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Abstract
It is demonstrated that exact diagonalization of the microscopic many-body Hamiltonian via
systematic full configuration-interaction (FCI) calculations is able to predict the spectra as a
function of detuning of three-electron hybrid qubits based on GaAs asymmetric double
quantum dots (QDs). It is further shown that, as a result of strong inter-electron correlations,
these spectroscopic patterns, including avoided crossings between states associated with
different electron occupancies of the left and right wells, are inextricably related to the
formation of Wigner molecules (WMs). These physical entities cannot be captured by the
previously employed independent-particle or Hubbard-type theoretical modeling of the hybrid
qubit. We report remarkable agreement with recent experimental results. Moreover, the present
FCI methodology for multi-well QDs can be straightforwardly extended to treat Si/SiGe
hybrid qubits, where the central role of WMs was recently experimentally confirmed as well.

Keywords: Wigner molecule, quantum-computer qubit, configuration interaction,
three-electron double quantum dot, hybrid qubit

(Some figures may appear in colour only in the online journal)

1. Introduction

Effective design and optimal control of the operational
manipulations and interplay between the various degrees of
freedom defining single qubit gates, as well as multi-qubit
architectures, are imperatives for efforts targeting the suc-
cessful fabrication and implementation of quantum computing
devices. To this aim major world-wide experimental endeav-
ors (see, e.g., references [1–6]) have been undertaken during
the last decade. This resulted in unprecedented progress in the
development and employment of techniques for control and
manipulation of the spin and charge which serve to character-
ize two-dimensional (2D) semiconductor-based three-electron
hybrid-double-quantum-dot (HDQD) qubits [7–12]. Nonethe-
less, several recent experimental scrutinies on Si/SiGe [13] and

∗ Author to whom any correspondence should be addressed.

GaAs [14] HDQD qubit devices provided unambiguous evi-
dence (see also references [15, 16]) for the need to account, in
modeling the qubit physics and performance, for the heretofore
overlooked, but unavoidable, formation of Wigner molecules
(WMs) [17–26], resulting from strong inter-electron (e–e)
interactions, and the consequent rearrangement of the spec-
tra of the qubit device with respect to that associated with
non-interacting electrons.

The formation of WMs is outside the scope of investi-
gations anchored in the framework of independent-particle
(single-particle) modeling [7, 12, 27, 28], invoked at the very
early stage of studies on 2D quantum dots (QDs) [29]. Nor are
more involved Hubbard-type models [7, 30–35] adequate for
the description of the formation of WMs and their physical
consequences. Instead, it has been demonstrated in earlier
theoretical treatments [17, 19, 20, 22–25, 36, 37] that the
formation of WMs requires the employment of more
comprehensive approaches, such as the symmetry-
breaking/symmetry-restoration [17, 19, 22, 25] approach
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or the full configuration-interaction (FCI) method (referred to
also as exact diagonalization [20, 24, 25, 36, 37]).1

Here, motivated by the recent advances [8–14] in the
fabrication of charge-spin HDQD qubits, we investigate the
many-body spectra and wave functions of three electrons in
an asymmetric two-dimensional double-well external confine-
ment, implemented by a two-center-oscillator (TCO) poten-
tial [17, 22, 37]. In particular, we demonstrate the defining
role that WM formation (associated with strong e-e correla-
tions) play in shaping the spectra (including the key feature
of a pair of left-right electron-occupancy-dependent avoided
crossings) of semiconductor qubits by presenting the first FCI
calculations for the case of a hybrid [7–14, 27] three-electron
double-dot GaAs qubit with parameters comparable to those in
reference [14].

Earlier fabricated GaAs QDs [28, 29, 38] were charac-
terized by harmonic confinements with frequencies h̄ω0 �
3 meV (with RW < 1.97; see equation (4)), which correspond
to a range of smaller QD sizes that did not favor the obser-
vation of the WMs at zero magnetic fields [38]. The much
larger anisotropic GaAs double dot of reference [14], as well as
the findings of reference [13] concerning Si/SiGe dots, where
strong WM signatures were observed, herald the exploration of
heretofore untapped potentialities in the fabrication and con-
trol of QD qubits, an objective that the present paper aims to
facilitate from a theory perspective.

