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A study of the influence of strong electron-electron interactions and Wigner-molecule formation on the spectra
of 2e singlet-triplet double-dot Si qubits is presented based on a full configuration-interaction (FCI) approach that
incorporates the valley degree of freedom (VDOF) in the context of the continuous (effective mass) description
of semiconductor materials. Our FCI solutions correspond to treating the VDOF as an isospin in addition to the
regular spin. A major advantage of our treatment is its capability to assign to each energy curve in the qubit’s
spectrum a complete set of good quantum numbers for both the spin and the valley isospin. This allows for
the interpretation of the Si double-dot spectra according to an underlying SU(4) D SU(2) x SU(2) group-chain
organization. Considering parameters in the range of actual experimental situations, we uncover and demonstrate
for a double-quantum dot that, in the (2,0) charge configuration and compared to the expected large, and dot-size
determined, single-particle (orbital) energy gap, the strong e-e interactions drastically quench the spin-singlet—
spin-triplet energy gap E&. within the same valley, making it competitive to the small energy gap Ey between the
two valleys. We present results for both the ES. < Ey and E$. > Ey cases, which have been reported to occur
in different experimental qubit devices. In particular, we investigate the spectra as a function of detuning and
demonstrate the strengthening of the all-important avoided crossings due to a lowering of the interdot barrier
and/or the influence of valley-orbit coupling. We further demonstrate, as a function of an applied magnetic
field, the emergence of avoided crossings in the (1,1) charge configuration due to the more general spin-valley
coupling, in agreement with experiments. The valleytronic FCI method formulated and implemented in this
paper, and demonstrated for the case of two electrons confined in a tunable double quantum dot, offers also
a most effective tool for analyzing the spectra of Si qubits with more than two wells and/or more than two
electrons, in field-free conditions, as well as under the influence of an applied magnetic field. Furthermore, it can

also be straightforwardly extended to the case of bilayer graphene quantum dots.
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I. INTRODUCTION

Studies of semiconductor qubits (e.g., Si [1-7] and GaAs
[8-10] electron-based qubits, or Si [11,12] and Ge [13-17]
hole-based ones) are developing into major research endeav-
ors, with each material and charge carrier type presenting its
own opportunities and/or challenges. In this paper, we fo-
cus on electron-based Si double-quantum-dot (DQD) qubits,
which are of high interest due to their inherent long coherence
times [1-4].

For Si qubits, the challenge consists of the presence of
the valley degree of freedom (VDOF); namely, the VDOF
brings along added complexity (compared to cases where the
VDOF is absent, e.g., GaAs nanodevices [8,9,18]), which has
been addressed in a number of experimental and theoretical
treatments [1,19-30]. Indeed, a number of publications con-
sider this complexity as a challenge to be overcome or to do
away with (see, e.g., Refs. [1,20,22,27]), whereas a second
group of publications (see, e.g., Refs. [23,25,28-30]) consider
it as a potential resource to be further explored. Experimental
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efforts in both directions are intensely pursued, but a definitive
resolution has not been reached as yet.

Further progress toward understanding of the VDOF com-
plexity in solid-state qubits is compounded by the very recent
realization (i.e., in 2021) that the energy gaps in the rele-
vant excitation spectra (with the potential to be involved in
the operation of the qubit) depend crucially [12,29,31,32]
on Wigner-molecule (WM) [18,33-44] formation and the
strong electron-electron interactions that naturally arise in
these silicon nanodevices (also found in GaAs 3e hybrid
qubits [9,45,46]), due to an interplay between material param-
eters, as well as size and geometry (e.g., circular or wirelike
shapes of the QDs), that yields large values for the Wigner
parameter Ry > 1 (see Sec. I A). We note that the concept
of Wigner molecules originated from theoretical investiga-
tions more than two decades ago (see Refs. [33,34], and
Ref. [43] for a review). We further note that, due to its very na-
ture, Wigner-molecule formation is universal and of relevance
to many other condensed-matter and atomic-and-molecular
physics situations, like trapped few particles under an applied
magnetic field or strong rotations, whether fermions (electrons
or fermionic ultracold neutral atoms) or bosons (bosonic ultra-
cold atoms) (see, e.g., Refs. [43,47-52]).

This paper focusses primarily on deciphering the complex-
ity of the excitation spectra in the case of a Si DQD qubit in the
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physically relevant regime of strong e-e interactions and WM
formation. These strongly correlated spectra will be shown to
be multifaceted compared to those investigated recently for
the case of a single Si QD [12,29,31,32], due to the additional
degrees of freedom associated with the detuning, the separa-
tion, and the variable barrier between the QDs.

