend it to treat all protein targets. The FINDSITEX

flowchart is shown in Figure 2a. Given a binding database, the
structures of all the target proteins in the database are modeled
using the fast version of the latest variant of the TASSER39

based method, TASSERVMT-lite.26,40 If a ligand binding
database protein has an experimental structure in the PDB,18

TASSERVMT-lite will automatically produce a model very close
to the experimental structure (usually having a root-mean-
square-deviation of its Cαs < 2 Å). The structure of the target
protein can also be modeled with TASSERVMT-lite if it is not
available experimentally. Proteins in the binding database that
are potentially evolutionarily related to the target are detected
by the fr-TM-align20 structure alignment method supplemented
with an evolutionary score:26 The target structure and the
structure of protein in the binding database are aligned by fr-
TM-align. Then, an evolutionary score is calculated over the
aligned residues as ∑aligned residue a,b BLOSUM62(a,b)/number
of residues in the target. This score is used to rank the database
proteins. The larger the score is, the closer is the database
protein to the target evolutionarily. The ligands of the top
ranked database protein will be used as template ligands in eq 2
for searching against the compound library. As with
FINDSITEfilt, mTC given in eq 2 is used. Again, this is slightly
different from the compound similarity score in our original
FINDSITEX;26 this is equivalent to the first term in eq 2.
In this work, we shall utilize the DrugBank28 targets and

associated drugs as one binding database for FINDSITEX. The
DrugBank28 database (http://www.drugbank.ca) has 4227
nonredundant protein targets and 6711 drug entries. For our

current purpose, we use 3576 targets and their 6507 drugs
because some targets are too large for TASSERVMT-lite26 to
model (Currently, TASSERVMT-lite is applicable to proteins up
to 1000 residues in length). Another binding database
employed by FINDSITEX is ChEMBL27 (version 12, https://
www.ebi.ac.uk/chembl/) that has binding data for broad
categories of targets across various species and, thus, is helpful
for targets such as GPCRs and ion-channels. From ChEMBL,
we downloaded data for 593 kinases, 395 proteases, 69
phosphatases, 57 phosphodiesterases, 54 cytochrome P450s,
546 membrane receptors, 325 ion-channels, 134 transporters,
101 transcription factors, 92 cytosolic, 56 secreted, 25
structural, 17 surface antigen, 14 adhesion, 13 other membrane,
and 10 nuclear proteins (total 2501 proteins). The total
number of nonredundant ligands binding to these targets is
409 703. We are able to model 2449 (98%) of the protein
targets using TASSERVMT-lite26 and employ these predicted
structures in FINDSITEX. The ones we cannot model are too
large for our current modeling method. All structural models
are provided on our Web site at http://cssb.biology.gatech.
edu/skolnick/webservice/FINDSITE-COMB/index.html.
Figure 2b shows the overview of the combined approach

FINDSITEcomb that combines the three FINDSITE based
virtual screening approaches: FINDSITEfilt using the PDB
database, FINDSITEX using the DrugBank database, and
FINDSITEX using the ChEMBL database. Given a target, for
each compound in the compound library, the combined
screening score is the maxima of the three mTC scores (see eq
2). The combined screening score gives the final combined
ranking.

■ RESULTS
In what follows, for the evaluation of the performance in DUD,
large-scale testing of drug targets and GPCRs, we report the
performance of a given approach to virtual screening by the
enrichment factor within the top x fraction (or 100x%) of the
screened library compounds defined as

=
×

x
x

EF
number of true positives within top 100 %

total number of true positivesx
(3)

A true positive is defined as an experimentally known binding
ligand/drug or one that has a TC = 1 to an experimentally
validated binding ligand/drug. For x = 0.01, EF0.01 ranges from
0 to 100 (100 means that all true positives are within the top
1% of the compound library).

