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Three-electron anisotropic quantum dots in variable magnetic fields: Exact results for excitation
spectra, spin structures, and entanglement
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Exact-diagonalization calculations for N=3 electrons in anisotropic quantum dots, covering a broad range of
confinement anisotropies and strength of interelectron repulsion, are presented for zero and low magnetic
fields. The excitation spectra are analyzed as a function of the strength of the magnetic field and for increasing
quantum-dot anisotropy. Analysis of the intrinsic structure of the many-body wave functions through spin-
resolved two-point correlations reveals that electrons tend to localize forming Wigner molecules. For certain
ranges of dot parameters (mainly at strong anisotropy), the Wigner molecules acquire a linear geometry, and
the associated wave functions with a spin projection S =1/2 are similar to the representative class of strongly
entangled states referred to as the W states. For other ranges of parameters (mainly at intermediate anisotropy),
the Wigner molecules exhibit a more complex structure consisting of two mirror isosceles triangles. This latter
structure can be viewed as an embryonic unit of a zigzag Wigner crystal in quantum wires. The degree of
entanglement in three-electron quantum dots can be quantified through the use of the von Neumann entropy.
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I. INTRODUCTION

Three-electron quantum dots are expected to attract great
attention in the near future due to several developments, both
experimental and theoretical. First, it was recently
demonstrated'=3 that detailed excitation spectra of two-
electron quantum dots (in addition to earlier ground-state
measurements*®) can be measured and theoretically under-
stood as a function of the externally applied magnetic field.
Thus, exploration of the excitation spectra of three-electron
quantum dots appears to be the next step to be taken. Second,
three-qubit electron spin devices are expected to exhibit en-
hanced efficiency®'? for quantum-computing and quantum-
information purposes compared to single-qubit and two-
qubit ones.

In this paper, we carry out exact diagonalization (EXD)
studies for a three-electron single quantum dot under low and
moderate magnetic fields. Unlike previous EXD studies!!!?
that focused mainly on the ground states (GSs) of circular
quantum dots,!3 we investigate, in addition, the excitation
spectra for three electrons in quantum dots with a wide range
of anisotropies. Moreover, consideration of anisotropic quan-
tum dots allows us to investigate the structure of the many-
body wave functions with respect to strong-correlation ef-
fects, such as electron localization and formation of Wigner
molecules with a linear or zigzag geometry.

Most importantly, we investigate here the feasibility of
producing model quantum entangled states (i.e., the so-called
W states®!*13), which are often employed in the mathemati-
cal treatment of quantum information and which have been
experimentally realized with ultracold atoms in linear ion
traps.!® We note that a main factor motivating our investiga-
tions is the different nature of the entangling agent, namely,
the electromagnetic field in the case of heavy ions versus the
two-body Coulomb interaction in the case of electrons.

We further mention other recent proposals in the context
of solid state electronic devices for producing three-qubit
entanglement. In particular, a scheme based on noninteract-
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ing electron-hole excitations in the Fermi sea was investi-
gated in Ref. 17. Unlike our present study that focuses on the
effect of the interparticle interaction, however, such
interaction-free entanglement cannot'’ reproduce the sym-
metric W state [see Eq. (13) below]. A different proposal® for
realizing interaction-free entanglement uses pair-correlation
functions to study tripartite entanglement shared among the
spins of three fermions in a Fermi gas.

The exact diagonalization method that we use for the so-
Iution of the Schrodinger equation corresponding to the
Hamiltonian of three electrons interacting via a Coulomb
potential in an anisotropic quantum dot, in conjunction with
an analysis employing spin-resolved two-point correlation
functions, allows us to gain deep insights into the nature of
electronic states and three-qubit entanglement in real solid
state devices. Additionally, the EXD method provides bench-
mark results, which could be used for assessment of the ad-
equacy and relative accuracy of certain approximation
schemes, including the model Heisenberg Hamiltonian for
three localized electrons arranged in a ring geometry that
was most recently used in an investigation of the entangled
ground states in a three-spin-qubit system.'”

II. OUTLINE OF THE EXACT DIAGONALIZATION
MANY-BODY METHOD

We consider three electrons under zero or low magnetic
field (B) in a single quantum dot. The corresponding many-
body Hamiltonian is written as

3

3 2
H=H@)+ > ——— (1)

i=1 j>i=1 K|r; - I'j|
where « is the dielectric constant of the semiconductor ma-
terial (12.5 for GaAs). The single-particle Hamiltonian is
given by
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H=T+V(x,y) + g*,uBBO', (2)

where the last term is the Zeeman interaction, with g* being
the effective Landé factor, up the Bohr magneton, B the
perpendicular magnetic field, and o==+1/2 the spin projec-
tion of an individual electron. The kinetic contribution in Eq.
(2) is given by

[p- (l)AMP
- m

, 3)

with m”™ being the effective mass (0.067m, for GaAs) and the

vector potential A(r) =0.5(—ByzA + ij) being taken according
to the symmetric gauge. The external confining potential is

denoted as V(x,y), where r=xi+y).
The external potential is modeled by an anisotropic two-
dimensional (2D) oscillator,

| R
V(x,y) = Em*(wixz + wiyz), (4)

which reduces to a circular parabolic quantum dot (QD) for
w,=w,=wy. The ratio »=w,/ w, characterizes the degree of
anlsotropy of the quantum dot and it will be referred to
thereafter as the anisotropy parameter. Results will be pre-
sented for three cases: 7=1 (circular), 7=0.724 (slightly an-
isotropic), and 7=1/2 (strongly anisotropic).

We find the eigenstates of the many-body Hamiltonian
[Eq. (1)] using an exact diagonalization method. Accord-
ingly, we expand the many-body wave function as a linear
superposition,

‘PEXD(I'l,I'z,Ié) = 2

|<i<j<k<2K

Al (150 (2 /) (3:4)),

(5)

where [i(1;i)i4(2;)i¥A3;k)) denotes a Slater determinant
made out of the three spin orbitals (1;i), (2;/), and
#(3;k). For the spin orbitals, we use the notation y(1;i)
=g(11)if I<isKand y(1;i)=¢, ((1]) if K+1<i<2 K
[and similarly for ¢(2;j) and (3;k)]. K is the maximum
number of space orbitals ¢,(r) that are considered, with
@(I17)=g(r)a and ¢;(l])= ¢;(r;) B, where a and B denote
up and down spins, respectively. The space orbitals ¢;(r) are
taken to coincide with the real Cartesian eigenfunctions of a
2D anisotropic oscillator, that is, the index i=(m,n) and
@i(r)=X,,(x)Y,(y), with X,,(Y,) being the eigenfunctions of
the corresponding one-dimensional oscillators in the x(y) di-
rection with frequency w,(w,). The parity operator P yields
PX,,(x)=(=1)"X,,(x), and similarly for ¥,(y).

