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Three (among others) major nuclear aspects:

GIANT DIPOLE RESONANCE
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(via matrix RPA/LDA) in metal clusters : - Na,
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[see, e.g., Yannouleas, Broglia, Brack, Bortignon,
PRL 63, 255 (1989)]

(via Strutinsky/ Shell correction approach) in metal clusters
[see, e.g., Yannouleas, Landman, Barnett, in “Metal Clusters”,
edited by W. Ekardt, John-Wiley, 1999]

In 2D semiconductor quantum dots and
ultracold bosonic traps via
symmetry breaking/symmetry restoration

In conjunction with exact diagonalization (full CI)
[see, e.g., Yannouleas, Landman,
Rep. Prog. Phys. 70, 2067 (2007)]
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TWO VARIANTS OF SHELL CORRECTION METHOD (SCM)

in condensed-matter nanosystems:

1) Fully microscopic (DFT-SCM) / Orbital-free DFT
Based on Extended Thomas Fermi (ETF)
sp densities and central potentials

Literature: Y&L, PRB 48, 8376 (1993)

Y&L, Ch. 7 in "Recent Advances in Orbital-Free Density Functional Theory,"
Y.A. Wang and T.A. Wesolowski Eds. (Word Scientific, Singapore, 2013)

2) Semiempirical (SE-SCM)
Based on a triaxial H.O. (Nilsson) central potential
+ liquid drop model for smooth variation

Y&L, PRB 51, 1902 (1995) (deformed metal clusters)

Used extensively in nuclear physics



SCM-DFT (based on ETF) KS-DFT
ETF potentials ETF/ Smooth
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SECOND PART



Constantine Yannouleas and Uzi Landman
Phys. Rev. Lett. 82, 5325 (1999);
Rep. Prog. Phys. 70, 2067 (2007)

(ultracold bosons & graphene nanostructures)
(electrons in QDs)
(electrons in Quantum Dot Molecules)

(ultracold bosons & electrons in QDs)
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FIG. . SEM image of the g ceometry forming the quantum
dot. This geometry enables a precisely known number of electrons
(N=0.1.2,....50) to be trapped (Ref. 13) and produces a quasipa-
rabolic confinement potential. Sweeping the plunger-gate voltage

tunes both the shape and the chemical potential of the quantum dot.
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2D Periodic Table?
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Kouwenhoven and Marcus, Physics World, June 1998



Wigner Crystals WC:
Classical
Electron

Crystals/
On the Interaction of Electrons in Metals .
. . Mean Field/
E. WIGNER, Princeton Universily

(Received October 15, 1934) Broken

DECEMBER 1, 1934 PHYSICAL REVIEW VOLUME 46

The energy of interaction between free electrons in an fact that the electrons repell each other and try to keep Sym metry
electron gas is considered. The interaction energy of as far apart as possible. The total energy of the system
electrons with parallel spin is known to be that of the will be decreased through the corresponding modification
space charges plus the exchange integrals, and these terms  of the wave function. In the preeent paper it is attempted
modify the shape of the wave functions but slightly. The to calculate this “correlation energy” by an approximation
interaction of the electrons with antiparallel spin, contains, method which is, essentially, a development of the epergy

correlatlon energy”

“If the electrons had no kinetic energy,
they settle in configurations which
correspond to the absolute minima of
the potential energy. These are close- Crystals/
packed lattice configurations, with Beyond

energies very near to that of the body- Mean Field/
centered lattice ... ” Full Symmetry

Our work:
Quantum



‘ Circular external confinement

In a 2D circular QD.
Electron density (ED) from
Unrestricted Hartree-Fock (UHF).
Symmetry breaking (localized orbitals).
Concentric polygonal rings Concentric rings: (1,6,12)

Exact electron
densities
are circular!

No symmeiries
are broken!
(N, small, large?)

