NUCLEAR AND PARTICLE-PHYSICS ASPECTS OF CONDENSED-MATTER NANOSYSTEMS

Constantine Yannouleas and Uzi Landman

 School of Physics, Georgia Institute of Technology

Common challenges in finite fermion systems, Buffalo, NY, 6-8 November 2013 Supported by the U.S. DOE (FG05-86ER45234)

Three (among others) major nuclear aspects:

- Surface plasmons/Giant resonances (via matrix RPA/LDA) in metal clusters [see, e.g., Yannouleas, Broglia, Brack, Bortignon, PRL 63, 255 (1989)]

- Electronic shells/deformation/fission
(via Strutinsky/ Shell correction approach) in metal clusters [see, e.g., Yannouleas, Landman, Barnett, in "Metal Clusters", edited by W. Ekardt, John-Wiley, 1999]

O Strongly correlated states (Quantum crystals/Wigner molecules/dissociation) in 2D semiconductor quantum dots and ultracold bosonic traps via symmetry breaking/symmetry restoration in conjunction with exact diagonalization (full Cl) [see, e.g., Yannouleas, Landman,
Rep. Prog. Phys. 70, 2067 (2007)]

Three (among others) major nuclear aspects:

- Surface plasmons/Giantresonances (via matrix RPA/LDA) etal clusters [see, e.g., Yannoulea ck, Bortignon,

NUCLEI
 PRL 63, 255

- Strongly a in 2D semi ultracold b symmetry in conjunct [see, e.g., Ya NO KS-DFT/ due to the selfinteraction error, and to the open problem of how to use multi-determinants and to Rep. Prog. PI restore symmetries in DFT

TWO VARIANTS OF SHELL CORRECTION METHOD (SCM) in condensed-matter nanosystems:

1) Fully microscopic (DFT-SCM) / Orbital-free DFT Based on Extended Thomas Fermi (ETF) sp densities and central potentials

Literature: Y\&L, PRB 48, 8376 (1993) (multiply anionic metal clusters)

Y\&L, Ch. 7 in "Recent Advances in Orbital-Free Density Functional Theory," Y.A. Wang and T.A. Wesolowski Eds. (Word Scientific, Singapore, 2013)
2) Semiempirical (SE-SCM)

Based on a triaxial H.O. (Nilsson) central potential + liquid drop model for smooth variation

Y\&L, PRB 51, 1902 (1995) (deformed metal clusters) Used extensively in nuclear physics

SCM-DFT (based on ETF) $\quad>$ KS-DFT

ETF potentials

ETF/ Smooth

Yannouleas \& Landman, PRB 48, 8376 (1993)

$$
T_{s h}=\sum_{i=1}^{\mathrm{occ}} \widetilde{\varepsilon}_{i}-\int \rho_{E T F}(\mathbf{r}) V_{E T F}(\mathbf{r}) d \mathbf{r},
$$

Shell correction: Difference of two kinetic energy terms

$$
\Delta E_{s h}=T_{s h}-T_{E T F}\left[\rho_{E T F}\right]
$$

Applications of DFT-SCM: neutral fullerene C_{60}
Y\&L, Chem. Phys. Lett. 217, 175 (1994)
ETF
ETF
density

Spherical Icosahedral

The Superatom States of Fullerenes and
Their Hybridization into the Nearly Free
Electron Bands of Fullerites Electron Bands of Fullerites

SECOND PART

Strong correlations and symmetry breaking/restoration in 2D finite systems

Constantine Yannouleas and Uzi Landman Phys. Rev. Lett. 82, 5325 (1999);
Rep. Prog. Phys. 70, 2067 (2007)

Collaborators:

Igor Romanovsky (ultracold bosons \& graphene nanostructures)
Yuesong Li (electrons in QDs)
Ying Li (electrons in Quantum Dot Molecules)
Leslie O. Baksmaty (ultracold bosons \& electrons in QDs)

1 Vertical quantum dot structure

The quanturn-dot structure studied at Delft and NTT in Japan is fabricated in the shape of a round pillar. The source and drain are doped semiconductor layers that conduct electricity. and are separated from the quantum dot by tunnel barriers 10 nm thick. When a negative voltage is applied to the metal side gate around the pillar, it reduces the diameter of the dot from about 500 nm to zero, causing electrons to leave the dot one at a time.