The total energies Egxp and the coefficients A;;’s are
obtained through a direct numerical diagonalization of the
matrix eigenvalue equation corresponding to the Hamil-
tonian in Eq. (1). For the solution of this large scale, but
sparse, matrix eigenvalue problem, we have used the ARPACK
computer code.'®

The EXD wave function [Eq. (5)] preserves by construc-
tion the third projection S, of the total spin, since only Slater
determinants with a given S, value are used in the expansion.
The exact diagonalization automatically produces eigenfunc-
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FIG. 1. (Color online) Ground-state and excitation energy spec-
tra [referenced to 3% V"w(2)+wi/4, with wy= \r(w§+ wﬁ)/Z] as a func-
tion of the magnetic field for N=3 noninteracting electrons in a
circular quantum dot (z=1). Parameters: external conﬁnement
fhiw,=hw,=5 meV, dielectric constant k=%, effective mass m"
=0. O67m€, and effective Landé coefficient g =0. The labels (S;L)
denote the quantum numbers for the total spin and the total angular
momentum. Different Landau bands are denoted by the different M
values. The S, indices are not indicated, since the multlplets
($=1/2,8,) and (§=3/2,8,) are degenerate in energy when g =0.

tions of the square S? of the total spin ézE?zl&,-. The corre-

sponding eigenvalues S(S+ 1) are calculated with the help of

the expression
S?SD) = | (N, = Np)¥4+Ni2+ 2 w; [|SD),  (6)

<j

where |SD) denotes a Slater determinant and the operator W
interchanges the spins of electrons i and j provided that their
spins are different; N, and Ng denote the number of spin-up
and spin-down electrons, respectively, while N denotes the
total number of electrons.

Since the spin orbitals ¢’s are orthogonal, the Coulomb
matrix elements between two Slater determinants are calcu-
lated using the Slater rules,' and the necessary two-body
matrix elements between space orbitals,

JJdrldrzqo, (rl)cp, (rz)|

are calculated numerically. We have found that this method
produces numerically stable results in comparison with alge-
braic expressions.?’

| @(r) e r,), (7)

III. ENERGY SPECTRA

In this section, we study the ground-state and excitation
spectra as a function of an increasing magnetic field B with
an emphasis on the role of correlation effects and the influ-
ence of the anisotropy.

To better understand the importance of correlations, we
first display in Fig. 1 the spectra in the absence of the Cou-
lomb interaction (noninteracting electrons) and for the case
of a circular quantum dot. These energy spectra can be de-
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FIG. 2. (Color online) Ground-state and excitation energy spec-
tra [referenced to 3%\ wj+w?/4, with wy= V’(wf+w%)/2] as a func-
tion of the magnetic field for N=3 noninteracting electrons in a
anisotropic quantum dot with anisotropy parameter (7=0.724). Pa-
rameters: external confinement 7iw,=4.23 meV, fiw,=5.84 meV,
dielectric constant k=, effective mass m*=0.070me, and effective
Landé coefficient g*=0. The labels (S;L) denote the quantum num-
bers for the total spin and the total angular momentum in the cor-
responding circular quantum dot. Although the total angular mo-
mentum is not a good quantum number for an anisotropic quantum
dot, we retain the labels L here in order to facilitate comparison
with the circular case in Fig. 1. The S, indices are not indicated,
since the multiplets (S=1/2,5.) and (S=3/2,S,) are degenerate in
energy when g"=0. M(=0,1,2) denotes the index of the Landau
band.

termined simply as X} €e’Y(B), where e (B) are the
Darwin-Fock energies for a single electron.?'~?* The main
trend is the formation of three-particle Landau bands (each
with an infinite number of states) that tend for B— c to the
asymptotic energy levels (M+3/2)how, M=0,1,2,....
Note that for large magnetic fields (B— ), the reference
energy 3ﬁww(2)+ w?/4, with woz\(w§+ wi)/Z], tends to
3fiw./2. In this limit, the states (S, L), belonging to the same
Landau band M, become degenerate in energy, converging
to the corresponding familiar Landau level (with index M).
Apart from an overall constant, the picture in Fig. 1 is the
same as that found in the phenomenological “constant-
interaction” model.>* An important property is the absence of
crossings between individual levels within each Landau
band. A consequence of this is that the ground state at any B
has the same quantum numbers as the one at B=0, i.e., it has
total spin S=1/2 and total angular momentum L=1.

The absence of crossings within each Landau band is a
characteristic property of noninteracting electrons, and it is
independent of the anisotropy of the external confinement.
This point is illustrated in Fig. 2 where the noninteracting
three-electron spectra are plotted for the case of a quantum
dot with moderate anisotropy (7=0.724) [for the single-
electron energies e?F(B) in an elliptic quantum dot, see Refs.
24 and 25]. An inspection of Fig. 2 shows that the anisotropy
has an effect mainly for small values of the magnetic field
(by lifting the degeneracies at B=0). On the formation of the
Landau bands at higher B, the anisotropy has practically no
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FIG. 3. (Color online) Ground-state and excitation energy spec-
tra [referenced to 3hy"w§+wf/ 4, with wy= \J’(w)2(+ wi)/ 2] as a func-
tion of the magnetic field for N=3 interacting electrons in a circular
quantum dot (7=1). Parameters: external confinement fiw,=fw,
=5 meV, dielectric constant k=12.5, effective mass m*=0.067mey,
and effective Landé coefficient g*=0. The labels (S;L) denote the
quantum numbers for the total spin and the total angular momen-
tum. The S, indices are not indicated, since the multiplets
(§=1/2,8,) and (S=3/2,S,) are degenerate in energy when g =0.

effect, and, in particular, it cannot induce level crossings
within each Landau band.

