Rapidly rotating few bosons with long or short range repulsion: An exact diagonalization study

L. O. Baksmaty, C. Yannouleas, and U. Landman

School of Physics
Georgia Institute of Technology

Phys. Rev. A 75, 023620 (2007)

Hamiltonian in the LLL

We diagonalize:

$$
H_{L L L}=\hbar\left(\omega_{\perp}-\Omega\right) \hat{L}+\sum_{i<j}^{N} v\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

where

$$
v(\mathbf{r})=g \delta^{2}(\mathbf{r}) \quad \text { OR } \quad v(r)=\frac{c}{|\mathbf{r}|}
$$

using the basis of symmetrized wave functions (Permanents):

$$
\Phi_{A}=\sqrt{\frac{n_{1}!n_{2}!\ldots n_{M}!}{N!}} \sum_{P} u_{P_{\alpha 1}}(1) u_{P_{\alpha 2}}(2) \ldots u_{P_{\alpha N}}(N)
$$

Filling factor: $\mathrm{V}=\mathrm{N}(\mathbf{N}-1) /(2 \mathrm{~L})$

Ground states \& Magic numbers

Ground states \& Magic numbers

Formation of Rotating Boson Molecules (RBMs):

Small fractions ($\mathrm{V}<1 / 2$)

conlong interaction $\mathrm{N}=6$

RBMs, isomers, and the spectrum

COULOMB INTERACTION $\mathbf{N}=6$

Larger size N : multiple rings (Coulomb)

COULOMB INTERACTION $\mathrm{N}=11(3,8) \mathrm{I}_{\mathrm{gs}}=110+8(\mathrm{~V}<1 / 2)$

Particles on different rings rotate independently

Higher order correlation functions

N -point correlation is calculated by:

$$
P\left(\mathbf{r} ; \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N-1}\right)=\left|\Psi\left(\mathbf{r} ; \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N-1}\right)\right|^{2}
$$

Reveals formation of RMB at low angular momenta

 (large fractions: $v>1 / 2$) even when 2-point (CPD) does not

$\mathbf{N = 9 ; ~ Z e r o s ~ o f ~ N - p o i n t ~ c o r r e l a t i o n ~}$

Delta interaction

Coulomb interaction

Zeros for the $\mathbf{2}$ different interactions differ in charge

Conclusions

- The emerging crystalline structure (RBMs) in finite systems of rotating bosons does not depend strongly on range of interaction.
- For crystalline structures with multiple rings the rings rotate independently of each other.
- For larger fractions (smaller angular momenta) identification of crystalline structures requires higherorder (e.g. N-point) correlation functions.
- The ground states for various interaction ranges may be distinguished by the behaviour of the zeros of the Npoint correlation.

For references see: Phys. Rev. A 75, 023620 (2007)