Vertical QD (Delft)

FlG. 1. SEM image of the gate geometry forming the quantum dot. This geometry enables a precisely known number of electrons $(N=0,1,2, \ldots, 50)$ to be trapped (Ref. 13) and produces a quasiparabolic confinement potential. Sweeping the plunger-gate voltage tunes both the shape and the chemical potential of the quantum dot.

Lateral QD (Ottawa)

Lateral QD Molecule (Delft)

Central common confining potential? Electronic Shells? (B=0; Circular QD)

2D Periodic Table?

4, 9, 16
 Hund's Rule

2, 6, 12, 20
Closed Shells

Kouwenhoven and Marcus, Physics World, June 1998

Wigner Crystals

On the Interaction of Electrons in Metals
E. Wigner, Princeton University
(Received October 15, 1934)

The energy of interaction between free electrons in an electron gas is considered. The interaction energy of electrons with parallel spin is known to be that of the space charges plus the exchange integrals, and these terms modify the shape of the wave functions but slightly. The interaction of the electrons with antiparallel spin, contains,
fact that the electrons repell each other and try to keep as far apart as possible. The total energy of the system will be decreased through the corresponding modification of the wave function. In the present paper it is attempted to calculate this "correlation energy" by an approximation method which is, essentially, a development of the energy

WC:

Classical

 Electron Crystals/ Mean Field/ Broken Symmetry$$
\begin{aligned}
& \text {... electrons repell each other and try to keep as far apart as } \\
& \text { possible. The total energy of the system will be decreased } \\
& \text { through the corresponding modification of the wave function. } \\
& \text {... "correlation energy"... }
\end{aligned}
$$

"If the electrons had no kinetic energy, they settle in configurations which correspond to the absolute minima of the potential energy. These are closepacked lattice configurations, with energies very near to that of the bodycentered lattice ..."

Our work: Quantum Crystals/ Beyond Mean Field/ Full Symmetry

Wioner molecule in a 2D circular QD.
Electron density (ED) from Unrestricted Hartree-Fock (UHF). Symmetry breaking (localized orbitals). Concentric polygonal rings

Concentric rings: $(1,6,12)$ Y\&L,
PRB 68, 035325 (2003)

Concentric rings: $(0,6)$ left, $(1,5)$ right Y\&L, PRL 82, 5325 (1999)

> Exact electron densities are circular! No symmetries are broken! (N, small, large?)

HAMILTONIAN FOR CLEAN 2D QD'S AND QDM'S

$$
H=\sum_{i=1}^{N_{e}} H(i)+\sum_{i=1}^{N_{e}} \sum_{\mathrm{j}>\mathrm{i}}^{\mathrm{N}_{\mathrm{e}}} \frac{\mathrm{e}^{2}}{\kappa r_{\mathrm{ij}}}
$$

$$
\begin{aligned}
& \mathrm{H}(\mathrm{i})=\mathrm{H}_{0}(\mathrm{i})+\mathrm{H}_{\mathrm{B}}(\mathrm{i}) \\
& \frac{\mathrm{i}}{2 \mathrm{~m}^{*}}+\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)
\end{aligned}
$$

External confinement
Parabolic, single QD
Two-center oscillator with V_{b} control $\}$ QDM

$$
\begin{array}{cc}
{\left[\left(\vec{p}_{i}-e \vec{A}_{i} / c\right)^{2}-\vec{p}_{i}^{2}\right] / 2 m^{*}+g^{*} \mu_{B} \vec{B} \cdot_{S_{i}} / \hbar} \\
\vec{A}_{i}=B\left(-y_{i}, x_{i}, 0\right) / 2 \quad \uparrow
\end{array}
$$