Another property of the noninteracting spectra is the ex-
istence of several degenerate levels (not shown in Figs. 1 and
2) associated with the excited states. We have searched for
such degeneracies by inducing a small lifting of them
through the artificial use of a very weak Coulomb repulsion
specified by k=200. For example, in the circular case (see
Fig. 1), we found that the state (1/2;2) is doubly degenerate,
while the state (3/2;3) is degenerate with two other (1/2;3)
states. These additional states move higher in energy as the
strength of the Coulomb interaction increases. We further
found that the lifting of degeneracies is sufficiently strong for
larger Coulomb repulsions with k=< 12.5 that all the curves
in Figs. 3-5 below are simple (i.e., the additional states
present in the noninteracting case have been pushed much
higher and fall outside the energy window shown).

Turning on the interaction introduces correlation effects
that lead to important modifications of the noninteracting
spectra shown in Figs. 1 and 2. Figure 3 displays the corre-
sponding spectra for the same circular quantum dot as in Fig.
1, but in the presence of a Coulomb repulsion with k=12.5
(GaAs). Of course, a first effect is the increase in the total
energy, but the main difference from the noninteracting case
in Fig. 1 is the presence of crossings between levels within
the same Landau band. As a result, within the plotted range
of magnetic fields, the ground-state total-spin quantum num-
ber remains S=1/2 at the first ground-state crossing (at point
B), and then it changes to S=3/2 (at the second ground-state
crossing at point C). At the same time, the total angular
momentum changes from L=1 to L=2 and then to L=3. As
long as the effective Landé coefficient g*=0, which is the
case for the results presented in this section, this threefold
alternation in the spin and angular momentum quantum num-
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FIG. 4. (Color online) Ground-state and excitation energy spec-
tra [referenced to 3ﬁ\e“’w(2)+ w?/ 4, with wy= \r(wf+(u§)/ 2] as a func-
tion of the magnetic field for N=3 interacting electrons in an elliptic
quantum dot with intermediate anisotropy (anisotropy parameter
7=0.724). Parameters: external confinement %w,=4.23 meV, hw¥
=5.84 meV, dielectric constant «=12.5, effective mass m
=0.070m,, and effective Landé coefficient g*=0. The labels (S;L)
denote the quantum numbers for the total spin and the total angular
momentum in the corresponding circular quantum dot. The S, indi-
ces are not indicated, since the multiplets (S=1/2,S,) and
(§=3/2,8,) are degenerate in energy when ¢"=0. Note the shrink-
ing of the ABC triangle compared to the 7=1 case shown in Fig. 3.

bers repeats itself ad infinitum. We note that experimental
observation of this threefold alternation may be forthcoming,
since quantum dots with a vanishing Landé coefficient have
been recently fabricated' and were used already to measure
two-electron excitation spectra.
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FIG. 5. (Color online) Ground-state and excitation energy spec-
tra [referenced to 3ﬁ\e“’w(2)+ wg/ 4, with wy= \r(w§+(u§)/ 2] as a func-
tion of the magnetic field for N=3 electrons in an elliptic quantum
dot with strong anisotropy (anisotropy parameter z=1/2). Param-
eters: external confinement fiw,=3.137 meV, fw,=6.274 meV, di-
electric constant k=12.5, effective mass m" =0.067m,, and effective
Landé coefficient g*=0. The single labels denote the quantum num-
bers for the total spin. The S, indices are not indicated, since the
multiplets (S=1/2,5,) and (S=3/2,S,) are degenerate in energy
when g*=0. Note the collapse of the triangle ABC compared to the
cases with =1 (Fig. 3) and #=0.724 (Fig. 4), and the appearance
of a triple-point crossing.
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The crossings of the curves associated with the three dif-
ferent pairs of quantum numbers (S=1/2; L=1), (1/2;2),
and (3/2;3) form a small triangle (labeled as ABC), which is
located about B~ 3.4 T. Anticipating the results for noncir-
cular dots below, we note that this triangle tends to collapse
to a single point with increasing anisotropy.

Another prominent difference between the spectra of non-
interacting (Fig. 1) and interacting (Fig. 3) electrons pertains
to the degeneracies at B=0 between the S=3/2 and S=1/2
states that are lifted in the interacting-electron case; compare,
in particular, the curves with quantum numbers (1/2;2) and
(1/2;0) with the (3/2;0) one. In contrast, the original de-
generacies at B=0 of the S=1/2 states are unaffected by the
interelectron interaction; compare the curves (1/2,1) and
(1/2,-1), as well as the ones labeled (1/2,2) and (1/2,0).
However, these S=1/2 degenaracies at B=0 are lifted as a
result of an increasing anisotropy of the quantum dot, as seen
in Fig. 4.

Next, we explore the effect of increasing the anisotropy of
the quantum dot. In particular, keeping the same strength for
the Coulomb interaction (k=12.5), we present two represen-
tative anisotropy cases, i.e., 7=0.724 (intermediate aniso-
tropy, see Fig. 4) and =1/2 (strong anisotropy closer to a
quasilinear case, see Fig. 5).

Inspection of the results for the case of intermediate an-
isotropy (Fig. 4) reveals that compared to Fig. 3 the spectra
are distorted, but they maintain the overall topology of the
circular dot. As a result, we have been able to use the same
pairs of labels in naming the different curves, even though
the second label does not have the meaning of an angular
momentum (the total angular momentum is not conserved
for # 1). There are two main differences from the circular
case: (i) the degeneracies at B=0 between the S=1/2 states
are lifted and (ii) there is a marked rounding of all the §
=1/2 curves in the beginning, so that they do not intersect
the vertical energy axis at sharp angles as is the case with
Fig. 3. This initial rounding and bending of the energy curves
due to the anisotropy has been experimentally observed'-? in
two-electron quantum dots.

In the case of strong anisotropy (Fig. 5), the spectra have
evolved to such an extent that only little relation to the cir-
cular case can be traced, and as a result we use a single label
signifying the total spin to distinguish them. An important
feature that emerges is that the three curves with lowest en-
ergies (two S=1/2 and one §=3/2 curves) form a band that
is well separated from the other excited states. The existence
of such an isolated lowest-energy band is important for vali-
dating simple two-qubit and three-qubit models introduced in
quantum computation and quantum information theory.52

Another remarkable feature of the strong-anisotropy case
is the appearance of a nontrivial triple-point crossing lying
on the ground-state curve (see arrow in Fig. 5), which is
created from the collapse of the ABC triangle between the
two S=1/2 and the one S=3/2 lowest-in-energy curves
(compare Figs. 3 and 4). This low-energy nontrivial triple
point [forming within the lowest Landau band (M=0)] is
due to the effect of the Coulomb interaction, and it is to be
contrasted to other trivial triple-point crossings at much
higher energies arising from the intersection of the lowest
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FIG. 6. (Color online) Exact-diagonalization electron densities
for the ground states of N=3 electrons in an anisotropic dot with
parameters fiw,=3.137 meV, fiw,=6.274 meV (n=1/2), effective
mass m*=0.067me, and dielectric constant k=12.5 (GaAs). (a) The
case of zero magnetic field B=0. (b) The case with a magnetic field
B=6 T. Lengths in nanometers. The electron densities are in arbi-
trary units, but with the same scale in both panels.

