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Are predicted protein structures of any value for binding site
prediction and virtual ligand screening?
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The recently developed field of ligand homology modeling

(LHM) that extends the ideas of protein homology modeling

to the prediction of ligand binding sites and for use in virtual

ligand screening has emerged as a powerful new approach.

Unlike traditional docking methodologies, LHM can be

applied to low-to-moderate resolution predicted as well as

experimental structures with little if any diminution in

performance; thereby enabling �75% of an average

proteome to have potentially significant virtual screening

predictions. In large scale benchmarking, LHM is able to

predict off-target ligand binding. Thus, despite the

widespread belief to the contrary, low-to-moderate

resolution predicted structures have considerable utility for

biochemical function prediction.
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Introduction
Over the past decade, the field of protein structure pre-

diction has matured to the point where a significant fraction

of the proteins in a given proteome can be modeled at low-

to-moderate resolution [1]. On the other hand, the bio-

chemical function of many proteins in a proteome, most

especially those associated with ligand binding and other

intermolecular interactions, are only partially known [2].

For example, the metabolic enzymes of well-studied

organisms such as yeast are not fully characterized [3,4].

Thus, a key question facing the field is can predicted

protein structures be successfully employed for the pre-

diction of protein function? Of course, function is multi-

faceted, but clearly the inference of biochemical function

would be the most direct application of structural infor-

mation. In this review, we focus on the utility of predicted

protein structures in the identification of ligand binding

sites, and having identified these sites, their usefulness in
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virtual ligand screening to assist in drug discovery. But,

before embarking on a discussion of the utility of lower

resolution structures, a brief summary of the status of the

field when high-resolution structures are used is appro-

priate as it provides the standard by which newly devel-

oped approaches must be assessed.

Binding site detection in high-resolution
structures
Having a three-dimensional structure in hand, one would

like to identify its small molecule binding sites. Some

approaches locate binding sites by a geometric match to

three-dimensional descriptors or templates of biologically

relevant sites [5,6]. More powerful is the evolutionary

trace methodology that combines protein structure with

conserved residue patterns mapped onto the protein’s

surface [7�,8,9]. There are also geometric methods that

locate binding residues by searching for cavities/pockets

in a protein’s structure [10,11]. Among the best pocket

detection algorithms is LIGSITECSC [12�] that calculates

surface-accessibility on the protein’s Connolly surface

[13] and then reranks the pockets by the degree of

conservation of select surface residues. Other methods

calculate titration curves [14] or identify electrostatically

destabilized residues [15]. These methods strictly focus

on the protein’s sequence and structural features and

ignore the identity of the ligand, but they are a necessary

first step.

Virtual ligand screening using high-resolution
structures
Having identified a binding site in a structure, the next

step is to identify its binding ligands. Most traditional

approaches are docking-based and prioritize com-

pounds by predicting their binding mode [16] and then

binding affinity [17]. Here, high-resolution structures of

the target protein receptor, preferably in its ligand-

bound conformational state, are generally required

[18]. There are many successful self-docking studies

where the ligand is excised from its crystal structure

and then redocked [19]. However, many proteins exhi-

bit significant motion upon ligand binding [20��,21],

and even small motions diminish docking accuracy. For

example, for trypsin, HIV-1 protease and thrombin,

�90% of initial docking accuracy is lost when the mean

protein structural rearrangement exceeds 1.5 Å [22].

These results raise the following questions: are ligand

binding sites really so structurally unique in nature and

if not, why are high-resolution structures needed for

ligand docking?
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Does the need for high-resolution structures
in binding site prediction and virtual screening
reflect physical principles or is it just a
technical limitation?
There is the widespread belief that predicted structures

whose backbone RMSD ranges from 2 to 6 Å are useless

for either ligand binding site prediction or for virtual

ligand screening [22]. For example, the performance of

the LIGSITECSC [12�] pocket detection algorithm

deteriorates dramatically as one goes from crystal struc-

tures to predicted models in large-scale benchmark tests

[20��]. However, local structural distortions are routine in

nature [23]. For example, the binding sites of distantly

related native proteins that bind very similar, if not

identical ligands, with similar residues have an average

pairwise backbone RMSD of 2.15 � 0.77 Å [24]. As a

specific example, for the subset of the kinome having

holo crystal structures, the structural variation of the

‘conserved’ ATP-binding site is �2.4 Å [25�]. Thus, there

is significant structural plasticity of ligand binding sites

[23,26]; it is unlikely that there is a unique ligand–protein

conformation, with other nearby conformations having an

entirely unfavorable binding free energy. The observed

ensemble of native ligand binding conformations also

suggests that low-resolution models might be useful for

binding site identification/virtual screening provided that

they capture the majority of the structural features and

essential interactions.