H can be generalized to:
Multi-component systems

HAMILTONIAN FOR CLEAN 2D QD'S AND QDM'S

$$
H=\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{e}}} \mathrm{H}(\mathrm{i})+\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{e}}} \sum_{\mathrm{j}>\mathrm{i}}^{\mathrm{N}_{\mathrm{e}}} g \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

$$
\begin{aligned}
& {\left[\left(\vec{p}_{i}-e \vec{A}_{i} / g\right)^{2}-\vec{p}_{i}^{2}\right] / 2 m^{*}+g^{*} \mu_{B} \vec{B} \cdot \vec{S}_{i} / \hbar} \\
& \vec{A}_{i}=B\left(-y_{i}, x_{i}, 0\right) / 2 \quad \uparrow
\end{aligned}
$$

H can be generalized to Neutral Bosonic Multi-component syste systems

QD

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

- Essential Parameter at $\mathrm{B}=0$: (parabolic confinement)

$$
R_{w}=\left(e^{2} / \kappa l_{0}\right) / \hbar w_{0} \sim 1 /\left(\hbar^{3} w_{0}\right)^{1 / 2}
$$

$$
R_{\delta}=g m /\left(2 \pi \hbar^{2}\right)
$$

e-e Coulomb repulsion

$$
\left.I_{0}=\left(\hbar / m^{\star} w_{0}\right)^{1 / 2}\right\} \quad \begin{aligned}
& \text { Spatial Extent } \\
& \text { of 1s s.p. state }
\end{aligned}
$$

κ : dielectric const. (12.9)
m^{\star} : e effective mass ($0.067 \mathrm{~m}_{\mathrm{e}}$) GaAS $\hbar \omega_{0}(5-1 \mathrm{meV})=>R_{w}(1.48-3.31)$

- In a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)
Essential parameters: Separation (d) Potential barrier (V_{b}) Magnetic field (B)

RESOLUTION OF SYMMETRY DILEMMA: RESTORATION OF BROKEN SYMMETRY BEYOND MEAN FIELD (Projection)!

- Per-Olov Löwdin (Chemistry - Spin)

- R.E. Peierls and J. Yoccoz
(Nuclear Physics - L, rotations)

WAVE-FUNCTION BASED APPROACHES

TWO-STEP METHOD

A HIERARCHY OF APPROXIMATIONS

[^0]Correlations

Non-linear equations Bifurcations

EMERGENT PHENOMENA

Restoration of linearity of many-body equatons

EXACT
DIAGONALIZATION
(Full Configuration Interaction)
When possible (small N):

Physics less
transparent
compared to
\square
Pair correlation functions, CPDs

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)

Mean-field broken-symmetry states

Bosons (delta): Different orbitals (Permanent)

$$
\begin{align*}
& \left|\Phi_{N}^{\mathrm{UBHF}}\right\rangle \propto \\
& \sum_{P\left(i_{m}\right)} \varphi_{1}\left(\mathbf{r}_{i_{1}}\right) \varphi_{2}\left(\mathbf{r}_{i_{2}}\right) \ldots \varphi_{N}\left(\mathbf{r}_{i_{N}}\right) \\
& \varphi_{j}(\mathbf{r}) \equiv \frac{1}{\sqrt{\pi} \Lambda} \exp \left[\frac{\left(\mathbf{r}-\mathbf{R}_{j}\right)^{2}}{2 \Lambda^{2}}-i \mathbf{r} \cdot\left(\mathbf{Q} \times \mathbf{R}_{j}\right)\right] \\
& \quad \Lambda \equiv \sqrt{\hbar /(2 m \Omega)} \quad \mathbf{Q} \equiv \hat{\mathbf{z}} /\left(2 \Lambda^{2}\right) \tag{2,7}
\end{align*}
$$

Electrons (Coulomb): DODS (Slater determinant)
Wigner molecule in a 2D circular QD. Electron density (ED) from Unrestricted Hartree-Fock.
Symmetry breaking (localized orbitals). Concentric rings $(1,6,12)$.