Landau band with the M=1 and M=2 higher Landau
bands, and which are present even in the noninteracting limit
[see, e.g., the triple crossing at (2.0 T, 14.2 meV) in Fig. 1].
It would be of interest to analyze whether the recently
observed?® triple-point crossings in deformed quantum dots
are nontrivial or trivial in the sense described above.
Before leaving this section, we note that the spin multi-
plets (S=1/2,S,) and (S=3/2,S,) are degenerate in energy
when g*=0, which was the case for the energy spectra pre-
sented in Figs. 1-5. At a given magnetic field, this degen-
eracy is naturally lifted when g* # 0; however, the final total
egergies can be easily calculated by adding the Zeeman term
g mpBS, to the spectral curves displayed in these figures.
Furthermore, for a given pair (S,S,), the Zeeman term does
not influence the intrinsic structure of the many-body EXD
wave function [i.e., the expansion over constituent Slater de-
terminants, see Eq. (5)], and thus taking g" =0 does not effect
the results for electron densities, conditional probability dis-
tributions, and von Neumann entropies presented below.

IV. MANY-BODY WAVE FUNCTIONS FOR STRONG
ANISOTROPY (7=1/2)

A. S=1/2 ground states: Evolution of electron densities as a
function of the inter-electron repulsion

When the confining potential lacks circular symmetry,
charge localization is reflected directly in the single-particle
electron densities. Indeed, electron localization is visible in
Figs. 6 and 7, which display the electron densities for N=3
electrons in an anisotropic quantum dot with #»=1/2. Figure
6 illustrates the evolution of electron localization with in-
creasing magnetic field in the case of a weaker Coulomb
repulsion (k=12.5). One sees that already at B=0, the elec-
tron density is shaped linearly for all practical purposes.
However, the three peaks of the localized electrons are rather
weak, which contrasts with the case of B=6 T [Fig. 6(b)],
where the three electron peaks are sharply defined.

Figure 7 [in conjunction with Fig. 6(a)] illustrates the
strengthening of electron localization as a function of in-

FIG. 7. (Color online) Exact-diagonalization electron densities
at zero magnetic field (B=0) for the ground state of N=3 electrons
in an anisotropic dot with parameters fiw,=3.137 meV, fw,
=6.274 meV (n=1/2), and m*=0.067me. (a) Dielectric constant
k=3.0. (b) Dielectric constant x=1.0. Lengths in nanometers. The
electron densities are in arbitrary units, but with the same scale as in
Fig. 6 for both panels.

creasing Coulomb repulsion, i.e., decreasing dielectric con-
stant x, from a value of 12.5 [Fig. 6(a)] to k=3 [Fig. 7(a)]
and then to k=1 [Fig. 7(b)]. In this last case [Fig. 7(b)], the
three electrons are almost fully localized, with orbitals that
exhibit practically zero mutual overlap.

Since we keep the average frequency, wO:\/(w§+w§)/2,
approximately constant (i.e., iwy=15.0 meV) for all aniso-
tropy cases studied in this paper, decreasing the dielectric
constant is equivalent to increasing the Wigner parameter?’
Ry. At zero magnetic field, Ry is widely used as a universal
parameter to indicate the strength of correlations, since it
provides the relative strength of the Coulomb repulsion with
respect to the quantum kinetic energy, i.e.,

e2/(klp)
W=,

b 8
heog (8)
with the characteristic length [y=%/(m w,). For the nu-
merical values of Ry, associated with the cases studied here,
see Fig. 15.

B. S=1/2 ground state: Spin resolved intrinsic structure for
strong repulsion («=1)

In the previous section, we saw that already the electron
densities provide partial information about the formation of a
linear Wigner molecule within an elliptic quantum dot. In-
deed, from the charge distributions in Figs. 6 and 7, one can
infer that the electrons are localized in three separate posi-
tions R;, R,, and Rj. If the electrons were spinless, this
situation could be approximately reproduced by a single
Slater determinant denoted as |OOO). However, to probe the
spin distribution of the electrons, the exact-diagonalization
charge densities do not suffice; one needs to consider spin-
resolved two-point correlation functions, defined as

Py (1,10) = (WFP| ) 8l = 1) 81 = 1)) 85, 85 | TP,
i#j

)
with the EXD many-body wave function given by Eq. (5).
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Using a normalization constant,

Mo, op,1p) = f Pwo(r, ry)dr, (10)

we further define a related conditional probability distribu-
tion (CPD) as

Po’ao(r7r0) = Paao(l',l'o)/N(U, 0'0,1'0) ’ (1 1)

having the property [ Pogo(r,ro)drz 1. The spin-resolved
CPD gives the spatial probability distribution of finding the
remaining electrons with spin projection o under the condi-
tion that one electron is located (fixed) at r, with spin pro-
jection oy; o and oy can be either up (T) or down (]).

Before examining such CPDs, evaluated for numerically
determined EXD wave functions, it is instructive to consider
on a qualitative level the spin structure of the wave functions
that can be formed from three localized spin orbitals only. In
particular, we focus on the case with a total spin projection
S,=1/2, when the most general three-orbital wave function
is given by the superposition of three Slater determinants,
i.e., by the expression

(S, =) =alt L) +b[1TL) +c[I11), (12)

with the normalization a”+5%+c?=1. Unlike the circles used
earlier to indicate spinless electrons, the arrows in Eq. (12)
indicate the spin projections of the individual spin orbitals.