2. Results

Many-body Hamiltonian: we consider a many-body Hamilto-
nian for N confined electrons of the form

HMB(ri, r j) =
N∑

i=1

HTCO(i) +
N∑

i=1

N∑
j>i

e2

κ|ri − r j|
, (1)

where ri, r j denote the vector positions of the i and j electron,
and κ is the dielectric constant of the semiconductor material.

The single-particle HTCO [17, 22, 37] with the unindexed
coordinates x and y corresponding to the confined particles
[i = 1, . . . , N in equation (1)], is given by:

HTCO =
p2

2m∗ +
1
2

m∗ω2
y y2 +

1
2

m∗ω2
xkx′2k + Vneck(x′k) + hk,

(2)
where x′k = x − xk with k = 1 for x < 0 (left well) and k = 2
for x > 0 (right well), and the hk’s control the relative depth
of the two wells, with the detuning defined as ε = h1 − h2. y
denotes the coordinate perpendicular to the interdot axis (x).
The most general shapes described by HTCO are two semiel-
lipses connected by a smooth neck [Vneck(x′k)]. x1 < 0 and
x2 > 0 are the centers of these semiellipses, d = x2 − x1 is the
interdot distance, and m∗ is the effective electron mass.

For the smooth neck, we use

Vneck(x′k) =
1
2

m∗ω2
xk

[
Ckx′3k +Dkx′4k

]
θ(|x| − |xk|), (3)

1 For a detailed discussion of these two methodologies in the context of QDs,
see the review article in reference [25].

where θ(u) = 0 for u > 0 and θ(u) = 1 for u < 0. The four
constants Ck and Dk can be expressed via two parameters, as
follows: Ck = (2 − 4εb

k)/xk, andDk = (1 − 3εb
k)/x2

k , where the
barrier-control parameters εb

k = (Vb − hk)/V0k are related to
the height of the targeted interdot barrier Vb (measured from
the zero point of the energy scale), and V0k = mω2

xkx2
k/2. We

note that measured from the bottom of the left (k = 1) or right
(k = 2) well the interdot barrier is Vb − hk.

HTCO has the advantage of incorporating a smooth inter-
dot barrier Vb, which can be varied independently of the
interdot separation d; for an illustration see the inset of
figure 1(a). Motivated by the asymmetric double-dot used
in the GaAs device described in reference [14], we choose
the parameters entering in the TCO Hamiltonian as fol-
lows: the left dot is elliptic with frequencies corresponding
to h̄ωx1 = 0.413 567 meV = 100 h · GHz (long x-axis) and
h̄ωy1 = h̄ωy = 1.22 meV = 294.9945 h · GHz (short y-axis),
whereas the right dot is circular with h̄ωx2 = h̄ωy2 = h̄ωy =
1.22 meV = 294.9945 h · GHz (1 h · GHz = 4.135 67 μeV).
The left dot is located at x1 = −120 nm, and the right dot is
located at x2 = 75 nm. The detuning parameter is defined as
ε = h1 − h2, where h1 and h2 are the chemical potentials of
the left and right dot, respectively. The interdot barrier from
the bottom of the right dot is set to Vb − h2 = 3.3123 meV
= 800.91 h · GHz. Finally, the effective electron mass and the
dielectric constant for GaAs are m∗ = 0.067me and κ = 12.5,
respectively.

The Wigner parameter: at zero magnetic field and in the
case of a single circular harmonic QD, the degree of elec-
tron localization and Wigner-molecule pattern formation can
be associated with the socalled Wigner parameter [17, 25]

RW = Q/(h̄ω0), (4)

where Q is the Coulomb interaction strength and h̄ω0 is
the energy quantum of the harmonic potential confinement
(being proportional to the one-particle kinetic energy); Q =
e2/(κl0), with l0 = (h̄/(m∗ω0))1/2 the spatial extension of
the lowest state’s wave function in the harmonic (parabolic)
confinement.

Naturally, strong experimental signatures for the formation
of WMs are not expected for values RW < 1. In the double dot
under consideration here, there are two different energy scales,
h̄ω1 = 0.413 567 meV (associated with the long x dimension
of the left QD) and h̄ω2 = 1.22 meV (associated with the right
circular QD). As a result, for GaAs (with κ = 12.5) one gets
two different values for the Wigner parameter, namely RW,1 =
5.31 and RW,2 = 3.09. These values suggest that a stronger
WM should form in the left QD compared to the right QD,
as indeed was found by the FCI calculation (see below).