Among the various many-body approaches employed in
this area of research, it is becoming increasingly transpar-
ent that the strong e-e interaction regime in few-electron
nanosystems (and in particular, the elucidation of the effects
of WM formation in both the ground and excited states) can be
most accurately described theoretically through the use of the
microscopic full configuration-interaction (FCI) methodology
[53], which treats in an efficient manner the two-body part
of the Hamiltonian governing the system. Indeed, the FCI
(referred to also as exact diagonalization) has been success-
fully applied [18,40-42,44-47] in the last two decades to
two-dimensional (2D) quantum dots (QDs) with single-band
semiconductor materials substrates, like GaAs. FCI calcu-
lations for condensed-matter nanostructures that incorporate
aspects of the VDOF have been also considered recently
[32,54]. However, a CI approach that unequivocally relates
to the field of valleytronics [55-59] by properly incorporating
the valley degree of freedom as an isospin [60], in complete
analogy with the regular spin, is still missing.

Here, we fill this gap by introducing a valleytronic FCI
(VECI) approach that employs single-particle (one-body)
bases associated with the continuum model (effective mass
approximation [61] of the two-band structure in Si QDs
[62]) . The VFCI methodology developed and implemented
in this work, as well as the one-band FCI employed in
Refs. [45,46], represent a significant step towards gaining a
comprehensive understanding of the complexity of the spectra
of semiconductor-based solid-state qubits. These methodolo-
gies enable accurate many-body computational modeling of
quantum dot devices (coupled quantum dots of variable sizes,
and shapes, ranging from two-dimensional circular ones, to
elliptical and wirelike quasi-one-dimensional structures), with
(this paper) or without [45,46] valleytronic characteristics, al-
lowing for formation of carrier-localized correlated structures
(i.e., WMs [18,33-44]).

The utilization and merits of the VFCI methodology pre-
sented in this paper are demonstrated through its application
for a comprehensive exploration of the properties of the val-
leytronic spectra of a pair of electrons in a Si double quantum
dot, including changes brought about by detuning between
the two potential wells, with and without the application of
an external magnetic field. The main achievements of our
explorations may be summarized as follows: (i) complete
description of the valley degree of freedom with adaptation
of the isospin concept, in full analogy with the regular spin;
(i1) uncovering the group-theoretical SU(4) D SU(2) x SU(2)
spectral organization, with the emergence of avoided cross-
ings and the dependence on spin-isospin coupling strength;
(iii)) demonstration of the formation of WMSs, driven by
strong e-e correlations, occurring for experimentally relevant
double-well confinements, with the consequent appearance of
strongly suppressed spin-singlet/spin-triplet gaps within the
same valley, thus affecting the operational gating characteris-
tics of the quantum double dot; (iv) analysis of the influence of

valley-orbit and spin-valley Hamiltonian terms, in particular
under an applied magnetic field. In light of the above, it is
foreseen that the valleytronic FCI method demonstrated here
will be found to be most valuable for future investigations,
particularly, for in-depth understanding of the spectra of Si
(as well as other semiconductors, e.g., Ge) qubits with multi-
ple wells, and geometries, including spherical, elliptical, and
wirelike quasi-one-dimensional structures.

We stress that the VFCI methodology introduced here
enables the acquisition of numerical results complete with
full spin-isospin assignments that reveal the underlying SU(4)
D SU(2) x SU(2) [63-65] group-chain organization of the
spectra of Si double-quantum-dot (DQD) qubits. Specifically,
the valley isospin assignments in our VFCI consist of a pair
of indices (V, V;) in analogy with the two indices (S, S;) of
the regular spin. (This is in contrast with earlier CI imple-
mentations in single QDs constructed from other materials
exhibiting a VDOF, which have been restricted [66] to char-
acterizing the CI states using one valley index only, namely.
the valley projection V..")

Furthermore, we show with concrete examples that such
a group-theoretical organizing principle is essential in deci-
phering the complexity of the two-electron-DQD (2¢-DQD)
spectra arising from the interplay of both the VDOF and the
selective suppression of spectral energy gaps associated with
the emergence of Wigner molecules in the strong-correlation
regime. This endeavor is most desirable, given that the recent
Cl investigations of the WM effects on the spectra and behav-
ior of Si qubits have been restricted [12,29,31,32] to the case
of a single QD, in addition to overlooking the systematic pat-
terns arising from the underlying group-theoretical properties
of the valley isospin.