Comparison to Traditional Docking Methods. We
compare FINDSITEcomb in benchmarking mode, (all proteins
with >30% sequence identity to target in the binding databases
are excluded from template ligand selection) to two freely
available traditional docking methods AUTODOCK Vina29

(http://vina.scripps.edu/) and DOCK 630 (http://dock.
compbio.ucsf.edu/DOCK_6/) using the 40 target DUD
benchmark set31 (http://dud.docking.org/). The DUD set is
designed to help test docking algorithms by providing
challenging decoys. It has a total of 2950 active compounds
and a total of 40 protein targets. For each active, there are 36
decoys with similar physical properties (e.g., molecular weight,
calculated LogP) but dissimilar topology. AUTODOCK Vina is
an open source drug discovery program29 that was tested on
the DUD set and shown to be a strong competitor against some
commercially distributed docking programs (http://docking.
utmb.edu/dudresults/). DOCK 6 is an update of the DOCK 4
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program30 and is free for academic users. It has relatively more
complicated inputs than AUTODOCK Vina, and its perform-
ance depends on the input preparation protocols.41 AUTO-
DOCK Vina, however, depends on random number generation
for the specific target−ligand docking score. In this work, we
apply default options for AUTODOCK Vina and use only rigid
body docking in DOCK 6 with the default input parameters/
options in the examples provided with the program.
Before virtual screening comparison, we compared the

relative speed of FINDSITEcomb, AUTODOCK Vina, and
DOCK 6. On a single CPU node in our cluster, for a typical
325 amino acid protein screened against 100 000 compounds,
FINDSITEcomb takes ∼10 h for modeling, ∼20 h for structure
comparison, and 3 min for the compound similarity search, for
a total of ∼30 h; AUTODOCK Vina takes around 1000 h, and
DOCK 6 takes around 5000 h. Thus, for screening against 100
000 compounds, FINDSITEcomb is ∼30 times faster than
AUTODOCK Vina and ∼160 times faster than DOCK 6,
respectively.
Cross Docking Using Experimental and Modeled

Target Structures. “Cross docking” means docking all ligands
and decoys of all targets to a given target. This scenario is
closest to the realistic situation when we do not have much
information about which molecule is a true active or decoy to
which target. A total of 97 974 nonredundant compounds have
been screened for each target. Here, we use both experimental
structures and homology-modeled structures for the detection
of evolutionary relationships in FINDSITEcomb and for docking
methods. Since all DUD targets have crystal structures in the
PDB, straightforward modeling will produce models that are
very close to their crystal structures. We thus use remote
homology modeling by excluding templates in the threading
library whose sequence identity >30% to a given target.
However, models for some targets are too extended because a
large portion of their sequence is not aligned to a template.
Although this is not an issue for FINDSITEcomb (provided that
the ligand binding site is in the modeled region), the size of
these models is too large for the traditional docking methods to
produce output within a tractable time. Therefore, only 30
DUD targets (denoted as DUD-30) are examined. The average
actual (predicted) model TM-scores26,34 to native of these 30
targets are 0.84/0.76. All, but one, model has an actual TM-
score to native >0.4 (hivpr has actual/predicted TM-scores of
0.38/0.48).
The results of this scenario are given in Table 1. Using

experimental structures, FINDSITEcomb has an average EF0.01
(27.69) that is 3 times that of AUTODOCK Vina (8.92) and 9
times that of DOCK 6 (3.14). For these 40 DUD targets, the
main contribution to FINDSITEcomb is from the PDB, whereas
DrugBank and ChEMBL contribute equally. A Student-t test
between FINDSITEcomb and the two docking methods
indicates that the differences are significant (two sided p-
value <0.05). We note that any of the individual components of
FINDSITEcomb is better than the two other docking methods.
When modeled structures are used, FINDSITEcomb performs as
well as with experimental structures and is significantly better
than the two traditional docking methods (EF0.01 of 23 vs 2−3).
Table 1 shows that AUTODOCK Vina performs much worse
with modeled structures (EF0.01 ∼ 2) than when experimental
structures are used (EF0.01 ∼ 9). The performance of DOCK 6
does not seem to be affected greatly by target structure quality.
However, it shows a significant change in performance for EF0.1
in noncross docking (see below).