- To restore the good angular momentum of the wave function one can use the projection operator

$$
\hat{P}_{L}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i \theta(L-\hat{L})}=\delta(L-\hat{L})
$$

- Projected wave functions can be written as a Fourier transform of unprojected wave function

$$
\left|\Phi_{N, L}^{\text {PRJ }}\right\rangle=\hat{P}_{L}\left|\Phi_{N}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left|\Phi_{N}(\theta)\right\rangle e^{i \theta \theta}
$$

Here | $\left.\Phi_{N}(\theta)\right\rangle$ is the original UBHF permanent, rotated by an azimutal angle. The wave function $\left|\Phi_{\text {PRAJ }}\right\rangle$ has not only good angular momentum, but also its energy is lower than the energy of | Φ_{N} 〉

Romanovsky, Yannouleas, Baksmaty, Landman Phys. Rev. Lett. 97, 090401 (2006) (RBMs)

Rotating Boson Molecules (Circular trap) Ground states: Energy, angular momentum and probability densities.

Rotating Boson Molecules (Circular trap)

 Ground states: Energy, angular momentum and probability densities.Probability densities

SPD

Broken Symmetry
SPD

Symmetry restored

$R_{W}=10$

Rotating Frame

Magnetic Field

The hidden crystalline structure in the projected function can be revealed through the use of conditional probability density (CPD).

$$
\rho\left(\mathbf{r} \mid \mathbf{r}_{\mathbf{0}}\right)=\langle\Phi| \sum_{i \neq j} \delta\left(\mathbf{r}_{i}-\mathbf{r}\right) \delta\left(\mathbf{r}_{j}-\mathbf{r}_{0}\right)|\Phi\rangle /\langle\Phi \mid \Phi\rangle
$$

EXD/ N=12/ Lowest Landau Level/ High B/ Floppy Rotor

$(3,9)$

FIG. 11. (Color online) CPDs for $N=12$ electrons and with angular momentum $L=132(\nu=1 / 2)$ calculated with EXD in the lowest Landau level. The electrons are arranged in a $(3,9)$ structure. The observation point (solid dot) is placed on the outer ring at r_{0} $=5.22 l_{B}$ (left frame), and on the inner ring at $r_{0}=1.87 l_{B}$ (right frame). Lengths in units of l_{B}. CPDs (vertical axes) in arbitrary units.

Yuesong Li, Y\&L, PRB 73, 075301 (2006)

Exact

Quantum Dot Helium

2e QD, $R_{w}=200$

COLLECTIVE MOTION OF RIGID "TRIATOMIC" MOLECULE
 Rotation

 Bending Vibration
 Stretching
 Vibration

$$
\mathrm{E}_{\mathrm{NM}, \mathrm{~nm}}=\mathrm{Cm}^{2}+(\mathrm{n}+1 / 2) \hbar{\omega_{\mathrm{s}}}+(2 \mathrm{~N}+\mathrm{M}+1) \hbar{\omega_{\mathrm{b}}}
$$

TWO-STEP METHOD

SECOND STEP:

RESTORATION OF SYMMETRIES VIA PROJECTION

TOTAL SPIN:

$$
P_{s} \equiv \prod_{s^{\prime} \neq s} \frac{s^{2}-s^{\prime}\left(s^{\prime}+1\right) \hbar^{2}}{\left[s(s+1)-s^{\prime}\left(s^{\prime}+1\right)\right] \hbar^{2}}
$$

$\begin{aligned} & S^{2} \Phi_{\mathrm{UHF}}= \hbar^{2}\left[\left(N_{\alpha}-N_{\beta}\right)^{2} / 4+N / 2+\right. \\ &\left.\sum_{i<i} \sigma_{i j}\right] \\ & \text { interchanges spins }\end{aligned}$
Two electrons in a DQD:

$$
\begin{aligned}
\Psi_{\mathrm{GVB}}^{\mathrm{s}}(1,2) & =n_{\mathrm{s}} \sqrt{2} P_{0} \Psi_{\mathrm{UHF}}(1,2) \hookleftarrow \sin \text { get } \\
2 \sqrt{2} P_{0} \Psi_{\mathrm{UHF}}(1,2) & =\left(1-\varpi_{12}\right) \sqrt{2} \Psi_{\mathrm{UHF}}(1,2) \\
& =|u(1) \bar{v}(2)\rangle-|\bar{u}(1) v(2)| .
\end{aligned}
$$