As concrete examples, we analyze characteristic cases of
Si 2e-DQD theoretical spectra that can be associated with
experimentally measured ones. In particular, we address the
following cases:

(1) The first-excited state in the (2,0) configuration? is a
spin triplet with both electrons in the lower-energy valley. This
case is the result of strong e-e interactions which drastically
quench the spin-singlet/spin-triplet energy gap Ese?r within the
same valley, making it smaller than the small energy gap Ey
between the two Si valleys, i.e., Ey > ESO}. Related experi-
mental situations have been reported in Refs. [31,67]. The
VFCI results concerning this case are presented in Sec. IIT A.

(2) Another possibility concerning the (2,0) charge con-
figuration involves the formation of the first-excited state via
promotion of one electron to the higher-energy valley. In this
case, one has Ey < Eg?r. Related experimental situations have
been reported in Refs. [28,30]. The VFECI results concerning
this case are presented in Sec. III B.

!'Also CI implementations (see, e.g., Ref. [32]) for Si/SiGe single
QDs that employ lattice tight-binding single-particle bases, as well
as CI simulations of exchange-coupled donors in silicon using mul-
tivalley effective mass theory [54], are using the regular spin indices
(S, S,) only.

2The notation (1, nz) indicates charge configurations with n; elec-
trons in the left dot and ny electrons in the right dot.
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(3) Inthe (1,1) charge configuration, the first-excited state
involves the promotion of one electron to the higher-energy
valley and a complete set of three multiplets [containing an
SU(4)-characteristic total of 16 states] are resolved by lift-
ing their degeneracies through the application of a magnetic
field. The related experimental investigation was reported in
Ref. [68]. This investigation parallels the recent investigations
of the 2e spectra in single bilayer graphene quantum dots
[69,70]. The VFCI results concerning this case are presented
in Sec. III C.

II. METHODOLOGY

In this section, we present the mathematical formulation
for the VFCI methodology. In addition, we give the definition
for the Wigner parameter and the various terms that contribute
to the many-body Hamiltonian. Of special interest among
them are terms implementing the valley-orbit coupling and the
generalized spin-valley interaction (which is a generalization
for two-band materials of the spin-orbit coupling).

Before proceeding with the description of the VFCI re-
sults, we mention here that in the context of valleytronics, the
valley isospin is defined by a three-dimensional vector V (in
analogy with the regular spin vector S) which has three projec-
tions (Vy, V, V;) [in analogy with the regular-spin projections
(Sx, Sy, S;)1. The three valley projections V,, g = x, y, z, obey
the same Lie algebra (commutation relations) as the three
spin projections S,, ¢ = x, y, z. Likewise, the valley Casimir
operator is given by V2 = V2 + V2 + V2 [with eigenvalues
V(V + 1)], in analogy with the regular—spm Casimir operator
S = =S} + 57 + 52 [with eigenvalues S(S + 1)]. An electron

having V, = :I: means that it lies in the low- or high- -energy

valley, respectlvely We further note that the same symbols S,
S, S;and V, V, V. will be used for both the case of a single
electron and for the total spin and total isospin in the case
of more than a single electron. Which case applies will be
obvious from the context of the associated section.

A. Wigner parameter

At zero magnetic field and in the case of a single cir-
cular harmonic QD, the degree of electron localization and
Wigner-molecule pattern formation can be associated with the
so-called Wigner parameter [32,33,43,46]

Rw = Q/(hay), ey

where Q is the Coulomb interaction strength and %wy is the
energy quantum of the harmonic potential confinement (being
proportional to the one-particle kinetic energy); Q = €*/(kly),
with Iy = [B/(m*wy)]"/? the spatial extension of the lowest
state’s wave function in the harmonic (parabolic) confine-
ment. Naturally, experimental signatures for the formation of
Wigner molecules are expected for values Ry > 1, with the
WM pattern being more robust the larger the value of Ry .

As mentioned in the last paragraph of Sec. III B, the values
of Ry corresponding to the Si DQDs studied in this paper
are Ry = 10.0 when 7Ziwy = 0.40 meV and Ry = 7.07 when
hwo = 0.80 meV.

B. The reference many-body Hamiltonian

We consider N electrons in a double quantum dot under
a low magnetic field (B) (including the case of a vanishing
magnetic field). The corresponding many-body Hamiltonian,

Hyp = ZHTco(z) + Z Z V(r;,T)), )

i=1 j>i

is the sum of a single-particle part Hyco(i) and the two-
particle interaction V (r;, r;).