Why then do extant docking methods [16,27–31] require

high-resolution structures? One underlying cause is the

fact that they are driven by steric and van der Waals

interactions [32]. A slight conformational inaccuracy

could cause a dramatic interaction change. If a ligand fits

into the binding site, then ligand ranking is dominated by

the molecular weight of the ligand, independent of

whether the cognate ligand or a randomized version is

used [32]. Thus, there is the need for a more accurate

atomic force to be developed. However, if the resulting

force field is too complex, it would have limited practical

utility as it must be able to screen millions of compounds

across the thousands of proteins in the human or other

proteomes [33].

Ligand homology modeling: binding site
detection and virtual ligand screening
To employ protein models requires approaches that can

accommodate binding site structural variations without a

significant diminution in accuracy. As a first approxi-

mation, one might imagine that global structural sim-

ilarity between proteins would be sufficient to infer

protein function [34], most especially, common binding

sites. In a recent study [35], for structurally related

proteins whose pairwise sequence identity is in the twi-

light zone, we concluded that even at quite high levels of

structural similarity, less than 25% of the targets share a

common binding pocket. Thus, structural similarity alone
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is insufficient to transfer binding site location. A class of

methods that exhibits the desired insensitivity to receptor

structure deformation and which allows one to infer

binding site location and type of ligands bound is ligand

homology modeling (LHM) [36,37�,38,24,39,40�,41,42�].
LHM exploits the fact that the ideas of homology mod-

eling, as applied to protein structure prediction [43], are

applicable to functional inference, ligand binding pose

prediction and virtual ligand screening. As shown sche-

matically in Figure 1, LHM consists of six steps:

(1) Functional relationships between evolutionarily dis-

tant proteins are detected by sequence profile-driven

threading to identify common ligand binding pockets,

functionally important residues and structural con-

servation (anchors) of their ligand binding modes

[37�].
(2) These conserved features are used to construct a

ligand fingerprint profile from the identified template

ligands [44].

(3) Initial virtual screening of ligands is then done via

fingerprint scanning.

(4) The small molecule ligands are placed in the

protein’s predicted binding site using the conserved

ligand anchor regions identified in (1) [37�]. Inter-

estingly, the pose of the anchor in the ligand binding

site tends to be strongly conserved, as are the residues

contacting the ligand. Furthermore, the B-factors of

the residues touching the ligand’s anchor are lower

than those outside the anchor region.

(5) The ligand’s pose is readjusted to optimize its

interactions with the protein’s structure [39]. We

further found that the positions of the side chain

functional groups in contact with the ligand anchor

functional groups tend to be strongly conserved and

act together as a structural unit [45]. Indeed, they can

refine the backbone geometry. This is in contrast to

traditional ligand docking where the protein’s

structure is held fixed and the ligand conformation

is adjusted to accommodate the protein’s structure

[32,46�].
(6) Using the refined conformations, the ligand library is

then reranked via a machine learning procedure

[37�,41].

One of the advantages of LHM is that binding site

detection is quite insensitive to structural quality. For

example, consider the results when FINDSITE [20��]
was applied to a representative benchmark set, none of

whose templates are closer than 35% identical. We con-

sider the prediction of a binding site to be successful

when the centers of mass of the predicted and observed

binding sites are <4 Å. Using crystal structures, for the

best of top five predicted ligand-binding sites, the success

rate for FINDSITE is 70.9% vs. 51.3% for LIGSITECSC.

For TASSER [47] predicted models, FINDSITE has a
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Figure 1
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Flowchart of ligand homology modeling (LHM). Target and template proteins are colored in blue and green, respectively, and ligands are colored in

purple.
67.3% success rate, whereas LIGSITECSC’s success rate

is 32.5%. Similar results have been reported for binding

site detection by other LHM variants [40�,42�,48]. LHM

has also been applied to predict metal binding sites [1,49].

For example, FINDSITE-metal identifies the metal

binding site in TASSER models in 59.4% of the cases.

Moreover, when the metal is iron, copper, zinc, calcium,

and magnesium ions, the identity of the binding site

metal can be predicted with 70–90% accuracy.