Noncross Docking Using Experimental Target Struc-
tures. In this scenario, each target’s ligands and decoys (36
times the number of actives) are docked onto itself. The
number of screened compounds thus differs between targets.
Here, due to fewer compounds being screened for each target,
we assess the enrichment factors, within the top 5% and 10% as
well as 1% of the screened compounds. Another quantity
assessed is the area under the accumulation curve (AUAC) of
the fraction of actives vs the fraction of screened compounds.
Table 2 shows the performance of different methods in this

scenario. Consistent with above results, FINDSITEcomb and its
individual components are all better than AUTODOCK Vina
and DOCK 6 in terms of enrichment factor. Assessed by the
AUAC, DOCK 6 is worse than random and AUTODOCK
Vina is better than random (the random AUAC = 0.5). Both
are significantly worse than FINDSITEcomb. FINDSITEcomb has
38 targets having an AUAC > 0.5, whereas AUTODOCK Vina
and DOCK 6 have 28 and 11 targets having an AUAC > 0.5,
respectively. For the two FINDSITEcomb failed targets (ampc,
hivrt), the two other docking methods also failed. The reason
for FINDSITEcomb’s failure is the overwhelming number of false
positive, selected template ligands at the lower template
sequence identity cutoff (30%). If the sequence identity cutoff
is set to 95% to allow the inclusion of ligands from closely
homologous templates, the AUACs will be 0.88 and 0.64 for
ampc and hivrt, respectively. In Figure 3, we present plots of
the fraction of actives vs the fraction of screened compounds
for all 40 targets. Table 3 shows the statistics of targets that (a)
are always above the random diagonal line; (b) start above and
go under the random diagonal line; (c) start under and go
above the random diagonal line; and (d) are always under the
random diagonal line. For FINDSITEcomb, the majority (27) of
targets are always above the random diagonal line; whereas,
AUTODOCK Vina and DOCK 6 have a majority of targets (19
and 22) that start from above and go under the random
diagonal line. This latter property could be a typical memory
effect of some trained approaches.
In ref 42, several commercially available docking programs

including the DOCK 6 are compared on the DUD set for
virtual screening accuracy using experimental structures. The
results of DOCK 6 were generated using flexible docking and
expertise in input preparation and is thus better than what we
have in this work. FINDSITEcomb with mean AUAC = 0.77 is as
good as the best performing program GLIDE (v4.5)43,44 (mean

Table 1. Performance of Methods on DUD using
Experimental and Modeled Structures in Cross Docking

Experimental Structures Modeled Structuresa

method (binding
database)

average
EF0.01 P-valueb average EF0.01 P-value

FINDSITEX

(DrugBank)
16.89 20.05(21.76)

FINDSITEX

(ChEMBL)
13.78 12.69(11.28)

FINDSITEfilt

(PDB)
22.32 21.26(22.44)

FINDSITEcomb 27.69 23.10 (24.60)
AUTODOCK
Vina

8.92 1.3 × 10−3 2.17 1.3 × 10−4

DOCK 6 3.14 6.7 × 10−5 3.05 1.2 × 10−3

aResults are the average of DUD-30 targets. Numbers in brackets are
results for 40 DUD targets. bTwo-sided p-values of Student-t test
between FINDSITEcomb and docking methods.
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Table 2. Performance of Methods on DUD using Experimental Structures in Noncross Docking

method (binding database) average EF0.01 average EF0.05 average EF0.1 average AUAC

FINDSITEX (DrugBank) 6.26 3.77 3.11
FINDSITEX (ChEMBL) 7.03 4.49 3.13
FINDSITEfilt (PDB) 11.2 5.54 3.86
FINDSITEcomb 13.4 6.56 4.37 0.774
AUTODOCK Vina 4.80 (5.3 × 10−4)a 3.01 (9.4 × 10−4) 2.40 (7.7 × 10−4) 0.586 (3.0 × 10−7)
DOCK 6 3.72 (1.5 × 10−4) 1.79 (1.8 × 10−5) 1.24 (9.9 × 10−7) 0.426 (1.3 × 10−12)

aNumbers in brackets are two-sided p-values of Student-t test between FINDSITEcomb and docking methods.

Figure 3. Fraction of actives vs fraction of screened compounds curves for the DUD set using experimental structures in noncross docking. (black
line) FINDSITEcomb, (red line) AUTODOCK Vina, (green line) DOCK 6.
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AUAC = 0.72) and therefore is better than all other compared
methods: DOCK 6 (mean AUAC = 0.55), FlexX45 (mean
AUAC = 0.61), ICM46,47 (mean AUAC = 0.63), PhDOCK48,49