CI spectra as a function of detuning: we use the three-part
notation (nL, nR; S) to denote the left-well electron occupa-
tion, the right-well electron occupation, and the total spin,
respectively; S = 1/2 or S = 3/2 for three electrons.

In figure 1(a), the low-energy spectrum in the GaAs case
(κ = 12.5) is displayed in the range of detunings 1.40 meV �
ε � 2.1 meV. The (2, 1; S) states with two electrons in the left
well, along the (1, 2; S) states with two electrons in the right
well, are prominent. States with three electrons in a given well,
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Figure 1. (a) Low-energy spectrum for the three-electron GaAs (κ = 12.5) double dot. The arrow indicates the value of the detuning at
which the total charge densities were calculated. (b)–(e) Total charge densities for the ground and first five excited states. (f) and
(g) Magnification of the neighborhoods of the CI avoided crossings appearing in (a). Only the S = 1/2 states, relevant to the hybrid qubit,
are shown. The notation (nL, nR; S) denotes the left electron occupation, the right electron occupation, and the total spin, respectively. For all
densities, the scales of all three axes are as in (b). CI-calculated left and right occupations are highlighted in red.

associated with a notation (3, 0; S) or (0, 3; S), are absent.
The fact that only the six (2, 1; S) and (1, 2; S) states com-
prise the lowest-energy spectrum for the GaAs double dot is
an essential feature that is a prerequisite for the implementa-
tion of the hybrid qubit which uses [7, 8, 12, 14, 27] the four
(2, 1; 1/2) and (2, 1; 1/2) states. As discussed below, this fea-
ture is brought about by the formation of WMs resulting from
strengthening of the typical Coulomb interaction energies rel-
ative to the energy gaps in the single-particle spectrum of a
confining external potential that represents a rather large-size
and strongly asymmetric double dot (see the earlier discussion
on the Wigner parameter RW).

In figure 1(a), we have successively numbered the lowest
six states at ε = 1.4 meV, starting from the ground state (#1)
and moving upwards to the first five excited ones. Apart from
the immediate neighborhood of an avoided crossing, these
energy curves are straight lines, and naturally we extend the
same numbering for all values of the detuning in the window
range used in figure 1(a).

The spectrum in figure 1(a) requires additional commen-
tary, because of quasi-degeneracies between the states #2, #3,
and #5, #6, as well as the small energy gap (∼3 h · GHz)
between state #1 and the quasi-degenerate pair (#2, #3). We
stress that the states #1 and #2 have two electrons in
the left well and total spin S = 1/2, and thus they are
denoted as (2, 1; 1/2), whereas state #3 has two elec-
trons in the left well, but a total spin of S = 3/2 (denoted
as (2, 1; 3/2)). On the other hand, states #4, #6 (with
S = 1/2), and #5 (with S = 3/2) have two electrons in
the right well and they are denoted as (1, 2; S). A main
feature of this six-state spectrum in figure 1(a) is that,
apart from the neighborhoods of the two avoided cross-
ings, the energy curves for the states #1, #2, and #3
form one band of parallel lines, whereas the energy curves for
the states #4, #5, and #6 form a second band of parallel lines,
and the two bands intersect at two avoided crossings.

We reiterate that the appearance of such three-member
bands, grouping together two S = 1/2 states and one S = 3/2
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state, is a consequence of the formation of a 3e WM (three
localized electrons considering both wells), and this organi-
zation is in consonance with the findings of reference [36]
regarding the spectrum of three electrons in single anisotropic
QDs in variable magnetic fields. We further stress that the dom-
inant feature in the spectrum shown in figure 1(a) is the small
energy gap between the two S = 1/2 states #1 and #2, which
contrasts with the large gap between the other two S = 1/2
states #4 and #5, a behavior that agrees with the experimental
findings of reference [14].

Charge densities away from the avoided crossings: further
insights into the unique trends and properties of the GaAs
HDQD qubit are gained through an inspection of the CI charge
densities, plotted in figures 1(b)–(e) for the ground and first
five excited states. The red numbers indicate the left-well
and right-well electron occupations as calculated from the CI
method. Naturally, the charge densities are normalized to the
total number of electrons N = 3.

