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Three (among others) major nuclear aspects:  

 Surface plasmons/Giant resonances  

 (via matrix RPA/LDA) in metal clusters  
 [see, e.g., Yannouleas, Broglia, Brack, Bortignon,  

 PRL 63, 255 (1989)]   

Electronic shells/deformation/fission  

(via Strutinsky/ Shell correction approach) in metal clusters 
[see, e.g., Yannouleas, Landman, Barnett, in “Metal Clusters”,  

edited by W. Ekardt, John-Wiley, 1999] 

Strongly correlated states (Quantum crystals/Wigner molecules/dissociation) 

in 2D semiconductor quantum dots and  

ultracold bosonic traps via  

symmetry breaking/symmetry restoration 

in conjunction with exact diagonalization (full CI)  
[see, e.g., Yannouleas, Landman,  

Rep. Prog. Phys. 70, 2067 (2007)] 
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NO KS-DFT/ due to the self-

interaction error, and to the open problem 

of how to use multi-determinants and to 

restore symmetries in DFT 



TWO VARIANTS OF SHELL CORRECTION METHOD (SCM)  

in condensed-matter nanosystems: 

1) Fully microscopic  (DFT-SCM) / Orbital-free DFT  

     Based on Extended Thomas Fermi (ETF)  

     sp densities and central potentials 

2) Semiempirical (SE-SCM) 
     Based on a triaxial H.O. (Nilsson) central potential  

     + liquid drop model for smooth variation 

Literature: Y&L, PRB 48, 8376 (1993) (multiply anionic metal clusters) 

 Y&L, PRB  51, 1902 (1995) (deformed metal clusters) 

Y&L, Ch. 7 in "Recent Advances in Orbital-Free Density Functional Theory,"  

Y.A. Wang and T.A. Wesolowski Eds. (Word Scientific, Singapore, 2013)  

                                                       (metal clusters, nanowires, fullerenes) 

Used extensively in nuclear physics 



SCM-DFT (based on ETF)         KS-DFT     

Shell correction: Difference of two kinetic energy terms 

ETF potentials ETF/ Smooth 

Yannouleas & Landman, 

PRB 48, 8376 (1993)  



Applications of DFT-SCM: neutral fullerene C60 

  Y&L, Chem. Phys. Lett. 217, 175  (1994)   

J. Zhao, M. Feng, J. Yang, H. Petek 

ACS Nano 3, 854 (2009) LT-STM 
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SECOND  PART 



Strong correlations and  

symmetry breaking/restoration  

  in 2D finite systems 

Constantine Yannouleas and Uzi Landman 

Phys. Rev. Lett. 82, 5325 (1999); 

Rep. Prog. Phys. 70, 2067 (2007) 

Collaborators: 

 

Igor Romanovsky  (ultracold  bosons & graphene  nanostructures)  

Yuesong Li (electrons in QDs)   

Ying Li (electrons in Quantum Dot Molecules) 

Leslie O. Baksmaty (ultracold bosons & electrons in QDs)          



Devices 

Vertical QD (Delft) 

Lateral QD (Ottawa) 

Lateral QD Molecule (Delft) Electrostatic confinement 



Electronic shells 
Central common confining potential? 

Electronic Shells?   (B=0; Circular QD) 

Kouwenhoven and Marcus, Physics World, June 1998 

4, 9, 16 

Hund’s Rule 

2, 6, 12, 20 

 

Closed Shells 

2D Periodic Table? 



Wigner crystals 

… electrons repell each other and try to keep as far apart as 

possible. The total energy of the system will be decreased 

through the corresponding modification of the wave function. 

… “correlation energy” … 

WC: 

Classical 

Electron 

Crystals/ 

Mean Field/ 

Broken 

Symmetry 

 

 

 

 

 
 

 

 

Our work: 

Quantum 

Crystals/ 

Beyond 

Mean Field/ 

Full Symmetry  



N=19e 

Wigner molecule in a 2D circular  QD. 

Electron density (ED) from  

Unrestricted Hartree-Fock (UHF). 

Symmetry breaking (localized orbitals). 

Concentric polygonal rings  

Y&L, PRL 82, 5325 (1999) 

Concentric rings: (1,6,12) 

Concentric rings:  (0,6) left,  (1,5) right 

N=6e 

Y&L,  

PRB 68, 035325 (2003)  

Circular external confinement  

Exact electron  

densities  

are circular! 

No symmetries  

are broken! 

(N, small, large?) 