(mean AUAC = 0.59), and Surflex50−52 (mean AUAC =
0.66).42

Noncross Docking Using Modeled versus Experimen-
tal Target Structures. Table 4 shows the comparison of

different methods using modeled and experimental target
structures for the 30 DUD targets. FINDSITEcomb has almost
identical EF0.1 and close EF0.01 values for modeled and
experimental target structures. All of its component methods
have no significant differences (p-value > 0.05) between using
experimental and modeled target structures. In contrast,
AUTODOCK Vina and DOCK 6 have significantly worse (p-
value < 0.05) performance for EF0.1 when modeled structures
are used. FINDSITEcomb is insensitive to model quality as long
as the model’s TM-score to native ≥ 0.4 (see below). However,
it should be emphasized that this finding is correct only in a
statistical sense (e.g., average EF0.1 or EF0.01). For a particular
target, it might not be true.
Large Scale Benchmarking Test on Generic Drug

Targets. We next tested FINDSITEcomb on all the 3576
DrugBank targets that we can model. The other targets in the
database are too large for our current TASSER-based modeling
methods. This issue will be addressed in the future. To test our
method under challenging conditions, we exclude all proteins in
all three binding databases (PDB, DrugBank, ChEMBL) having
sequence identities to the given target >30%. Target structures
are modeled with TASSERVMT-lite26 that is also used for
building the structures of the proteins in the binding databases
of DrugBank and ChEMBL. The screened compound library
consists of all 6507 drugs (the true binders of all targets) plus

67 871 ZINC8 nonredundant (culled to TC < 0.7)
compounds53 as background.
The results of FINDSITEcomb along with its three component

methods and the original FINDSITE on this large generic
target set are compiled in Table 5. FINDSITEcomb is better than

any of its component methods; the major contributions to
EF0.01 are from the PDB and DrugBank binding databases.
Table 5 also shows that the new FINDSITEfilt is better than the
original FINDSITE by a significant ∼45% for EF0.01 (46.0 vs
31.7). FINDSITEcomb has an average EF0.01 of 52.1 and is better
than random (EF0.01 > 1) for 65% of the targets. The histogram
of EF0.01 by FINDSITE

comb is shown in Figure 4. Around 40%

of the targets have an EF0.01 = 100. This means that for 40% of
the targets, all true drugs can be found within the top 1% (or
top ranked 743 ligands) of the screened compounds.
FINDSITEcomb fails for ∼35% targets (EF0.01 < 1). Here we
examine two of them. Target Prolyl endopeptidase has a
predicted TM-score of 0.92 which means that its model is
very close to experimental structure. It has an EF0.01 = 0
because the selected template (satisfying sequence identity
cutoff < 30%) inside the binding data libraries has no ligands
close to that of the target (DB03535) and the templates having
close ligands to the target protein all have TM-score < 0.4 to
the target (thus are hard to select). The sequence identities of
the top ranked ligand binding templates all have <15%
sequence identity to the target. Calcium-activated potassium
channel subunit beta-3 is a hard target with a predicted TM-
score = 0.37, indicating that the model is not significantly close
to its native structure. Even though in DrugBank alone, there
are 16 other targets having the same drug (DB01110),
FINDSITEcomb fails to identify them because the target

Table 3. Behavior of the Curves Showing the Fraction of
Actives versus the Fraction of Screened Compoundsa

method
always above
diagonal

above to
under

under to
above

always
under

FINDSITEcomb 27 4 9 0
AUTODOCK
Vina

9 19 12 0

DOCK 6 2 22 6 10
aUnder/over refers to whether when/if the rate of change curve
crosses the random, diagonal line.

Table 4. Comparison of Methods for DUD-30 Using
Experimental and Modeled Structures in Noncross Docking

method (binding
database)

ave EF0.01
(expt.

structure)

ave EF0.01
a

(modeled
structure)

ave EF0.1
(expt.

structure)

ave EF0.1
(modeled
structure)

FINDSITEX

(DrugBank)
5.92 8.28(0.13) 3.08 3.47(0.27)

FINDSITEX

(ChEMBL)
8.68 8.99(0.86) 3.55 3.09(0.33)

FINDSITEfilt

(PDB)
11.0 11.3(0.85) 3.88 3.93(0.90)

FINDSITEcomb 14.1 13.3(0.58) 4.54 4.53(0.97)
AUTODOCK
Vina

5.45 2.39(0.037) 2.48 1.40
(4.0 × 10−3)

DOCK 6 3.82 3.05(0.40) 1.29 0.87(0.049)
aNumbers in brackets are two-sided p-values of Student-t test between
experimental and modeled structures.