The charge densities deviate strongly from those expected
from an independent-particle system. Indeed the formation of
a strong 2e WM in the left well and of a weaker 2e WM in the
right well is clearly seen through the emergence of a double
hump in all six cases.

The avoided crossings: the position and the asymmetric
anatomy of the two avoided crossings (figures 1(a), (f ) and
(g)) play an essential role in the operation of the hybrid qubit
[14], requiring a FCI simulation that incorporates both dots
of the HDQD qubit, as demonstrated here2. In figures 1(f)
and (g), we display magnifications of the neighborhoods of
the left and right CI avoided crossings, respectively, appear-
ing in the spectrum of the GaAs double dot (figure 1(a)).
Only the S = 1/2 states are shown, because the S = 3/2
states are not relevant for the workings of the hybrid qubit
[7, 14, 35, 39].

The left avoided crossing (situated in the neighborhood of
1.49 meV <ε < 1.54 meV) is formed through the interaction
of the three curves #1, #2, and #4 (we keep the same number-
ing of the curves here as in figure 1(a)). On the other hand, the
curves #1, #2, and #6 participate in the formation of the right
avoided crossing in the neighborhood of 1.885 meV <ε <
1.908 meV. We note that, according to the FCI calculation, the
two avoided crossings are separated by a detuning distance of
∼400 μeV, which agrees with the experimentally determined
value for the hybrid qubit device in reference [14].

The continuous lines in figures 1(f) and (g) represent the
socalled adiabatic paths, which the system follows for slow
time variations of the detuning. For fast time variations of
the detuning, or with an applied laser pulse, the system can
instead follow the diabatic paths indicated explicitly with
dashed lines in figure 1(f) and thus jump from one adiabatic

2 The qubit is initialized in the ground-state on line #4 (tuned to the far right of
the left crossing) in figure 1(a). After detuning and laser-pulse-induced jump-
ing to state #2 (at left crossing, figure 1(f)), readout is achieved via increased
detuning, moving along state #1 and through the right avoided crossing to state
#6 (figure 1(g)).

Figure 2. The spin structure of the ground state (a), (b) and
1st-excited (c) and (d) states at ε = 1.405 (see figures 1(b) and
(c) for the corresponding total charge densities). The red numbers
indicate the CI-calculated left and right occupancies (rounded to
the second decimal point). The spin-resolved densities integrate to
the number of spin-up and spin-down electrons in (a) and (b),
respectively. The arrows indicate the spin direction.

line to another; this occurs according to the celebrated Lan-
dau–Zener–Stückelberg–Majorana [40–42] dynamical inter-
ference theory.

Spin structure away from the avoided crossings: the charge
densities associated with the states #1, #2, and #3 in the three-
member band are designated with the same numbers and are
plotted in the top two frames of figure 1(b). These three charge
densities are very similar. However the corresponding spin
structures are different. We analyze below the two cases of the
ground state and the 1st-excited state for ε = 1.405 meV.

Figures 2(a) and (b) display the spin-up and spin-down
densities for the ground state mentioned above; compare
figure 1(b) for the total charge density. From these two spin-
resolved densities, it is immediately seen that the spin structure
of this ground state conforms to the following familiar expres-
sion [7, 14, 35, 36, 39] in the theory of three-electron qubits
and QDs:

(|duu〉 − |udu〉)/
√

2, (5)

where u and d denote an up and down spin, respectively, with
the three spins arranged from left to right in three ordered sites.

Figures 2(c) and (d) display the spin-up and spin-down den-
sities for the associated 1st-excited state; compare figure 1(c)
for the total charge density. From these two spin-resolved
densities, one can conclude that the spin structure of this
1st-excited state conforms to a second familiar expression
[7, 14, 35, 36, 39] in the theory of three-electron qubits and
QDs, namely

(2|uud〉 − |duu〉 − |udu〉)/
√

6. (6)

Indeed, from equation (6), one can derive that the expected
spin-up occupancy for the most leftward and middle posi-
tions of the three spins is 5/6 in both cases, yielding 5/3 =
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1.666 for the expected spin-up occupancy in the left dot, in
agreement with the CI value of 1.66 highlighted in red in
figure 2(c). Similarly the expected spin-up occupancy for the
right dot from equation (6) is 1/3 = 0.333, in agreement with
the CI-value of 0.34 highlighted in red in figure 2(c). More-
over, from equation (6), one can derive that the expected
spin-down occupancy for the most leftward and middle posi-
tions of the three spins is 1/6 in both cases, yielding 1/3 =
0.333 for the expected spin-down occupancy in the left dot,
in agreement with the CI value of 0.33 highlighted in red in
figure 2(d). Finally the expected spin-down occupancy for the
right dot from equation (6) is 2/3 = 0.666, in agreement with
the CI-value of 0.67 highlighted in red in figure 2(d).