What happens when holo templates are
unavailable for the target of interest?
While contemporary structure prediction approaches pro-

vide sufficiently accurate models for about 76% of the

proteins in the human proteome <1000 residues in length

[1], because of the relative scarcity of solved holo tem-

plate structures in the PDB [50,51], one can only infer

ligand binding information for �26% of the human pro-

teome [52]. Thus, methods that do not require holo

template structures must be developed. To address this,

FINDSITEX [52], an extension of FINDSITE [20��],
was developed that uses predicted structures for template

proteins having experimental ligand binding information

but which lack solved structures. Thus, pseudo holo

templates are generated. To provide predicted protein
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structures, a fast and accurate version of TASSERVMT

[53], TASSERVMT-lite, for template-based structural

modeling was developed and tested, with comparable

performance as the best CASP9 servers [54]. Then, a

hybrid approach that combines structure alignments with

an evolutionary similarity score for identifying functional

relationships between target and template proteins with

binding data was formulated.

FINDSITEX was applied to all identified human G-

protein coupled receptors (GPCRs). First, TAS-

SERVMT-lite improved models of all previously modeled

human GPCR structures [55]. We then used these struc-

tures to screen against the ZINC8 [56] nonredundant

(Tanimoto coefficient [57], TC < 0.7) ligand set of 88,949

compounds combined with ligands from the GLIDA

database [58]. Testing FINDSITEX (excluding GPCRs
from the binding data library whose sequence identity > 30%
to the target protein) on a 168 protein human GPCR set with

known binders, the average enrichment factor in the top

1% of the compound library (EF0.01) is 22.7, with encoura-

ging results for off-target interaction predictions. All 998

predicted human GPCR structures, virtual screening

results and predicted off-target interactions are available

at [59].
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Table 1

Comparison of virtual screening approaches on the DUD benchmark using experimental and modeled structures

Method Cross-docking Non-cross-docking

Average

EF0.01
a experimental

structures

Average

EF0.01
a modeled

structures

Average

EF0.01
a experimental

structures

Average

EF0.01
a modeled

structures

FINDSITEX 16.89 20.05 5.92 8.24

FINDSITEfilt 22.32 21.26 11.0 11.3

FINDSITEcomb 27.69 23.10 14.1 13.3

AUTODOCK Vina 8.92 2.17 5.45 2.48

DOCK 6 3.14 3.05 3.82 1.29

a EF0.01 is the enrichment factor relative to random for the top 1% of ranked molecules.

Table 2

AUAC values of different FINDSITE methods for DUD and 3576

DrugBank targets

DUD non cross docking DrugBank

Experimental

structures

Modeled

structures

Modeled

structures

FINDSITEcomb 0.77 0.75 0.87

FINDSITEfilt 0.74 0.74 0.86

FINDSITEX 0.67 0.70 0.69

FINDSITE – 0.60
Combined LHM approaches to proteome
scale virtual ligand screening
To combine the advantages of information provided by

distant holo templates when they are available with

experimental data and using pseudo holo templates when

they are not, FINDSITEcomb was developed [60��]. A

significant component of FINDSITEcomb, is an improved

version of FINDSITE, FINDSITEfilt that filters out false

positive ligands in threading identified templates by a

better binding site detection procedure that includes

binding site amino acid similarity. For virtual ligand

screening, FINDSITEcomb combines FINDSITEfilt with

FINDSITEX that uses the ChEMBL [2] and DrugBank

[61] ligand binding databases. The rank of each screened

ligand is the best of its three ranks to ligands using

fingerprints derived from the PDB, ChEMBL, and Drug-

Bank libraries. In what follows, we summarize the results

of FINDSITEcomb in benchmarking mode, where all

template proteins with >30% sequence identity to a

target are excluded. We note that in large scale testing

FINDSITEcomb produces significant virtual screening

predictions for about 75% of an average proteome [33].

Comparison of LHM to traditional docking
approaches
The DUD set is designed to help test docking algorithms

by providing challenging decoys [62�]. For each active,

there are 36 decoys with similar physical properties (e.g.

molecular weight, calculated log P) but dissimilar chemi-

cal topology. Table 1 compares the relative performance

of FINDSITEcomb with traditional docking methods,

including AUTODOCK Vina [46�] and DOCK 6 [31],

in cross-docking (a realistic scenario), where all 97,974

nonredundant DUD ligands are screened against all

targets, as well as in non-cross-docking, where screening

is just done against the experimentally determined active

and inactive molecules. Results are presented for crystal

structures and TASSERVMT-lite modeled structures. For

both cases, each FINDSITE component performs better

than AUTODOCK Vina or DOCK 6. While the perform-

ance of traditional methods deteriorates when models are

used, FINDSITE-based approaches do not. Finally, in

[63], several docking programs were compared for virtual
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screening accuracy in non-cross-docking on experimental

structures on DUD. FINDSITEcomb, whose mean aver-

age area under the ROC curve, the Area Under the

Accumulation Curve, AUAC = 0.77, performs as well as

the best performing GLIDE (v4.5) [28] (mean

AUAC = 0.72). FINDSITEcomb performs better than all

other compared methods: DOCK 6 (mean AUAC = 0.55),

FlexX [30] (mean AUAC = 0.61), ICM [27] (mean

AUAC = 0.63), PhDOCK (mean AUAC = 0.59)