Naturally, for the case of electrons, the two-body interac-
tion is given by the Coulomb repulsion

&2

VT = ————, 3
Klr; —rj
where « is the dielectric constant of the semiconductor mate-
rial (k = 11.4 for Si).
The single-particle Hamiltonian is given by

Hrco =T + Vrco(x, y) + g*usBo, 4)

where we dropped the particle index i. The last term in Eq. (4)
is the Zeeman interaction, with g* being the effective Landé
factor (g = 2 for Si), up the Bohr magneton, B the perpen-
dicular magnetic field, and o = :i:% the spin projection of an
individual electron.

The kinetic contribution in Eq. (4) is given by

2
o P /oAmPE )
2m*
with m* being the in-plane effective mass (0.191m, for Si)
and the vector potential A(r) = 0.5(—By7 + BxJ) being taken
according to the symmetric gauge, where r = xi + yJ.

The external confining potential is denoted as Vpco(x, y).
For the two-dimensional DQDs considered in this paper, the
confining potential is determined by the following two-center-
oscillator expression [33,38,39,44-46]:

Vico = sm* )y + sm* opx? + Voee () + hi,  (6)
where x; = x —x; with k =1 for x < 0 (left) and k = 2 for
x > 0 (right), and the A;’s control the relative depth of the two
wells, with the detuning defined as ¢ = h, — h;. y denotes the
coordinate perpendicular to the interdot axis (x). A notable
property of Vyco is the fact that it allows for the formation
of a smooth interwell barrier between the individual wells
whose height V;, can be varied independently from the inter-
dot distance d = x, — x;; see Fig. 1 for an illustration. The
most general shapes described by Vo are two semiellipses
connected by the smooth neck Viek(x). x; <0 and x; > 0
are the centers of these semiellipses. In this paper, we take
wy| = Wxy = W, = wyp in all instances.

For the smooth neck, we use

Vieek(¥) = tm* 0% [Coxd + Dexid |0 (Ix — D), (7)

where 0(u) =0 for u > 0 and 0(u) = 1 for u < 0. The four
constants C; and Dy can be expressed via two parameters,
as follows: Cr = (2 — 4€))/x and Dy = (1 — 3€})/x}, where
the barrier-control parameters ek (Vi — hi)/Vor are related
to the height of the targeted interdot barrier (Vj, measured
from the origin of the energy scale), and Vo = m*w? x?/2.
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FIG. 1. The TCO external confining potential Vrco(x, y), includ-
ing the smooth neck. (a) A high interdot barrier corresponding to a
barrier control parameter of ef’mp = 0.65. (b) A lower interdot barrier
corresponding to a barrier control parameter of ef'i"" = 0.45. The
remaining parameters are fiw,| = oy = ho, = oy = 0.80 meV,
interdot separation d = 150 nm (with —x; = x, = 75 nm), effective
mass m* = 0.191m, (appropriate for Si), and detuning parameter
& =2.71 meV.

We note that measured from the bottom of the left (k = 1) or
right (k = 2) well the interdot barrier is V;, — hy.

We note that in all calculations in this paper we used
non-negative values of detuning (¢ > 0), namely, the left well
was kept in all instances lower than the right one. In addition,
for convenience, we set i; = 0. In this case, it was advan-

. . b,inp
tageous to use a modified barrier-control parameter €, as

an input parameter. Specifically, €” and €™ are related as
Y
el =€ (Vop + &)/ Vor.

Neglecting the term Vpx for the smooth neck, the eigen-
states of Hyco at B =0 are used to construct the space
orbitals ¢;(x, ) of the single-particle basis employed in the CI
method; see Eq. (9) below. How to solve for the eigenvalues
and eigenstates of the ensuing auxiliary Hamiltonian,

PPl s,
Y- + Sy + 3 WXy + Iy, ®)

Haux =

is described in Appendix A.

The modularity of the formulation expressed in Eqgs. (2)—
(8) above endows our methodology with a large measure of
flexibility and versatility, thus enabling construction of basis
sets which can be used in investigations of the many-body
physics of a variety of model devices, including multiple-
coupled (electron or hole) quantum dots (e.g., exchange-only
qubits [71]) with various sizes and shapes [described through
variations of the frequencies defining the parabolic con-
finements wy, w,, see Egs. (6)—(8)] which in the limit
of strong anisotropy, e.g., large w./w,, permit investiga-
tions of transitions from two-dimensional to one-dimensional
(or quasi-one-dimensional) wirelike quantum-dot geometries.
The lower symmetry of a wire (quasi-one-dimensional) or
an ellipsoidally distorted confinement, together with physical
parameters characterizing the material (e.g., effective mass
and dielectric constant) that yield a larger Ry, are expected
to enhance the formation of Wigner-molecule structures. We
mention here that a strongly anisotropic GaAs DQD three-
electron hybrid qubit was analyzed using our methodology in
Refs. [45,46], while systems of two, three, and four ultracold
neutral atoms trapped in coupled quasilinear optical traps
were investigated with our methodology in Refs. [49,50].