Concentric rings: (0,6) left, (1,5) right

Restoration of symmetry = Quantum crystal



LTONIAN FOR CLEAN 2D QD'S AND QD
Ne Ne Ne e2
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pi
»
External confinement
Parabolic, single QD
Two-center oscillator
with Vb control } QDM
A =

=By, x,, 0)2

Zeeman
,ﬂ can be generalized to:
Multi-component systems
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CONTROL PARAMETERS FOR SYMMETRY BREAKING

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

e Essential Parameter at B=0: (parabolic confinement)
2 3
R, = (/&) huw ~ 1/(hw)

e AN

1/2 i
* Spatial Extent
(h/m """’g) } of 1s s.p. state

1/2

ln =
k : dielectric const. (12.9)

m”: e effective mass (0.067 m,) GaAS

fuw, (5-1meV) => R, (1.48-3.31)

e |[n a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)
Potential barrier (Vb)
Magnetic field (B)

R

0

= om/(2wh)




RESOLUTION OF SYMMETRY DILEMMA:

(Projection)!

* Per-Olov Lowdin
(Chemistry - Spin)

 R.E. Pelerls and J. Yoccoz
(Nuclear Physics — L, rotations)




WAVE-FUNCTION BASED APPROACHES

A HIERARCHY OF APPROXIMATIONS

(Full Configuration Interaction)

Correlations When possible
(small N):

Non-linear equations Hi 0] h numerical

Bifurcations accuracy
EMERGENT

PHENOMENA

Restoration of linearity
of many-body equatons

. Pair correlation functions,
on of g I.J:H.r'ltl.ll:lz'll ]111{] rll-::r: H” IIJI I-':[ C P D S

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)



Bosons (delta): Different orbitals (Permanent)

Wigner molecule in a 2D circular QD.
Electron density (ED) from
Unrestricted Hartree-Fock.

Symmetry breaking (localized orbitals).

Concentric rings (1,6,12).




« To restore the good angular momentum of the wave function
one can use the projection operator

« Projected wave functions can be written as a Fourier transform
of unprojected wave function

Here | @, (0) ) is the original UBHF permanent, rotated by an azimutal
angle. The wave function | ®pr;) has not only good angular
momentum, but also its energy is lower than the energy of | @)

Romanovsky, Yannouleas, and Landman Romanovsky, Yannouleas, Baksmaty, Landman

Phys. Rev. Lett. 93, 230405 (2004) (RBMs) Phys. Rev. Lett. 97, 090401 (2006) (RBMs)



Probability densities Magnetic Field




Probability densities Rotating Frame Magnetic Field

SPD

SPD :

Symmetry restored




EXD/ / Lowest Landau Level/ High B/
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FIG. 11. (Color online) CPDs for N=12 electrons and with an-
gular momentum L=132 (v=1/2) calculated with EXD in the low-
est Landau level. The electrons are arranged in a (3,9) structure. The
observation point (solid dot) is placed on the outer ring at r
=5.22lp (left frame), and on the inner ring at ro=1.87lp (right
frame). Lengths in units of /z. CPDs (vertical axes) in arbitrary
units.

Yuesong LI, Y&L, PRB 73, 075301 (2006)



Exact val, PRL 85,1726 (2000) Quantum Dot Helium
2e QD,

COLLECTIVE MOTION OF RIGID
"TRIATOMIC" MOLECULE
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TWO-STEP METHOD

SECOND STEP:
RESTORATION OF SYMMETRIES VIA PROJECTION

TOTAL SPIN:

1_[ $2 —§'(s + i
[s(s + 1) — s'(s' + D

%8

S?dunr = 1 |:(N01 — Np)?/4+N/2 + Z w'ij:| PunF
A i<j

rnbev dhamges SiTS
Two electrons in a DQD:

Weve(1,2) = e 2PoWunr(1, 2) € S ,‘y‘afe‘ﬁ

24/2PoWung(1,2) = (1 — w12)v2¥ynp(1, 2)

= [u(1)22)) - |#(L(2). Two d&f (3

GVB, Generalized Valence Bond
GHL, Generalized Heitler London

Y&L, Eur. Phys. J. D 16, 373 (2001)
Int. J. Quantum Chem. 90, 699 (2002)

localized orbitals

b o

No circular
symmetry




(elliptic)
(Pinned WM)

C. Ellenberger et al.,
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(elliptic)
(Pinned WM)

C. Ellenberger et al.,
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ETH single OD
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H(r) =T+ sm"(wir” +w,y”) +
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ur(1 1) = up(ry)a(l) and ug(2 |) = ug(ry)3(2)

Y ¢

5. t P 3 P 5 P 3 P 3 ; .
U (r1,ra) x (up(ri)ug(ry) £ur (ro)up(ri))x
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ETH single OD