The effective matrix Hamiltonian: from the CI spectra, one
can extract the phenomenological effective matrix Hamilto-
nian [8, 14] that has played a central role in the experimental
dynamical control of the hybrid qubit. The general form of this
4 × 4 matrix Hamiltonian is:

HM =

⎛
⎜⎜⎝

cLε̃/2 0 δ1 −δ2

0 cLε̃/2 +ΔEL −δ3 δ4

δ1 −δ3 cRε̃/2 0
−δ2 δ4 0 cRε̃/2 +ΔER,

⎞
⎟⎟⎠
(7)

where ε̃ = ε− ε0 here denotes a renormalized detuning.
A good fit with the CI spectrum in figures 1(a), (f ) and

(g) is achieved by setting cL = 4.4, ΔEL = 15 μeV, cR =
2.7, ΔER = 340 μeV, δ1 = 0.657 μeV, δ2 = 0.090 μeV, δ3 =
1.207 μeV, δ4 = 0.075 μeV, and ε0 = 1.50 meV.

The effective matrix Hamiltonian in equation (7) reflects
(within the plotted window) two properties of the FCI spec-
trum in figure 1(a) that are instrumental [8, 43] for the suc-
cessful operation of the hybrid qubit, namely, the quasi-linear
dependence of HM on the detuning ε̃ and the quasi-parallel
behavior of both the two (2, 1, 1/2) states (states #1 and #2)
and the two (1, 2, 1/2) states (states #4 and #6). We note a
difference between references [8, 14] and the CI result for
HM , namely, references [8, 14] assume the values cL = 1 and
cR = −1 associated with 45◦ and −45◦ slopes of the associ-
ated lines, respectively, while the CI result produces different
slopes associated with cL = 4.4 and cR = 2.7.

3. Conclusions

We presented extensive FCI results that combine both energet-
ics and investigation of the many-body wave functions through
the calculation of charge and spin-resolved densities. Going
beyond two-particle CI treatments in a single dot [13–16], this
paper enabled for the first time the investigation of key fea-
tures appearing in the low-energy spectrum of actual exper-
imentally fabricated GaAs three-electron HDQD qubits, and
in particular the role of a pair of avoided crossings between
levels corresponding to different electron occupancies in the
left and right wells. We demonstrated that the emergence of
these spectral features, which are codified in a simple effective
matrix Hamiltonian (equation (7)), emanating from the com-
plexity of the many-body problem, is inextricably related to
electron localization and the formation of WMs.

Derivations [7, 34] of the matrix Hamiltonian in
equation (7), starting from approximate two-site Hubbard-
type modeling, involve qualitative approximations which are
not applicable for the case of WM formation. Consequently,
the present CI-based confirmation of this effective matrix
Hamiltonian, accounting fully for strong-correlation effects
within each well and WM formation, is an unexpected
auspicious result.

Our multi-dot FCI method can straightforwardly be
expanded to incorporate the valley degree of freedom, thus
holding the potential for being adopted as an effective tool for
analysing and designing hybrid qubits, including the case of
Si/SiGe hybrid qubits with more than three electrons where
more complex spectra have been recently experimentally dis-
covered [13]. In this context, a main focus of ongoing research
[44] is the investigation of the effect of the valley degree of
freedom on the formation of near-degenerate pairs of elec-
tronic states. We mention again that, in the case of the GaAs
qubit device [14] considered here, the quasi-degeneracies is
an effect of the strong e–e interaction and Wigner-molecule
formation, which suppress the energy gaps in the electronic
spectrum. The valley degree of freedom will introduce fur-
ther possibilities for grouping of the electronic states of the
qubit device due to additional group symmetries that become
apparent when the valley-pseudospin analogy is explicitly con-
sidered; e.g., the SU(4) or SU(2) × SU(2) group symmetries.
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