Finally, the Hamiltonian term implementing the spin-
isospin coupling is described in Sec. II D, after the introduc-
tion in the next section of the o, and 1,;, ¢ = x,y, z, Pauli
matrices that correspond to the regular spin and to the valley
isospin, respectively.

C. Valleytronic FCI approach

The band structure of crystalline silicon (having a cova-
lently bonded, cubic, diamond lattice structure) is known to
exhibit in the conduction band electron states that show six
equivalent (degenerate) minimum energies, associated with
crystal momenta (k) that are 0.85 of the way to the Brillouin-
zone boundary; these six states are termed “valleys” [72-76].
In nanoscale devices the degeneracy of the valleys is bro-
ken by various effects, including strain, confinement effects
(such as lattice mismatch and/or abruptness of the interface
between the nanofeature and the confining material), and
electric-field effects. Due to strain in Si/SiGe quantum wells
and (interfacial) quantum dots (in particular, in heterostructure
semiconductors) [75], and higher subband quantization en-
ergy in MOS devices [76], the energies of the (four) in-plane
valleys are raised, resulting in a remaining double (twofold)
degeneracy (in the direction normal to the dot’s plane), which
itself has been shown [1] to be lifted by electronic confinement
due to electric field and the effects of the QD boundary struc-
ture (including interfacial disorder and/or steps for Si/SiGe
quantum dots). In this paper, as is the case for the general
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practice for the Si DQDs, we consider that the VDOF consists
only of the low-energy twofold band.

As remarked at the end of the Introduction, to characterize
and classify the VDOF of the two remaining valleys, we in-
troduce in this paper an isospin designation that is constructed
in analogy [including the SU(2) algebra generated by the
i-multiplied Pauli matrices] with that of the regular spin of the
electrons (replacing S with V when referring to the VDOF).
Obviously, in the absence of two-body interactions, the occu-
pation of the single-particle energy states® in the dots would
depend on an interplay between the confinement (including
an applied magnetic field) and the valley effects. For the case
of valley degeneracy or near degeneracy (determined by the
intervalley splitting Ey, also referred to as valley gap), and
with a confinement gap (that is the energy spacing between
successive confinement-induced single-particle states) which
is much larger than Ey, this interplay results in “doubling” of
the spectrum (two near-degenerate states for each confinement
state, each corresponding to a different valley).

As aforementioned, we use the method of configuration
interaction for determining the solution of the many-body
problem specified by the Hamiltonians Hyg + Hys, Hvs +
Hys + Hvyoc, or Hyig + Hys + Hsic (These Hamiltonians are
defined in Sec. II A [see Eq. (2)] and in Sec. II D below.).

In the CI method, one writes the many-body wave function
O (ry, ra, ..., ry) as a linear superposition of Slater deter-
minants WV (r;, ry, ..., ry) that span the many-body Hilbert
space and are constructed out of the single-particle spin-
isospin orbitals®

xi®) =g, s if 1<j<K,
xi(r)=g@j—xk(x, y)B¢ if K<j<2K,

Xi(r) =@ ox(x,y)an if 2K < j < 3K,

xi(r) = @3k (x,y)Bn if 3K < j < 4K, )

where @ (B) denotes up (down) spins, ¢ (1) denotes up
(down) isospins [i.e., electrons in the first (second) valley],
and the spatial orbitals ¢;(x, y) are given by the K lowest-
energy solutions of the auxiliary single-particle Hamiltonian
in Eq. (8). For clarity and convenience, these solutions are
sorted in ascending energy.

We note that, in analogy with the case of the Pauli spin
matrices oy, oy, and o, three additional Pauli matrices t,,
7y, and 7, associated with the valley isospin, can be defined,
yielding the relations 7, = n, T, = ¢, 1, = in, T,n = —iL,
.0 = ¢, and T, = —1.

Making contact with the effective mass theory (continuum
model) [61] for semiconductor heterostructures, we identify
the ¢;(x,y)’s as the envelope functions of this theory as
applied to gated finite-size semiconductor and carbon nanos-
tructures [62].

The isospin functions ¢ and 7 are orthornormal, in analogy
with the regular spin functions « and B. Unlike the exact

3These confinement-induced single-particle energy states are also
referred to as “orbitals” (see, e.g., the expressions “atomic orbitals,”
“space orbitals,” and “spin orbitals” in chemistry [78]).