The general states [Eq. (12)] are a superposition of three
Slater determinants and have attracted a lot of attention in
the mathematical theory of entanglement. Indeed, they rep-
resent a prototypical class of three-qubit entangled states
known as the W states.'® For general coefficients a, b, and c,
the states [Eq. (12)] are not eigenfunctions of the square of
total spin s? [while the exact-diagonalization wave functions
in Eq. (5) are always proper eigenfunctions of S2]. However,
the special values of these coefficients that lead to good
total-spin quantum numbers can be determined.”3? In par-
ticular, using the notation ®(S,S,;i) (where the index i is
employed in case of a spin degeneracy), one has

BOC Y =11+ 111D+ 1111 (13)
(i.e., a=b=c=1/13),
Vod(L,1:1) =201 11y = 1110 = [117) (14)
(i.e., a=2/6, b=c=-1/16),
20(5.5:2) =11 = [111) (15)

(ie., a=0, b=1/\2, c==1/12).

For completeness, we list the case for three fully spin-
polarized localized electrons (which of course is not a W
state).

®(2.2) =[111). (16)

The wave functions with projections S,=—1/2 and
S.==3/2 are similar to the above, but with inverted single-
particle spins.

Before proceeding further, we note that the term W state is

sometimes reserved for the symmetric form CD(%,%) in Eq.
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FIG. 8. (Color online) Spin-resolved conditional probability dis-
tributions for the (1/2,1/2) ground state of N=3 electrons in an
anisotropic dot at zero magnetic field (B=0) with parameters A w,
=3.137 meV, hw,=6.274 meV (7=1/2), m*=0.067me, and k=1
[for the corresponding electron density, see Fig. 7(b)]. The heavy
arrow (green online) indicates the location of the fixed electron at ry,
[see Eq. (11)], with the indicated spin projection oy, i.e., up (1) or
down (]). (a) 7/ CPD with the fixed spin-down electron located at
the center. (b) 7| CPD with the fixed spin-down electron located on
the right. (c) 17 CPD with the fixed spin-up electron located on the
right. (d) |7 CPD with the fixed spin-up electron located on the
right. The spin of the fixed electron is denoted by a thick arrow
(green online). Lengths in nanometers. The vertical axes are in ar-
bitrary units, but the scale is the same for all four panels.

(13). This symmetric W state has been experimentally real-
ized in linear ion traps.'® As we show below, quantum dots
offer the means for generating in addition the less symmetric
forms given by Egs. (14) and (15). Such nonsymmetric
three-qubit states are sometime denoted’! as W' states (with
a prime). In this paper, we do not make use of this distinc-
tion, and we refer to both symmetric and nonsymmetric
forms simply as W states.

In Fig. 8, we present several spin-resolved CPDs associ-
ated with the EXD ground state at B=0 and strong aniso-
tropy #=1/2, which is a WEXP(1/2,1/2) state (see Fig. 5).
Although the EXD expansion in Eq. (5) consists of a large
number of Slater determinants built from delocalized
harmonic-oscillator orbitals, the CPD patterns in Fig. 8 re-
veal an intrinsic structure similar to that of the wave function
@(% , % ; 1) in Eq. (14), which is made out of only three local-
ized spin orbitals. In particular, when one requires that the
fixed electron has a down spin and is located at the center of
the quantum dot, the spin-up electrons are located on the left
and right with equal weights [Fig. 8(a)]. Keeping the down
spin direction, but moving the fixed electron to the right,
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FIG. 9. (Color online) Spin-resolved conditional probability dis-
tributions for the (1/2,1/2) first excited state of N=3 electrons in
an anisotropic dot at zero magnetic field (B=0) with parameters
fhiw,=3.137 meV, fiw,=6.274 meV (n=1/2), m =0.067m,, and «
=1. (a) Electron density (ED). (b) 7| CPD with the fixed spin-down
electron located on the right at (61, 0). (c) 77 CPD with the fixed
spin-up electron located on the right at (61, 0). (d) | T CPD with the
fixed spin-up electron located at the right at (61, 0). The spin of the
fixed electron is denoted by a thick arrow (blue online). Lengths in
nanometers. The vertical axes are in arbitrary units, but the scale is
the same for all four panels.

reveals that the spin-up electrons are located on the left and
the center with equal weights [Fig. 8(b)]. Considering a
spin-up direction for the fixed electron and placing it on the
right reveals that the remaining spin-up electron is distrib-
uted on the left and the center of the quantum dot with un-
equal weights—approximately 4 (left) to 1 (center) following
the square of the coefficients in front of the determinants
[T11) (@=2/6) and |[11) (c=—=1/6) in the wave function
@(%,%;1) [see Eq. (14)]. Similarly, considering a spin-up
direction for the fixed electron and placing it on the right
reveals that the spin-down electron is distributed on the left
and the center of the quantum dot with unequal weights—
approximately 1 (left) to 4 (center), in agreement with the
weights of the Slater determinants in Eq. (14).

C. S=1/2 first excited state: Spin resolved intrinsic structure
for strong repulsion (k=1)

In Sec. IV B, we investigated the intrinsic structure of the
ground-state three-electron wave functions with total spin S
=1/2 and for the case of a strong anisotropy 7=1/2. In this
section, we analyze a case of the first-excited EXD wave
function with total spin S=1/2 and for the same strong an-
isotropy 7=1/2, again at B=0 T and for strong interelectron
repulsion xk=1. We denote this state as WEXP(1/2,1/2;2).

In Fig. 9(a), we display the electron density (ED) for this
second S=1/2 state, while in Figs. 9(b)-9(d), we display
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spin-resolved CPDs for the same state. From the charge den-
sity, we conclude that the three electrons form a sharply de-
fined linear Wigner molecule. The spin-resolved CPD with a
spin-down fixed electron placed on the right [see Fig. 9(b)] is
similar to that in Fig. 8(b). However, the two spin-resolved
CPDs with a spin-up fixed electron placed on the right [see
Figs. 9(c) and 9(d)] are quite different from the correspond-
ing CPDs in Figs. 8(c) and 8(d). In fact, in both cases, only
one single hump appears to the left of the fixed electron,
located at the center for the remaining spin-up electrons [Fig.
9(c)] or on the left for the remaining spin-down electrons
[Fig. 9(d)].

This indicates that the intrinsic structure of the
WEXD(1/2,1/2;2) wave function is close to that of

@(%,%;2) in Eq. (15), with a=0 and b=—c.