Restoration of symmetry       Quantum crystal 
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Neutral Bosonic 

systems 

W 



Control parameters 

Neutral  

bosons 



• Per-Olov Lowdin  

    (Chemistry - Spin) 

• R.E. Peierls and J. Yoccoz  

    (Nuclear Physics – L, rotations) 

   

RESOLUTION OF SYMMETRY DILEMMA: 

RESTORATION OF BROKEN SYMMETRY 

BEYOND MEAN FIELD (Projection)! 

.. 



EXACT  

DIAGONALIZATION 
(Full Configuration Interaction) 

TWO-STEP METHOD 

When possible  

(small N): 

High numerical  

accuracy 

Physics less 

transparent 

compared to 

“THE TWO-STEP” 

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007) 

Pair correlation functions, 

CPDs 

WAVE-FUNCTION BASED APPROACHES 



Mean-field broken-symmetry states 

Bosons (delta): Different orbitals (Permanent) 

N=9 

N=19e 

Wigner molecule in a 2D circular  QD. 

Electron density (ED) from  

Unrestricted Hartree-Fock. 

Symmetry breaking (localized orbitals). 

Concentric rings (1,6,12). 

Electrons (Coulomb): DODS (Slater determinant) 

(2,7) 



• To restore the good angular momentum of the wave function 
one can use the projection operator 
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Here | N ()   is the original UBHF permanent, rotated by an azimutal 

angle. The wave function | PRJ has not only good angular 
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Restoration of Broken Rotational Symmetry 

Romanovsky, Yannouleas, and Landman 

Phys. Rev. Lett. 93, 230405 (2004)  (RBMs) 

Romanovsky, Yannouleas, Baksmaty, Landman 

Phys. Rev. Lett. 97, 090401 (2006) (RBMs) 



Rotating Boson Molecules (Circular trap) 
Ground states: Energy, angular momentum and probability densities. 

Rotating Frame Magnetic Field Probability densities 

SPD 

CPD 
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Rotating Boson Molecules (Circular trap) 
Ground states: Energy, angular momentum and probability densities. 

Rotating Frame Magnetic Field Probability densities 

SPD 

CPD r0 

The hidden crystalline structure in the projected  

function can be revealed through the use of  

conditional probability density (CPD).  

CPD 

0 5 
10 

15 

RW =10 

SPD 

Broken Symmetry 

Symmetry restored 



EXD/ N=12/ Lowest Landau Level/ High B/ Floppy Rotor 

Yuesong Li, Y&L, PRB 73, 075301 (2006) 

(3,9) 



Rovibrational spectrum, 2e, 

parabolic QD RIGID 

ROTOR 

B=0 

Exact Quantum Dot Helium 

Natural Helium 

Doubly excited  

States/ 

Kellman/Herrick 

Phys. Rev. A 22, 

1536 (1980). 



Total-spin projection DQD 

Elongated QD 

No circular 

symmetry 

localized orbitals 

TWO-STEP METHOD 



Single QD 

ETH Zurich  

(K. Ensslin, 

Th. Ihn…) 

Excitation spectrum of (elliptic)  

Anisotropic Quantum Dot Helium (Pinned WM)  
        

C. Ellenberger et al., Phys. Rev. Lett.  96, 126806 (2006) 

   (No Zeeman splitting)  

N=2e 

h= 0.72 



ETH Zurich 

single QD 

Excitation spectrum of (elliptic)  

Anisotropic Quantum Dot Helium (Pinned WM)  
        

C. Ellenberger et al., Phys. Rev. Lett.  96, 126806 (2006) 

   (No Zeeman splitting)  



EXD = Exact diagonalization ETH single QD 



2e elliptic QD, H, UHF, GHL 5.84 meV 4.23 meV 

N=2e 

UHF 
B=3.8 T 

GHL Entangled 

X 



hwx=4.23 meV;  hwy=5.84 meV; 

m*=0.070;  k=12.5;  g=0.86 

UHF broken 

symmetry 

orbitals 

used to 

construct the 

GHL wave 

function 

ETH single QD 

ST 

WRONG! 

Dissociation  

of the 2e WM  

within the single QD 

T - S + 0 



Anisotropic 

confinement 

Three electron anisotropic QD 

Method: Exact Diagonalization (EXD) 

EXD wf (½, ½; 1) ~ |        >  |        > 

Entangled three-qubit  W-states  

Quantum 

Crystallite 

 

Electron 

Density  

(ED) 

(spin resolved)  

Conditional 

Probability 

Distribution 

(CPD) 

CPD 

CPD CPD CPD 

ED ED 

Yuesong Li, Y&L, 

Phys. Rev. B  76,  

245310 (2007)  

k=1 



Quantum Dot Helium Molecule 

 Ying Li, Y&L, Phys. Rev. B 80, 045326 (2009)  
EXD calculation 



Quantum Dot Helium Molecule 

 Ying Li, Y&L, Phys. Rev. B 80, 045326 (2009)  

