A universal molecular description for the spectra of bosons and fermions in the lowest Landau level

> **Constantine Yannouleas and Uzi Landman** School of Physics, Georgia Institute of Technology

Phys. Rev. A 81, 023609 (2010)

APS March 2009 Supported by the U.S. DOE (FG05-86ER45234)

Full LLL spectra

N=3 bosons (delta)

N=4 fermions (Coulomb)

Energy

TRIAL WFs ARE HIGHLY CORRELATED; THEY CAPTURE THE PHYSICS OF CUSP STATES AND CERTAIN SELECTIVE EXCITATIONS (Jastrow-Laughlin, compact CF, REM)

TO DESCRIBE LARGER PARTS OF LLL SPECTRA: USE TRIAL WFs TO FORM A COMPLETE CORRELATED BASIS (Practical: High accuracy with a few trial functions that dominate expansion; Mathematical: Completeness from full basis)

EXAMPLE: CF BASIS (mainly the full yrast band) [G.S. Jeon et al, PRB 69, 241304(R) (2004); Eur. Phys. J. B 55, 271 (2007)]

EXAMPLE (this talk): RO-VIBRATIONAL MOLECULAR (RVM) BASIS [Yannouleas and Landman, PRA 81, 023609 (2010)] THE FULL LLL SPECTRUM

CORRELATED CF BASIS: NOT TRANSLATIONALLY INVARIANT (TI)

N= 4e

CF DIAGONALIZATION (yrast)

EXD LLL SPECTRUM

L	D	D^*	V_{ex}	$V_{\rm CF}$
9	3	1	1.93481	1.93462(17)
10	5	1	1.78509	1.78496(21)
11	6	2	1.78509	1.78487(21)
12	9	1	1.68518	1.68616(7)
13	11	2	1.64157	1.64407(27)
14	15	1	1.50066	1.50174(20)
15	18	2	1.50066	1.50157(7)
16	23	4	1.46397	1.46424(28)
17	27	6	1.42958	1.42999(43)

G.S. Jeon et al, Eur. Phys. J. B 55, 271 (2007)

RO-VIBRATIONAL (RVM) BASIS: SPANS TI SUBSPACE

N= 3 bosons

RVM DIAGONALIZATION (full spectra)

EXD LLL SPECTRUM

Error within machine precision -> Proof that RVM basis spans TI subspace

RVM DIAGONALIZATION: EXPANSION COEFFICIENTS

N=4 e L=18 v=1/3

RVM	EXD-TI $[1]$	EXD-TI $[2]$	EXD-TI $[4]$
1>	0.9294	-0.3430	0.0903
2>	-0.1188	-0.0693	0.8930
3>	0.0067	0.0382	-0.2596
4>	0.0137	0.0191	-0.0968
5>	0.2540	0.8486	0.1519
6>	0.0211	0.0283	0.3097
7>	-0.2387	-0.3935	0.0877

$$|1>=\Phi_{18}^{\text{REM}}(0,4)$$

$$|2>=\Phi_{14}^{\text{REM}}(0,4)Q_2^2$$

$$|3>=\Phi_{10}^{\text{REM}}(0,4)Q_2^4$$

$$|4>=\Phi_6^{\text{REM}}(0,4)Q_2^6$$

$$|5\rangle >= \Phi_{18}^{\text{REM}}(1,3)$$

$$|6\rangle >= \Phi_{12}^{\text{REM}}(1,3)Q_2^3$$

$$|7\rangle = \Phi_{15}^{\text{REM}}(1,3)Q_3$$

Expansion of Jastrow-Laughlin (JL) in RVM basis

N=4 e L=18 v=1/3

Charge densities

N=7 e L=63 v=1/3 [Y&L, PRB 70, 235319 (2004)]

REM

EXD-TI

JASTROW-LAUGHLIN

<u>SUMMARY</u>

 The many-body Hilbert space corresponding to the translationally invariant part of the LLL spectra (whether for fermions or bosons, and for both <u>LOW</u> and high angular momenta) is spanned by the <u>correlated basis of</u> <u>RVM trial functions</u>

$\Phi_{\mathcal{L}}^{\mathrm{RXM}}(n_1, n_2) Q_{\lambda}^m | 0 >$

 Correlations in the LLL reflect the emergence of intrinsic point-group symmetries associated with rotations and vibrations of molecules formed through particle localization