[29,64,65] and Surflex [63] (mean AUAC = 0.66). Table

2 shows the AUAC values using both experimental and

modeled structures for FINDSITEcomb with

AUAC = 0.77 and 0.75, respectively, as well as its con-

stituent components for both experiment and modeled

structures. As in Table 1, the dominant contribution to

the success of FINDSITEcomb is due to FINDSITEfilt

whose AUAC = 0.74 for experimental and modeled struc-

tures is the same.

In addition to being broadly applicable, FINDSITEcomb

is considerably faster than traditional docking methods.

On a single state of the art CPU, for a 325 residue protein

screened against 100,000 compounds, FINDSITEcomb is

�30 times faster than AUTODOCK Vina [46�] and �160

times faster than DOCK 6 [31]. Thus, FINDSITEcomb

can be applied to screen millions of compounds on a

proteomic scale. Despite the fact that predicted models

rather than high-resolution crystal structures are used,

LHM methods are very strongly competitive with

traditional docking approaches.
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Table 3

Performance of different FINDSITE based methods for 3576

DrugBank targets

Method Average EF0.01 # (%) of targets

having EF0.01 > 1

FINDSITE (PDB) 31.7 1526 (43%)

FINDSITEX 36.6 1714 (48%)

FINDSITEfilt (PDB) 46.0 2080 (58%)

FINDSITEcomb 52.1 2333 (65%)
Large-scale benchmarking tests on drug
target proteins and the prediction of off-target
interactions
FINDSITEcomb was tested in benchmarking mode on all

3576 DrugBank [66] targets <1000 residues in length.

Target and template structures are modeled with TAS-

SERVMT-lite [52]. The screened compound library

consists of all 6507 drugs (the true binders of all targets)

plus 67,871 ZINC8 nonredundant (culled to TC < 0.7)

compounds [56] as background. The results of FIND-

SITEcomb along with its component methods and the

original FINDSITE [20��] are compiled in Table 3.

FINDSITEcomb is better than any of its component

methods. Table 3 also shows that FINDSITEfilt is

better than FINDSITE [20��] by a significant �45%

for EF0.01 (46.0 vs. 31.7), as well as in its coverage of

targets with EF0.01 > 1 (58% vs. 43%). FINDSITEcomb

has an average EF0.01 of 52.1 and is better than random

(EF0.01 > 1) for 65% of the targets. Finally, Table 2,

column 4 shows the AUAC results for FINDSITE

FINDSITEcomb where AUAC = 0.87 and its constitu-

ent components. As in the DUD benchmark, the per-

formance of FINDSITEcomb is dominated by

FINDSITEfilt.

Another application of the LHM approach was in the

structural and functional characterization of the entire

human kinome [25�]. Encouraging virtual screening

results were presented for ligands predicted to bind to

the conserved ATP-binding pocket [56]. In a more rig-

orous test, crossreactivity virtual profiling of the human

kinome was done. For almost 70% of the inhibitors, their

alternate molecular targets can be effectively identified in

the human kinome with a high (>0.5) sensitivity, yet

relatively low false positive rate (<0.5) [67].

Conclusions
Just as the field of protein structure prediction has

greatly benefited by the development of template-

based approaches [54,68], we argue that LHM

[1,20��,37�,38,40�,41,42�] has matured to the point where

LHM is a powerful method for the prediction of ligand

binding sites and virtual ligand screening. It offers the

advantages that predicted as well as high-resolution struc-

tures can be successfully used, with minor diminution in

performance. While certainly not perfect, in virtual
Please cite this article in press as: Skolnick J, et al.: Are predicted protein structures of any value 

dx.doi.org/10.1016/j.sbi.2013.01.009

www.sciencedirect.com 
screening LHM results are often considerably better than

random and could be used to guide experimental screening

approaches.

As noted by Bourne and coworkers [69,70�] and is evident

from an analysis of DrugBank [61] targets, the binding of

ligand to a protein target other than the one for which the

drug was designed is quite common [66,71]. Moreover, in

PDB structures, very similar binding sites are found in

globally unrelated proteins [72��]. The challenge will be

to extend these observations to predicted low-to-moderate

resolution protein structures and then to apply them on a

proteomic scale. If so, LHM could be a powerful tool to help

repurpose FDA approved drugs and could help with the

elucidation of metabolic pathways [73]. These and other

related applications will undoubtedly be pursued in the near

future.
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