D. S=3/2 second excited state: Spin resolved intrinsic
structure for strong repulsion («=1)

In Secs. IVB and IV C, we investigated the intrinsic
structure of the many-body three-electron wave functions
with total spin S=1/2 and for the case of a strong anisotropy
n=1/2. In this section, we analyze a case of an EXD wave
function with total spin §=3/2 and for the same strong an-
isotropy n=1/2, again at B=0 T. In particular, we analyze
the intrinsic structure of a WFXP(3/2,1/2) wave function
that is the second excited state for these parameters.

In Fig. 10, we display spin-resolved CPDs for this S
=3/2 excited state. A remarkable feature is that for a fixed
electron placed on the right, all three CPDS, 77 [Fig. 10(a)],
11 [Fig. 10(b)], and 7] [Fig. 10(c)], coincide. This indicates
that the intrinsic structure of the WFXP(3/2,1/2) wave func-
tion is close to that of (I)(%,%) in Eq. (13), with all three
coefficients equal to each other, i.e., a=b=c.

Taking into account the 7| CPD with the fixed electron at
the center of the quantum dot, it is clear that the geometric
arrangement of the three localized electrons is linear. Ar-
rangements that are more complicated than the linear geom-
etry can emerge, however, for a range of different param-
eters, as is discussed in Sec. V A below.

V. MANY-BODY WAVE FUNCTIONS FOR INTERMEDIATE
ANISOTROPY (7=0.724)

A. Moderate repulsion (x=12.5)

In this section, we analyze a case of an EXD wave func-
tion with total spin S=3/2 and for the intermediate aniso-
tropy 7=0.724. In particular, we analyze the intrinsic struc-
ture of a WEXP(3/2,1/2) wave function that is the ground
state at a magnetic field B=5 T (see Fig. 4).

In Fig. 11, we display spin-resolved CPDs for this ground
state. A remarkable feature is that for a fixed electron placed
on the right, all three CPDS, 11 [Fig. 11(a)], |1 [Fig. 11(b)],
and 7] [Fig. 11(c)], coincide. This indicates that the intrinsic
structure of the WEXP(3/2,1/2) wave function is close to
that of CD(% , %) in Eq. (13), with all three coefficients equal to
each other, a=b=c.

However, these CPDs, as well as the | CPD with the
fixed spin-down electron at the center [Fig. 11(d)], are
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FIG. 10. (Color online) Spin-resolved conditional probability
distributions for the (3/2,1/2) second excited state of N=3 elec-
trons in an anisotropic dot at zero magnetic field (B=0) with pa-
rameters fiw,=3.137 meV, hw,=6274 meV (n=1/2), m
=0.067m,, and «k=1. (a) 71 CPD with the fixed spin-up electron
located on the right at (70, 0). (b) |7 CPD with the fixed spin-up
electron located on the right at (70, 0). (c) T/ CPD with the fixed
spin-down electron located on the right at (70, 0). (d) 7| CPD with
the fixed spin-down electron located at the center. The spin of the
fixed electron is denoted by a thick arrow (green online). Lengths in
nanometers. The vertical axes are in arbitrary units, but the scale is
the same for all four panels.

broader along the y direction compared to the CPDs associ-
ated with the linear molecular arrangement in Fig. 10. This
suggests that, for an intermediate anisotropy (7=0.724), the
intrinsic structure of WEXP(3/2,1/2) is more complicated.
Indeed, as demonstrated in Fig. 12 where the fixed spin-
down electron is successively placed away from the x axis at
(0,20) nm and at (0,-20) nm, the intrinsic structure corre-
sponds to a superposition of two molecular isomers. Each is
described by a three-orbital wave function q)(%, %) For each
isomer, the three localized spin-orbitals are located on the
vertices of an isosceles triangle, with each one being a mirror
reflection (relative to the x axis) of the other. The base of the
first isosceles triangle lies at —6 nm [Fig. 12(a)] and that of
the second one at 6 nm [Fig. 12(a)] off the x axis (in the y
direction).

The two-triangle configuration discussed for three elec-
trons above may be seen as the embryonic precursor of a
quasilinear structure of two intertwined “zigzag” crystalline
chains. Such intertwined double zigzag crystalline chains
may also be related to the single zigzag Wigner-crystal
chains discussed recently in relation to spontaneous spin po-
larization in quantum wires.>33

It is interesting to inquire of how this two-triangle struc-
ture is reflected in the spatial distribution of the electron
densities. Indeed, in Fig. 13(a), we display the electron den-
sity associated with the (3/2,1/2) ground state at B=5 T.
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FIG. 11. (Color online) Spin-resolved conditional probability
distributions for the (3/2,1/2) ground state of N=3 electrons in an
anisotropic dot at B=5T *with parameters fiw,=4.23 meV, fiw,
=5.84 meV (9=0.724), m =0.070m,, and «=12.5. (a) 17 CPD
with the fixed spin-up electron located on the right at (30, 0). (b) |1
CPD with the fixed spin-up electron located on the right at (30, 0).
(c) 1] CPD with the fixed spin-down electron located on the right at
(30, 0). (d) 7] CPD with the fixed spin-down electron located at the
center. The spin of the fixed electron is denoted by a thick arrow
(blue online). Lengths in nanometers. The vertical axes are in arbi-
trary units, but the scale is the same for all four panels.

We note, in particular, the absence of a third peak at the
center of the quantum dot. Instead, two rather small peaks
appear at (0,20) nm and (0,-20) nm, in agreement with the
two-triangle internal structure revealed by the CPD analysis.

B. Strong repulsion («=1)

We further display in Fig. 13(b) the corresponding elec-
tron density for the (1/2,1/2) ground state at B=0 and for a
strong Coulomb repulsion (k=1) at the intermediate aniso-
tropy 7=0.724. As a result of the enhanced electron local-
ization, the electron density exhibits pronounced peaks
whose locations form a clearly defined diamond; this indi-
cates again the presence of a two-triangle internal
configuration.** The detailed interlocking of the two triangu-
lar configurations is further revealed in the spin-resolved
CPDs that are displayed in Fig. 14. From the CPDs in Figs.
14(a) and 14(b), it can be concluded that one triangle is
formed by the points R;=~(0,-20) nm, R,=(-43,10) nm,
and R;=(43,10) nm, while the second one (its mirror) is
formed by the points R{=(0,20) nm, R}~ (-43,-10) nm,
and R;=~(43,-10) nm. The 7| [Fig. 14(c)] and 171 [Fig.
14(d)] CPDs with the fixed electron on the right at
(43,0) nm are similar to those in Figs. 8(b) and 8(c), respec-
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FIG. 12. (Color online) Spin-resolved conditional probability
distributions for the (3/2,1/2) ground state of N=3 electrons in an
anisotropic dot at B=5T with parameters fiw,=4.23 meV, fiw,
=5.84 meV (7=0.724), m*=0.070me, and «=12.5. (a) 7] CPD
with the fixed spin-down electron located at the y axis at (0, 20)
(solid dot). (b) 7] CPD with the fixed spin-down electron located at
the y axis at (0,-20) (solid dot). The spin of the fixed electron is
denoted by a thick arrow (blue online). Lengths in nanometers. The
vertical axes are in arbitrary units, but the scale is the same for all
panels in this figure and in Fig. 11.

tively, with the difference that the central hump is clearly a
double one. This indicates that each triangular configuration
is associated with a wave function of the form CID(%,%;I)
given in Eq. (14).