GVB, Generalized Valence Bond

 GHL, Generalized Heitler London

No circular symmetry

Y\&L, Eur. Phys. J. D 16, 373 (2001) Int. J. Quantum Chem. 90, 699 (2002)

Anisotropic Quantum Dot Helium (Pinned WM)

C. Ellenberger et al., Phys. Rev. Lett. 96, 126806 (2006)
(No Zeeman splitting)

$\mathrm{N}=2 \mathrm{e}$

$\underline{n}=0.72$

Single QD ETH Zurich (K. Enssilin. Th. Ihn...)

Excitation spectrum of (elliptic)

Anisotropic Quantum Dot Helium (Pinned WM)

C. Ellenberger et al., Phys. Rev. Lett. 96, 126806 (2006)
(No Zeeman splitting)

ETH Zurich single QD

ETH single QD

$4.23 \mathrm{meV} \quad \mathcal{H}=H\left(\mathbf{r}_{1}\right)+H\left(\mathbf{r}_{2}\right)+\gamma e^{2} /\left(\kappa r_{12}\right)$

$$
H(\mathbf{r})=T+\frac{1}{2} m^{*}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)+\frac{g^{*} \mu}{\hbar} \mathbf{(} \cdot \mathbf{s}
$$

$$
T=(\mathbf{p}-e \mathbf{A} / c)^{2} / 2 m^{*}, \text { with } \mathbf{A}=0.5(-B y, B x, 0)
$$

$\mathrm{B}=3.8 \mathrm{~T}$

UHF $\Psi_{\mathrm{UHF}}(1 \uparrow, 2 \downarrow) \equiv\left|u_{L}(1 \uparrow) u_{R}(2 \downarrow)\right\rangle$

$$
u_{L}(1 \uparrow) \equiv u_{L}\left(\mathbf{r}_{1}\right) \alpha(1) \text { and } u_{R}(2 \downarrow) \equiv u_{R}\left(\mathbf{r}_{2}\right) \beta(2)
$$

$\Psi_{G H L}^{s, t}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \propto\left(u_{L}\left(\mathbf{r}_{1}\right) u_{R}\left(\mathbf{r}_{2}\right) \pm u_{L}\left(\mathbf{r}_{2}\right) u_{R}\left(\mathbf{r}_{1}\right)\right) \chi^{s, t}$

$$
\chi^{s, t}=(\alpha(1) \beta(2) \mp \alpha(2) \beta(1))
$$

Entangled

ETH single QD

hwx=4.23 meV; hwy=5.84 meV;
$\mathrm{m}^{*}=0.070 ; \quad \mathbb{K}=12.5 ; \quad \Upsilon=0.86$

Three electron anisotropic QD

 Method: Exact Diagonalization (EXD)Anisotropic confinement

Electron Density (ED)
(spin resolved) Conditional Probability Distribution (CPD)

Yuesong Li, Y\&L, Phys. Rev. B 76, 245310 (2007)

EXD wf $(1 / 2,1 / 2 ; 1) \sim|\phi \hat{\phi}\rangle-|\hat{\phi}\rangle\rangle$
Entangled three-qubit W-states

Quantum Dot Helium Molecule

Ying Li, Y\&L, Phys. Rev. B 80, 045326 (2009) EXD calculation

Quantum Dot Helium Molecule

Ying Li, Y\&L, Phys. Rev. B 80, 045326 (2009) EXD calculation

Under appropriate conditions, 2D electrons (and ultracold repelling bosons) exhibit localization (hidden or explicit) and organize themselves in geometric shells, forming Rotating (or pinned) Wigner Molecules (Quantum Crystallites) (semiconductor Quantum Dots, Ultracold rotating bosonic traps, Dissociation of natural molecules)