“This is an apparent generalization of the term spin orbital used in
chemistry and molecular physics (Footnote 3).

orthornormality of « and 8, however, the orthornormality of ¢
and 7 is an approximate property, which nonetheless is highly
accurate when the confining (gate) potentials vary slowly over
the distance defined by the lattice constant a of the material.
This follows from the fact® that the Bloch functions that mul-
tiply the envelope functions in the effective-mass approach
are varying rapidly in space with a period determined by the
material’s lattice constant a, whereas the envelope functions
vary slowly over the much larger extent defined by the size of
the nanostructure.
Specifically, the many-body wave function is written as

oy, ...ty =Y Y@Ly, (10)
I
where
| X (r1) Xin (1)
= —| g : (11)
I — 1 . . : 5
VIV ) X (TN

and the master index / counts the number of arrangements
{j1, j2, ..., jn} under the restriction that 1 < j; < jp <
- < jy < 4K. I specifies the dimension of the many-body
Hilbert space spanned by the basis of Slater determinants.
Of course, g = 1, 2, ... counts the excitation spectrum, with
g = 1 corresponding to the ground state.
The many-body Schrodinger equation

HoY, = EF o, (12)

transforms into a matrix diagonalization problem, which
yields the coefficients C; and the eigenenergies E ;;_Iq. Because
the resulting matrix is sparse, we implement its numerical di-
agonalization employing the well-known ARPACK solver [77]
which uses implicitly restarted Arnoldi methods. Convergence
of the many-body solutions is guaranteed by using a large
enough value for the dimension K of the single-particle basis;
we used here K ~ 50. The attribute “full” is usually used for
such well-converged CI solutions, which naturally contain all
possible n-particle-n-hole basis Slater determinants, n being
an integer.

The matrix elements (W) |Hwp + Hys + Hsic|¥Y), or
the simpler ones (WV|Hwvg + Hys|WY), between the basis
Slater determinants [see Eq. (11)] are calculated using the
Slater-Condon rules [44,78-80]; for the spin- and/or isospin-
dependent Hamiltonian terms Hys and Hgic, see Sec. 11D
below; the designations VS and SIC correspond to valley
splitting and spin-isospin-coupling terms, respectively.

Naturally, an important ingredient in this respect is the
matrix elements of the two-body interaction

|| anarangmyve e a3

in the basis formed out of the single-particle spatial orbitals
pi(r), i=1,2,...,K [see Eq. (9)]. In our approach, these

3See Ref. [32]; (a), (b), and (c) in Ref. [62]; (a) and (b) in Ref. [66].
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matrix elements are determined numerically and stored sep-
arately.

Taken individually, the Slater determinants \IJ}V [see
Eq. (11)] preserve the third projections S, and V, but not
necessarily the square S? and V? of the total spin and total
isospin. However, because $? and V2 commute with the many-
body Hamiltonians Hyg and Hyig + Hys, the associated exact
many-body solutions are eigenstates of both § and V2 with
eigenvalues S(S + 1) and V(V + 1), respectively.

With the VFCI solution at hand [Eq. (10), which numeri-
cally approximates the exact many-body one], one calculates
the expectation values

(@ 187|@f) =D > e (wy|$2w)). a4
1 J

and similarly for V2; for simplicity, in Eq. (14), we dropped
the index g. The ARPACK diagonalization provides the numer-
ical C; and C; coefficients, and the matrix elements of §? and
V2 between the basis Slater determinants are determined by
using the relations

SPulN = [(Na — Ng)?/4+N/2 + Zw,j vy (15)

i<j

and

Vil = |:(N( —N,)*/4+ N/J2 + Zw};O v (16)

i<j

where the operator w;; (w}jo) interchanges the spins
(isospins) of fermions i and j provided that these spins
(isospins) are different; N, (N;) and Ng (N,) denote the
number of spin-up (isospin-up) and spin-down (isospin-down)
fermions, respectively. Formula (16) for the square of the
isospin is introduced here in complete analogy with the fa-
miliar expression [81] for the square of the regular spin.

Furthermore, the VFCI expectation values for the total-spin
projection are calculated using the formula

S

a5

off) = CrC(w)|s.|wy). (17)
1

and similarly for the total-isospin projection V.