Naturally, the regime of a linear configuration versus a
two-triangle one depends on both the strength of the interac-
tion and the anisotropy. Detailed studies of the phase bound-
ary between these two intrinsic structures are, however, left
for a future investigation.

VI. DEGREE OF ENTANGLEMENT

The many-body wave functions for N=3 electrons ana-
lyzed in the previous sections are highly entangled states,
since they cannot be reduced to a single Slater determinant.
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FIG. 13. (Color online) Exact-diagonalization electron densities
for the ground state of N=3 electrons in an anisotropic quantum dot
with parameters fiw,=4.23 meV, fiw,=5.84 meV (7=0.724, inter-
mediate anisotropy), and m*=0.070me. (a) The (3/2,1/2) ground
state at B=5 T and x=12.5. (b) The (1/2,1/2) ground state at B
=0 and k=1 (strong interelectron repulsion). Lengths in nanom-
eters. The electron densities are in arbitrary units, with a different
scale in each panel.
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FIG. 14. (Color online) Spin-resolved conditional probability
distributions for the (1/2,1/2) ground state of N=3 electrons in an
anisotropic dot at B=0 with parameters #iw,=4.23 meV, fio,
=5.84 meV (7=0.724), m"=0.070m,, and x=1. (a) 1| CPD with
the fixed spin-down electron located at the y axis at (0,-20) (solid
dot). (b) T/ CPD with the fixed spin-down electron located off
center at (40, 11) (solid dot). (c) 7] CPD with the fixed spin-down
electron located on the x axis at (43, 0) (solid dot). (d) 71 CPD with
the fixed spin-up electron located at the x axis at (43, 0) (solid dot).
The spin of the fixed electron is denoted by a thick arrow (blue
online). Lengths in nanometers. The vertical axes are in arbitrary
units, but the scale is the same for all panels in this figure.

For special ranges of the dot parameters, we showed that
they acquire the same internal structure as the prototypical W
states. In this section, we demonstrate that the degree of en-
tanglement can be further quantified through the use of the
von Neumann entropy S,y for indistinguishable fermions
which (in analogy to the two-electron case’3%) is defined as

Syw=-"Tr(plog, p) +C, (17)

where C is a constant (see below for choosing its value) and
the single-particle density matrix is given by

<\I,EXD|aLaV|\I,EXD>

Pop = - >
VR E <\I,EXD| aL a’u|\PEXD>
N

(18)

and is normalized to unity, i.e., Tr p=1. The Greek indices w
(or v) count the spin orbitals ¢(r;u) that span the single-
particle space (of dimension 2K, see Sec. II). Note that, in
keeping with previous literature on two electrons,’-7-38 the
logarithms are taken to be base 2.

Naturally, for calculating numerically the matrix elements
pyus We Use expansion (5) to get
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FIG. 15. (Color online) von Neumann entropy at zero magnetic
field for the three lowest EXD states with S,=1/2 as a function of
the dielectric constant « [or equivalently the Wigner parameter Ryy;
see Eq. (8)] for N=3 electrons in an anisotropic quantum dot with
strong anisotropy (anisotropy parameter 7=1/2). Parameters: exter-
naj confinement iw,=3.137 meV, fw,=6.274 meV; effective mass
m" =0.067m,. The single labels 3/2 and 1/2 denote the quantum
numbers for the total spin. The ground state (GS) and the first (I)
and second (II) excited states are indicated. The horizontal arrow
indicates the direction of increasing correlations. According to our
convention, the von Neumann entropy for a single determinant van-
ishes. Although the energy gaps between the three EXD states di-
minish with decreasing « (they are quasidegenerate for k=1), the
relative energy ordering remains unchanged in the plotted range.

(WEXP| gl JWEXD) = ) AT A(SD(1)|a),a,|SD()),
1.J

(19)

where the following conventions for indices I (or J) apply:
I— (ijk) and |SD(1))=|yu(1;i)¢/(2;/) (3 ;k)). The matrix ele-
ments <SD(I)|aLaV|SD(J)> between Slater determinants that
enter in Eq. (19) simply equal to =1 or vanish. The single-
particle density p in Eq. (18) is, in general, nondiagonal.
Thus, we further perform numerically a diagonalization of p,
and we use the new diagonal elements p,, to straightfor-
wardly calculate the von Neumann entropy in Eq. (17).

As was discussed in Refs. 36-38, the von Neumann en-
tropy provides a natural measure of entanglement in the case
of interacting indistinguishable fermions. In this case, the
entanglement is related®® to quantum correlations that are
intrinsic to the many-body wave function, i.e., S,y quantifies
the fact that strongly correlated states comprise a larger num-
ber of significant Slater determinants compared to weakly
correlated ones. Accordingly, one expects that S,y increases
when the many-body correlations increase (i.e., when Ry, and
B increase). This was the case indeed for the N=2 quantum
dot,>”-3® but we have found that it also holds true for N=3
quantum dot, as can be seen from Figs. 15 and 16.