Branching Diagram 

EXD calculation 



SUMMARY (Symmetry Restoration) 
Under appropriate conditions, 2D electrons (and ultracold 

repelling bosons) exhibit localization (hidden or explicit) and 

organize themselves in geometric shells, forming  

Rotating (or pinned) Wigner Molecules (Quantum Crystallites) 

(semiconductor Quantum Dots,  Ultracold rotating bosonic 

traps,  Dissociation of natural molecules)   

 

Instead of: 
For electrons: organizing in electronic shells associated with a 

confining central potential (Cluster physics/ jellium model) 

 

For bosons: forming a Bose-Einstein condensate  

 

In the LLL: Rovibrational molecular theory offers alternative 

description to Laughlin and composite-fermion approaches 

for the fractional quantum Hall effect   



THIRD  PART 

Topological states in graphene nanorings: 

Particle-physics analogies beyond the (massless 

and constant mass) Dirac fermion 

A different physical process for electron localization 

Topology (geometry) of system 

One-body  / no e-e interaction/ fraction of e localized 

Romanovsky, Yannouleas, Landman, 

PRB 87, 165431 (2013)  



2D Graphene: 

honeycomb lattice 

Geim and Novoselov,  

Nobel Prize, 2010 

Massless Dirac-Weyl fermion 

Graphene 

Nanosystems 

 

Armchair or 

Zigzag edge 

terminations 

Graphene quantum dots Graphene nanorings 

Graphene nanoribbons 

Open a gap? 

c              v_F 



N=3m (Class I) 

Semiconductor 

N=3m+1 (Class II) 

Semiconductor 
N=3m+2 (Class III) 

Metallic 

Armchair Nanoribbons 

k  /3a x 

x N 



Tight-Binding (TB) 

2.7 eV 



Tight-Binding (TB) 

2.7 eV 

Two atoms  

in a  

unit cell/ 

Two  

sublattices 

 A  and  B 



Dirac-Kronig-Penney Superlattice 

1D Generalized Dirac equation 

a   and  b:  any two of the three 2x2 Pauli matrices  

scalar (Higgs) field / position-dependent mass m(x) electrostatic potential 

a single side/ 3 regions  

1 2 3 

(V1, m1) 

(V2, m2) 

(V3, m3) 

x 

Transfer matrix method 



Spectra/ 

Rings with  

semiconducting 

arms 

N=15 (Class I) 

N=16 (Class II) 

Magnetic flux (magnetic field B) 

Yellow: positive mass 

Red: negative mass 



Densities for a state in the forbidden band 
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Mixed  

Metallic-semiconductor 

N=17 (Class III) /  

N=15 (Class I)  

e/2 

fractional charge 



Relativistic quantum-field-theory Lagrangian 

1D Generalized Dirac equation 

a   and  b:  any two of the three 2x2 Pauli matrices  

scalar (Higgs) field / position-dependent mass m(x) electrostatic potential 

Yukawa coupling 

fermion 

fermionic 



scalar field double well 

kink soliton 

zero-energy fermionic soliton (Dirac eq.) 

1 
constant mass 

Dirac fermion 

2 kink soliton/ zero-energy  

fermionic soliton 

Euler-Lagrange equation 

D1 

D2 

(Symmetry breaking)/ 



scalar field double well 

kink soliton 

zero-energy fermionic soliton (Dirac eq.) 

1 
constant mass 

Dirac fermion 

2 kink soliton/ zero-energy  

fermionic soliton 

Euler-Lagrange equation 

D1 

D2 

(Symmetry breaking)/ 

Jackiw-Rebbi, PRD 13, 3398 (1976) 



Conclusions 

1) Instead  of  usual quantum-size confinement  effects (case of clusters/ 

      analogies with nuclear physics) , the spectra  and wave functions of  

      quasi-1D graphene nanostructures are sensitive to the topology of  the  

      lattice configuration  (edges, shape, corners)  of  the system .   

2) The topology is captured by general, position-dependent  scalar fields  

       (variable masses, including alternating +/- masses)  in the relativistic  

       Dirac equation. 

3)   The topology generates rich analogies with 1D quantum-field  theories,        

       e.g.,  localized fermionic solitons with fractional charges  associated  

       with the Jackiw-Rebbi model  [PRD  13, 3398 (1976)] 

4) Semiconducting hexagonal rings behave as  1D topological  

       insulators with states well isolated from the environment (zero-energy  

       states within the gap with charge accumulation at the corners). 

Full circle 