We note that the VFCI solutions of the reference many-
body Hamiltonian (2), as well those of the Hyp + Hvs
Hamiltonian, preserve automatically the spin and isospin
quantum numbers as long as they are not members of an
energy degeneracy. To enforce that the VFCI solutions of
these Hamiltonians preserve the spin and isospin quantum
numbers in all instances, including the case of degeneracies,
we add to Hyg, or to Hyig + Hys, a very small perturbing term
Hgjc, which lifts the energy degeneracies to an imperceptible
amount, but it produces the desired effect. An example of the
success of this approach is presented in Table I in Appendix B,
where the deviations of the expectation values of the §? and
V2 from the expected S(S + 1) and V(V + 1) integer values,
i.e., 0 or 2 for two electrons in both cases, appear at most
in the fifth decimal point for all the 16 states listed. Simi-
larly, the deviations of the expectation values of S, and V,
from the expected +1 or 0O integer values for two electrons

appear again at most in the fifth decimal point for all the
16 states listed.

D. Spin-isospin coupling and the valley splitting

Motivated by the large body of experimental evidence
[21,28,68,82] that a spin-valley coupling is operational in Si
qubits, we implement in the VFCI an appropriate spin- and
isospin-dependent coupling, referred to in this paper as spin-
isospin coupling (SIC), by adding the following (one-body)
term in the many-body Hamiltonian:

Hsic = Hvoc + Hsvoc, (13)
where
N
Hyoc = ) Ae™O(x, y)T:(i) (19)
i=1
and
N
Hsvoc = Y Ae® O(x, y)or (). (i) (20)

i=1

with A being the strength and ¢, being the phase of the
coupling parameter; in Eqgs. (19) and (20), VOC corre-
sponds to valley-orbit coupling, and SVOC designates the
term corresponding to spin-valley-orbit-coupling, discussed
below. When calculating the (y; (r)|Hsic|x;,(r)) matrix
elements, we approximate the integrals over the space vari-
ables as (@;, (x, )|O(x, V)@, (x,y)) ~ 8;_j, +1, where 1 <
Jror jp < K[83].

We note that the first term, Hyoc, in Eq. (18) implements
a pure intervalley coupling (referred to often as valley-orbit
coupling) by keeping the spin indices unaltered. The second
term, Hsyoc, in Eq. (18) flips both the valley- and regular-spin
indices, thus corresponding to a combined VOC and spin-
orbit coupling; it is referred to as spin-valley-orbit coupling,
or simply as spin-valley coupling. A pure Hyoc coupling is
implemented in the VFCI by restricting the Hilbert space to
the sector that preserves the total spin projection S,. To imple-
ment in addition the Hsyoc coupling, one needs to remove all
restrictions on S; and V, when building the basis of Slater de-
terminants. This requires substantially larger Hilbert spaces,
e.g., for the case of K = 54 employed in our calculations, the
dimension of the Hilbert space (the master index /) increases
from 5778 (using an S; = O restriction only) to 23 220 basis
Slater determinants (with no S, and V; restrictions).

The spin-valley coupling defined in Eq. (20) contains both
the Pauli o (regular spin) and the Pauli 7 (isospin) matrices,
as is appropriate for a two-band material (see Ref. [84] for
the case of graphene). Such a definition is a generalization
of the familiar Rashba and Dresselhaus spin-orbit expressions
for one-band materials.

Finally, the valley gap (valley splitting, VS) is described by
the following (one-body) Hamiltonian term:

N

E
Hys =) = 7:(0). @1

i=1
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III. RESULTS

In this section, we present VFCI results for the low-energy
spectra of Si 2e-DQD devices with parameters similar to those
of actual quantum qubits investigated experimentally and re-
ported in recent and current literature. Prior to presentation
and discussion of the results of our calculations, it is pertinent
to comment here in some detail about certain aspects of our
calculations, originating from the intrinsic properties of the
material (silicon) used in making the DQD qubits addressed
by our study. To this end, we focus specifically on the val-
letronic nature of the electronic structure of the Si quantum
dots studied here, and the terminology used in characterizing
and discussing their properties.

Moving next to the studying of the many-body states
in Si QDs, we start by considering a many-body reference
Hamiltonian Hy, which includes the confinement potential
defining the quantum dots, applied magnetic fields, and the
interelectron Coulomb potential, assuming the case of a full
valley degeneracy (see Sec. II B). The valley splitting is then
included by adding a one-body Hamiltonian term Hys [see
Eq. (21) in Sec. II D]. Furthermore, from among others, we
consider in this paper two other one-body interaction terms
that are of particular interest (for details, see Sec. IID).
Namely, we consider a spin- and isospin-dependent coupling
Hgc, that consists of two contributions: (i) a contribution
that acts only within the isospin (valley) degree of freedom
and mixes the valleys, but not the real spins (this term is
referred to as the valley-orbit coupling Hyoc, in analogy with
the real spin-orbit interaction) and (ii) a contribution Hgyoc,
that couples simultaneously both the (real) spin and isospin
degrees of freedom, termed as the spin-valley-orbit coupling,
or simply the spin-valley coupling.