Table 5. Performance of Different FINDSITE Based
Methods for the 3576 Drug Targets

method (binding
database)

average
EF0.01

no. (%) of targets having
EF0.01 > 1

FINDSITE(PDB) 31.7 1526 (43%)
FINDSITEX(DrugBank) 36.6 1714 (48%)
FINDSITEX(ChEMBL) 9.5 566 (16%)
FINDSITEfilt(PDB) 46.0 2080 (58%)
FINDSITEcomb 52.1 2333 (65%)

Figure 4. Histogram of the FINDSITEcomb enrichment factor EF0.01
for the 3576 drug targets.
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structure is wrong. Thus, FINDSITEcomb could fail because (1)
the binding libraries have no structurally similar templates that
have close ligands to the target; (2) the target’s modeled
structure is wrong.
We next examine the relationship between model quality and

virtual screening performance. TASSERVMT-lite26 produces a
predicted TM-score34 that measures the quality of the model
for each target. The predicted TM-score is highly correlated
with the actual TM-score of the model to native structure, with
a correlation coefficient of 0.86 and a standard deviation of 0.12
over a benchmark set of 690 proteins. A TM-score of 1.0 means
that the model is identical to the native structure, and a TM-
score of ≥0.4 means that the model has significant similarity to
the native structure. Figure 5a shows box and whisker plots of

the EF0.01 within a 0.1 TM-score bin versus the predicted TM-
score. Although there is no linear correlation between the
median EF0.01 and the predicted TM-score, there is clearly a
transition around a TM-score of 0.4. When the predicted TM-
score < 0.4, all the median EF0.01 are zero; whereas, all the
median EF0.01 are at least >20 when the predicted TM-score

>0.4. The transition is also seen for the 75th percentiles (upper
box boundaries). The rationale behind this property could be
that once the target structure has significant similarity to the
native (TM-score ≥ 0.4), the ligands of detected evolutionarily
related proteins are roughly similar regardless of how close the
target structure is to the native structure. On average, a target
with a predicted TM-score ≥ 0.4 has an EF0.01 of 52.8, whereas
a target with a predicted TM-score < 0.4 has an EF0.01 of 22.0.
Similar results are observed for the percentage of targets having
EF0.01 > 1 (better than random) as shown in Figure 5b. When
the predicted TM-score ≥ 0.4, the probability of EF0.01 > 1 is
66%; this probability drops to around 30% when the predicted
TM-score < 0.4. Figure 5 demonstrates that as long as the
model’s TM-score ≥ 0.4, EF0.01 depends very little on model
quality. This feature of FINDSITEcomb was also true for the
DUD set (data not shown). Thus, the predicted TM-score can
serve as a confidence index of EF0.01 or false positive detection.

Test on GPCR Targets. We developed FINDSITEX 26

specifically for GPCR proteins by utilizing the GLIDA GPCR
binding database.32 This early variant of FINDSITEX gives an
average enrichment factor EF0.01 of 22.7 for 168 Human
GPCRs with known binders in the GLIDA database, when
proteins having >30% sequence identity to the target in the
binding database (GLIDA) are excluded from template ligand
selection. FINDSITEX’s enrichment factor of 22.7 is triple that
of the original FINDSITE (7.1). Since FINDSITEcomb does not
use the GLIDA GPCR specific database, it is important to test
its performance on membrane proteins such as GPCRs, as our
goal is to develop a robust and general methodology. Thus, we
test FINDSITEcomb using the same 168 Human GPCR set as in
ref 26 and with the same condition of 30% sequence identity
cutoff exclusion for proteins for template ligand selection.
Target structures are again modeled with TASSERVMT-lite. The
screened compound library consists of all 21 078 true binders
of all GPCRs from the GLIDA database (including GPCRs not
in this 168 protein set) and the 67 871 ZINC8 TC = 0.7
nonredundant compounds.
The results for the 168 Human GPCR set are shown in