Instead of:

For electrons: organizing in electronic shells associated with a confining central potential (Cluster physics/ jellium model)

For bosons: forming a Bose-Einstein condensate
In the LLL: Rovibrational molecular theory offers alternative description to Laughlin and composite-fermion approaches for the fractional quantum Hall effect

THIRD PART

Topological states in graphene nanorings: Particle-physics analogies beyond the (massless and constant mass) Dirac fermion

A different physical process for electron localization Topology (geometry) of system
One-body / no e-e interaction/ fraction of e localized

Romanovsky, Yannouleas, Landman, PRB 87, 165431 (2013)

2D Graphene: honeycomb lattice Geim and Novoselov, Nobel Prize, 2010

Massless Jirac-Weyl fermion
Graphene Nanosystems

Armchair or Zigzag edge terminations

Open a gap?
Graphene quantum dots
Graphene nanorings

$\mathrm{N}=3 \mathrm{~m}$ (Class I) Semiconductor

$\mathrm{N}=3 \mathrm{~m}+1$ (Class II) Semiconductor

$\mathrm{N}=3 \mathrm{~m}+2$ (Class III) Metallic

Tight-Binding (TB)

To determine the single-particle spectrum [the energy levels $\varepsilon_{i}(B)$] in the tight-binding calculations for the graphene nanorings, we use the hamiltonian

$$
\begin{equation*}
H_{\mathrm{TB}}=-\sum_{<i, j>} \tilde{t}_{i j} c_{i}^{\dagger} c_{j}+h . c ., \tag{1}
\end{equation*}
$$

with $<>$ indicating summation over the nearest-neighbor sites i, j. The hopping matrix element

$$
\begin{equation*}
\tilde{t}_{i j}=t_{i j} \operatorname{xp}\left(\frac{i e}{\hbar c} \int_{\mathbf{r}_{i}}^{\mathbf{r}_{j}} d \mathbf{s} \cdot \mathbf{A}(\mathbf{r})\right), \tag{2}
\end{equation*}
$$

where \mathbf{r}_{i} and \mathbf{r}_{j} are the positions of the carbon atoms i and j, respectively, and \mathbf{A} is tho vector potential associated with the applied constant magetic field B applied perpendicular to the plane of the nanorno.

Two atoms in a unit cell/ Two sublattices A and B

1D Generalized Dirac equation

α and β : any two of the three 2×2 Pauli matrices

$$
\Psi=\binom{\psi_{u}}{\psi_{l}}
$$ scalar (Higgs) field / position-dependent mass m(x)

Dirac-Kronig-Penney Superlattice

Transfer matrix method
a single side/ 3 regions

$$
\boldsymbol{\Omega}_{K}(x)=\left(\begin{array}{cc}
e^{i K x} & e^{-i K x} \\
\Lambda e^{i K x} & -\Lambda e^{-i K x}
\end{array}\right)
$$

(V2, m2)

$$
K^{2}=\frac{(E-V)^{2}-m^{2} v_{F}^{4}}{\hbar^{2} v_{F}^{2}}
$$

$$
\Lambda=\frac{\hbar v_{F} K}{E-V+m v_{F}^{2}}
$$

Spectra/ Rings with semiconducting arms

Yellow: positive mass

Red: negative mass

Magnetic flux (magnetic field B)

Mixed
Metallic-semiconductor N=17 (Class III) / N=15 (Class I)
(c)

e/2

fractional charge

1D Generalized Dirac equation

α and β : any two of the three 2×2 Pauli matrices
$[E-V(x)] I \Psi+i \hbar v_{F} \alpha \frac{\partial \Psi}{\partial x}-\beta \phi(x) \Psi=0$

fermion

$$
\Psi=\binom{\psi_{u}}{\psi_{l}}
$$

electrostatic potential
scalar (Higgs) field / position-dependent mass m(x)