In the case when the many-body wave function reduces to
a single Slater determinant, i.e., when the expansion coeffi-
cients reduce to A;= 51),0, all the matrix elements p,,,, vanish
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FIG. 16. (Color online) von Neumann entropy for the three low-
est EXD states with S,=1/2 as a function of the magnetic field for
N=3 electrons in an anisotropic quantum dot with strong anisotropy
(anisotropy parameter 7=1/2). Parameters: external confinement
fhiw,=3.137 meV, ﬁw§=6.274 meV, dielectric constant k=12.5,
and effective mass m =0.067m,. The single labels 3/2 and 1/2
denote the quantum numbers for the total spin. The vertical arrows
indicate the discontinuous jump in the von Neumann entropy of the
ground state at B=3.4 T, where the ground-state quantum numbers
change character, first from (1/2,1/2;1) to (1/2,1/2;2) and then
immediately to (3/2,1/2). The ground state (GS) and the first (I)
and second (IT) excited states are indicated, both to the left and to
the right of the vertical arrows. According to our convention, the
von Neumann entropy for a single determinant vanishes.

except the three diagonal ones (corresponding to three fully
occupied spin orbitals) which are equal to 1/3; then
—Tr(p log, p)=log, 3=1.5850. Since the entanglement due to
the Pauli exchange principle by itself cannot be used as a
resource for quantum-information processing,3%*’ we take
the constant C in Eq. (17) to be

C=-1log, N, (20)

and as a result, the von Neumann entropy for a single Slater
determinant vanishes in our convention.

In Fig. 15, we plot the von Neumann entropy for the three
lowest EXD states with S.=1/2 as a function of « (Ry) for
N=3 electrons in an anisotropic quantum dot for a strong
anisotropy with anisotropy parameter n=1/2. It is apparent
that the von Neumann entropy increases for all three states as
Ry, increases (k decreases) and the electrons become more
localized.

At k=12.50 (corresponding to weaker correlations), the
von Neumann entropies for the three states are clearly non-
vanishing, indicating that these EXD states are far from be-
ing close to a single Slater determinant. On the other hand, it
is natural to expect that the EXD states will reduce to single
Slater determinants at the noninteracting limit. To check this
expectation, we have carried out an EXD calculation for the
same QD parameters described in Fig. 15, but with a very
large k=10 000 in order to approximately mimick the non-
interacting limit. In this latter case, we found that indeed the
ground state [with (S=1/2, S,=1/2) is practically a single
Slater determinant made out from the three spin orbitals (m
=0,n=0;7), (m=0,n=0;]), and (m=1, n=0;7), the lowest-
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in-energy spatial orbital (m=0, n=0) being doubly occupied
(see Sec. II for the meaning of indices m and n). We also
found that the corresponding S,y is practically zero.

However, due to the »=1/2 anisotropy, one has 2%,
=hw,, which gives rise to a high degree of energy degen-
eracy among excited Slater determinants with good total
spin. For example, the Slater determinant |(m=0, n=0;1), (
m=1, n=0;]), and (m=1, n=0;7)) is degenerate to the de-
terminant |(m=0, n=0;71), (m=0, n=0;]|), and (m=0, n
=1;7)). In this situation, a small e—e interaction is sufficient
to produce strong mixing of the degenerate Slater determi-
nants, and as a result, the corresponding S,y values for ex-
cited states were found to be nonvanishing. These findings
are reflected in Fig. 15 where, for k=12.50 (weakest Cou-
lomb repulsion in the plotted range), the S,y value for the
EXD ground state is noticeably lower than the values for the
two excited states.

As was demonstrated in Sec. IV, at zero magnetic field
and strong Coulomb repulsion (e.g., k=1), the three elec-
trons are well separated and localized, and their EXD wave
functions are equivalent to the forms given in Eq. (14) (GS),
(15) (first excited state, I), and (13) (second excited state, II).
These forms are special cases of the general form in Eq. (12)
for which another measure of entanglement, called the tangle
and specifying the reduced tripartite entanglement among the
three localized spin qubits,' can be applied.

The tangle can be calculated' from the coefficients a, b,
and c, and it was found that it vanishes for all cases covered
by the general form in Eq. (12). In this respect, the von
Neumann entropy for three well separated electrons studied
here exhibits qualitatively a very different behavior, since the
values of S,y at k=1 are all different, as seen from Fig. 15.
In particular, we note that in this case, the EXD value of S,y
for the I state is lower than that of the GS state; this naturally
reflects the fact that the first excited EXD state in this limit is
effectively composed of only two Slater determinants [see
Eq. (15)] compared to the three Slater determinants associ-
ated [see Eq. (14)] with the EXD ground state.

In Fig. 16, we plot the von Neumann entropy for the three
lowest EXD states with §,=1/2 as a function of the magnetic
field for N=3 electrons in an anisotropic quantum dot with
the same parameters as those for the energy spectra in Fig. 5
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(strong anisotropy with anisotropy parameter 7=1/2, as also
was the case with Fig. 15). It is apparent that the von Neu-
mann entropy increases for all three states as the magnetic
field increases and the electrons become more localized. An
interesting feature is the discontinuous jump (around B
=3.4T) in the von Neumann entropy of the EXD ground
state. This jump is illustrated by the vertical arrows and is
associated with the triple ABC point in Fig. 5. This discon-
tinuity in the ground-state S,y arises from the sudden change
in the intrinsic structure (in term of constituent Slater deter-
minants) of the ground state, as the latter changes its quan-
tum numbers first from (1/2,1/2;1) to (1/2,1/2;2) and
then again immediately to (3/2,1/2) at the triple point.

VII. SUMMARY

We have presented extensive exact-diagonalization calcu-
lations for N=3 electrons in anisotropic quantum dots, and
for a broad range of anisotropies and strength of interelectron
repulsion. We have analyzed the excitation spectra both as a
function of the magnetic field and as a function of increasing
anisotropy. A main finding was the appearance of triple-
crossing points in the ground-state energy curves for stronger
anisotropies.

Analysis of the intrinsic structure of the many-body wave
functions through spin-resolved conditional probability dis-
tributions revealed that for all examined cases (including
those with parameters corresponding to currently fabricated
quantum dots), the electrons localize forming Wigner mol-
ecules. For certain ranges of dot parameters (mainly at strong
anisotropy), the Wigner molecules acquire a linear geometry,
and the associated wave functions with a spin projection S,
=1/2 are similar to the so-called W states that are prototype
of entangled states. For other ranges of parameters (mainly at
intermediate anisotropy), the Wigner molecules exhibit a
more complex structure consisting of two mirror isosceles
triangles. This latter structures can be considered as an em-
bryonic unit of a zigzag Wigner crystal in quantum wires.

Finally, we demonstrated that the degree of entanglement
in three-electron quantum dots can be quantified via the von
Neumann entropy, in analogy with studies on two-electron
quantum dots.
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