Table 6. We see that the performance of FINDSITEcomb is

almost identical to that of the GPCR specific FINDSITEX that
has an average EF0.01 of 22.7 and 114 targets having EF0.01 > 1.
Again, for EF0.01 (8.5 vs 7.1), FINDSITE

filt is better (by ∼20%)
than the original FINDSITE, and FINDSITEcomb is better than
all individual components. In contrast to the above generic
targets for which the major contributions of EF0.01 are from the
PDB and DrugBank databases, the major contribution to EF0.01
for GPCRs is from the ChEMBL database. Figure 6 shows the
distribution of EF0.01. We see that there are few targets having
EF0.01 = 100. For example, for the target TS1R1, FINDSITEcomb

has used the drug (DB00168, Aspartame) of the taste receptor
type 1 member 2 that has only 23% sequence identity to

Figure 5. (a) Box and whisker plots of the FINDSITEcomb enrichment
factor EF0.01 vs predicted TM-score for the 3576 drug targets. The
EF0.01s are counted with predicted TM-score within x − 0.05 and x +
0.05. (b) Percentage of targets having EF0.01 > 1 vs predicted TM-
score.

Table 6. Performance of Different FINDSITE Based
Methods for the 168 Human GPCRs

method (binding
database)

average
EF0.01

no. (%) of targets having
EF0.01 > 1

FINDSITE (PDB) 7.1 35 (21%)
FINDSITEX (DrugBank) 10.1 76 (45%)
FINDSITEX (ChEMBL) 19.9 105 (63%)
FINDSITEfilt (PDB) 8.5 54 (32%)
FINDSITEcomb 22.3 113 (67%)
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TS1R1 as the template ligand in eq 2. The only active of TS1R1
(L001103) in the GLIDA32 database is identical to DB00168
and is thus ranked first. Therefore, TS1R1 has an EF0.01 of 100.
An example of targets among the 54 (32%) failed ones is SSR3.
Its predicted TM-score is 0.68 that is significant (P-value of 3.2
× 10−10). FINDSITEcomb identified these top binding
templates: Mu-type opioid receptor, Apelin receptor, and
CXCR4 from DrugBank, ChEMBL, and PDB, respectively.
None of these templates has close ligands to those of the SSR3
(TC < 0.7). There are, however, 19 templates having at least
one identical ligand and sequence identity <30% to the target in
the ChEMBL binding library. All of them have a TM-score <0.4
to the target.

■ CONCLUSION AND OUTLOOK
We have developed the threading/structure-based approach
FINDSITEcomb for virtual ligand screening that utilizes binding
information of homologous (remote or close) proteins from
publicly available databases such as PDB,18 DrugBank,28 and
ChEMBL.27 Better accuracy, insensitivity to target structure
inaccuracy, and faster speed than traditional docking methods
are all attractive features of the current approach. These
qualities make proteomic-scale virtual ligand screening possible,
since ∼75% of the proteins of a typical proteome can be
modeled with a predicted TM-score to native ≥0.4.24 Due to its
computational efficiency, we are able to test FINDSITEcomb’s
performance across a large variety of protein target classes
including GPCRs. We have shown that even in the most
challenging condition that only remotely homologous proteins
(closest sequence identity of the template protein to the target
≤30%) exist in the binding databases, FINDSITEcomb gives an
average enrichment factor of 52.1 across all major classes of
protein drug targets and 22.3 for GPCRs within the top 1% of
screened compound library. More than 65% of targets have
better than random enrichment factors when their TM-scores
of the target structure to native are ≥0.4. Thus FINDSITEcomb

is a promising tool for large-scale drug discovery.25

Along with the above-mentioned strengths, the weaknesses
of the current methodology are (a) the inability to treat large
proteins (>1000 amino acids) due to limitations in structure
modeling; (b) for around 30% targets, the performance is not
better than random (although this ratio might be reduced if
closely homologous templates exist in the binding data library);

this is mainly due to the failure to accurately model the target
structure and the failure to detect structurally different
templates that bind to the same ligand. To address these
weaknesses, future improvements of the current method
include (a) extending the modeling approach to large proteins
and improving modeling of the 25% of a typical genome’s hard
targets where contemporary structure prediction algorithms
fail; (b) extending the structure−pocket alignment approach to
FINDSITEX using non-PDB libraries; (c) incorporating
sequence order independent structure−pocket alignment
approaches; (d) combination with low-resolution docking
approaches21,22 to filter out structurally incompatible com-
pounds with respect to binding pockets and to predict binding
poses for drug design; and (e) coupling with experimental
validation and incorporating feedback from experiment to
refine the virtual screening protocol. These efforts are currently
underway.
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