Relativistic quantum-field-theory Lagrangian

$$
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{\phi} \quad \text { Yukawa coupling }
$$

$$
\mathcal{L}_{f}=-i \hbar \Psi^{\dagger} \frac{\partial}{\partial t} \Psi-i \hbar v_{F} \Psi^{\dagger} \alpha \frac{\partial}{\partial x} \Psi-\phi \Psi^{\dagger} \beta \Psi
$$

$$
\mathcal{L}_{\phi}=-\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-V(\phi) \boldsymbol{\psi} V(\phi)=\frac{\xi}{4}\left(\phi^{2}-\zeta^{2}\right)^{2}
$$

Euler-Lagrange equation
$-\frac{\partial^{2} \phi}{\partial x^{2}}+\xi\left(\phi^{2}-\zeta^{2}\right) \phi=0$ solutions
$1 \quad \phi_{0}$
(Symmetry breaking)
constant mass Dirac fermion

kink soliton/ zero-energy fermionic soliton

kink soliton

zero-energy fermionic soliton (Dirac eq.)

$$
\Psi_{S}(x) \propto\binom{\exp \left(-\int_{0}^{x} \phi_{k}\left(x^{\prime}\right) d x^{\prime}\right)}{0}
$$

$$
\mathcal{L}_{\phi}=-\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-V(\phi) \boldsymbol{\psi} V(\phi)=\frac{\xi}{4}\left(\phi^{2}-\zeta^{2}\right)^{2}
$$

Euler-Lagrange equation

$-\frac{\partial^{2} \phi}{\partial x^{2}}+\xi\left(\phi^{2}-\zeta^{2}\right) \phi=0$ solutions
$1 \phi_{0}$
(Symmetry breaking)
constant mass Dirac fermion

kink soliton/ zero-energy fermionic soliton

kink soliton

$$
\phi_{k}(x)=\zeta \tanh \left(\sqrt{\frac{\xi}{2}} \zeta x\right)
$$

 Jackiw-Rebbi, PRD 13, 3398 (1976) Ic eq.)

$$
\Psi_{S}(x) \propto\binom{\exp \left(-\int_{0}^{x} \phi_{k}\left(x^{\prime}\right) d x^{\prime}\right)}{0}
$$

Full circle

1) Instead of usual quantum-size confinement effects (case of clusters/ analogies with nuclear physics), the spectra and wave functions of quasi-1D graphene nanostructures are sensitive to the topology of the lattice configuration (edges, shape, corners) of the system.
2) The topology is captured by general, position-dependent scalar fields (variable masses, including alternating +/- masses) in the relativistic Dirac equation.
3) The topology generates rich analogies with 1D quantum-field theories, e.g., localized fermionic solitons with fractional charges associated with the Jackiw-Rebbi model [PRD 13, 3398 (1976)]
4) Semiconducting hexagonal rings behave as 1D topological insulators with states well isolated from the environment (zero-energy states within the gap with charge accumulation at the corners).

[^0]: Total Energy
 Restricted Hartree-Fock (RHF)
 All spin and space symmetries are preserved
 Double occupancy / e-densities: circularly symmetric
 Single Slater determinant (central mean field)
 \downarrow
 Unrestricted Hartree-Fock (UHF)
 Total-spin and space symmetries (rotational or parity) are broken / Different orbitals for different spins
 Solutions with lower symmetry (point-group symmetry)
 Lower symmetry explicit in electron densities
 Single Slater determinant (non-central mean field)
 Implementation of UHF: Pople-Nesbet Eqs.
 2D harmonic-oscillator basis set
 Two coupled matrix Eqs. (for up and down spins)

 $$
 \downarrow
 $$

 Restoration of symmetry via projection techniques
 Superposition of UHF Slater det's (beyond mean field)
 e-densities: circularly symmetric
 Good total spin and angular momenta
 Lower symmetry is INTRINSIC (or HIDDEN)
 Detection of broken symmetry:
 CPDs and rovibrational excitations of quantum dots
 CPDs and dissociation of quantum dot molecules