Dissociation
of the 2e WM
within the single QD




Three electron anisotropic QD —

| e Anisotropic
Method: Exact Diagonalization (EXD) confinement

Quantum D
Crystallite -

Electron
Density
(ED)

(spin resolved)
Conditional
Probability
Distribution
(CPD)

o 8 Ph>—19pe>

245310 (2007) Entangled three-qubit




Quantum Dot Helium Molecule
Ying Li, Y&L, Phys. Rev. B 80, 045326 (2009)
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Quantum Dot Helium Molecule
Ying Li, Y&L, Phys. Rev. B 80, 045326 (2009)
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Under appropriate conditions, 2D electrons (and ultracold
repelling bosons) exhibit localization (hidden or explicit) and
organize themselves in geometric shells, forming

Rotating (or pinned) Wigner Molecules (Quantum Crystallites)
(semiconductor Quantum Dots, Ultracold rotating bosonic
traps, Dissociation of natural molecules)

For electrons: organizing in electronic shells associated with a
confining central potential (Cluster physics/ jellium model)

For bosons: forming a Bose-Einstein condensate

In the LLL: Rovibrational molecular theory offers alternative
description to Laughlin and composite-fermion approaches
for the fractional qguantum Hall effect




THIRD PART

nanorings:
Particle-physics analogies (massless
and constant mass)

A different physical process for electron localization
Topology (geometry) of system
One-body / no e-e interaction/ fraction of e localized

Romanovsky, Yannouleas, Landman,
PRB 87, 165431 (2013)



2D Graphene:
honeycomb lattice
Geim and Novoselov,
Nobel Prize, 2010

Graphene » el rl;z._l). Free P . Nanoribborn with
Sl At > @ © ARMCHAIR edzes
Nanosystems s - '
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Graphene quantum dots Graphene nanorings



Energy (t=2.7eV)

N=3m (Class 1)  N=3m+1 (Class ll) \-3m+2 (Class 1)

Semiconductor Semiconductor Metallic




To determine the single-particle spectrum [the energy
levels ¢;(B)] in the tight-binding calculations for the
graphene nanorings, we use the hamiltonian

HTB - — Z E-zijcjcj + h.C.ﬂ (1)

<ij>

with <> indicating summation over the nearest-neighbor
sites 7, 7. The hopping matrix element

ie [T .
tij Xp (E/ ds - A( )) ?

r;

where r; and r; are the poss{ons of the carbon atoms i
and 7, respectively, and A is tIifyector potential associ-
ated with the applied constant madwgtic field B applied
perpendicular to the plane of the nanormg

2.1 eV
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1D Generalized Dirac equation

and : any two of the three 2x2 Pauli matrices
oV

E—V(x)[IV +ilhvpa— — Bo(z)V =0

5’ £z

electrostatic potential scalar (Higgs) field / position-dependent mass

E—V +mu 7




Spectra/

Rings with
semiconducting
arms

f“ 0.05

i 5 |
“forbidden” band

Yellow: positive mas 32 10 1 2

(]a/ (> g

Magnetic flux (magnetic field B)
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1D Generalized Dirac equation

and [1: any two of the three 2x2 Pauli matrices fermion
OV u

E—V(a )}Illl—l—zﬁzlr(})—— Bo(x
Jx

electrostatic potential scalar (Higgs) field / position-dependent mass

o= _37}11;1"_111* — ihop Wt rl-—‘l"

ot o

fermionic



double well

(I -
constant mass

Dirac fermion

kink soliton/ | |
fermionic soliton Kink soliton

dr{x) = { tanh ( 1, (T

fermionic soliton (Dirac eq.)

W(z) o ( exp (— |||J op(z")dx") )




double well

(.
constant mass

Dirac fermion

kink soliton/ | |
fermionic soliton Kink soliton

() o ( exp (— ._J;:I[-?l::u;, (z")dz") )




Full circle

1) Instead of usual
, the spectra and wave functions of
qguasi-1D graphene nanostructures are sensitive to the
of the system .

2) The topology is captured by general,
In the relativistic
Dirac equation.

3) The topology generates rich analogies with :
e.g., associated
with the Jackiw-Rebbi model [PRD 13, 3398 (1976)]

4) Semiconducting hexagonal rings behave as 1D topological
iInsulators with states well isolated from the environment (zero-energy
states within the gap with charge accumulation at the corners).