The VFCI calculations for the total energies discussed in
Secs. IITA and III B were carried out in the Hilbert-space
sector specified by the total-spin projection S, = 0. This is
sufficient for the purpose of these sections because the total
energies of the reference many-body Hamiltonian Hypg, as
well as its extensions Hyp + Hys and Hyp + Hys + Hvoc
that include the valley splitting (VS) and/or the pure valley-
orbit coupling (VOC), do not depend on the value +1 or 0
of the total-spin projection. In cases when VFCI eigenstates
with §, = %1 values need to be considered, e.g., for counting
the degeneracy of the states participating in a given multiplet
(see Sec. III A 3 below), an explicit mention of the VFCI
results will be made without showing the corresponding en-
ergy spectra. On the other hand, no restriction on the total-spin
projection S, (and on the total-isospin projection V; as well) is
placed in Sec. III C where the full spin-isospin coupling Hgc,
which flips both the valley-isospin and regular-spin indices, is
taken into consideration.

A. First-excited state with both electrons in the same valley
1. Low-energy spectra

The VFCI lowest-energy spectrum in the transition re-
gion between the (1,1) and the (2,0) charge configurations,
as a function of the detuning &, is displayed in Fig. 2. A
weaker individual-dot confinement of /iwy = 0.40 meV was
employed for both dots, along with an interdot separation

of d = 150 nm.® The valley gap was assumed to be Ey =
100 peV = 24.180h GHz, whereas the in-plane Si effec-
tive mass was taken as 0.191m, and the dielectric constant
of Si as k = 11.4. A high interdot barrier was implemented
in Fig. 2(a) by setting the input interdot-barrier parameter
to €™ = 0.65 (see Sec. IIB for the meaning of this in-
put barrier-controlling parameter). A low interdot barrier was
implemented in Fig. 2(b) by setting €™ = 0.50. [For the def-
inition and an illustration of the two-center-oscillator (TCO)
two-well confinement employed in this paper, see Eq. (6) and
Fig. 1 in Sec. II B, respectively.]

The symbols @, @), and © indicate states with both elec-
trons in the low-energy valley, with the electrons in different
valleys, and with both electrons in the high-energy valley,
respectively. The spin-isospin coupling was neglected, and as
a result all states are associated with good total-spin (S, S;)
and valley-isospin (V, V;) quantum numbers, as indicated via
the symbols made from a combination of the capital letters S
and T. These symbols have the following meaning: a capital
S denotes a singlet state, whereas a capital T denotes a triplet
state.” The subscripts & denote an S, = +1 or V, = %1 pro-
jection, respectively, whereas a subscript 0 denotes an S, = 0
or V, = 0 projection. A superscript “s” denotes the regular
spin, whereas a superscipt “v”’ denotes the valley isospin.
The symbol “xn” (with n =1, 2, or 4) denotes the n-fold
degeneracy associated with a given energy curve; red color
is used for the @ states (with V, = +1), green color for the
@ states (with V, = 0), and blue color for the © ones (with
V., = —1). Finally, the numerical labels in red outside the
border of Fig. 2(b) are used to identify the energy curves by
numbering them.

The energy difference at ¢ = 1.6 meV between the (2,0)
states indicated as e [first-excited state, No. 2 in Fig. 2(b)]
and g [ground state, No. 1 in Fig. 2(b)] equals E;'}. The
energy difference at ¢ = 1.6 between the (2,0) lines indicated
in Fig. 2(b) as Nos. 3 and 4 (a doubly degenerate pair) and the
line No. 1 (ground state) equals Ey . Ey equals also the energy
difference between the middle and any outer of the three (1,1)
parallel lines. It is clear that ESQ} < Ey for the case illustrated
in this section.

As is apparent from Fig. 2, the VFCI solutions are able
to capture both the (1,1) and (2,0) charge configurations,
whether ground or excited states, and their interconversion as
a function of the detuning. Specifically, the five quasiparal-
lel and quasihorizontal lines correspond to the (2,0) charge
configuration (as indicated), whereas the three quasiparal-
lel lines with a large slope correspond to the (1,1) charge
configuration (again, as indicated). Of particular interest are
the avoided crossings (marked by double-head red arrows)
between two spin-singlet states in the transition from the (1,1)
to the (2,0) configuration. These crossings are underdeveloped

®The dots in all instances in this paper are placed at equal distances
from the origin.

7 A spin singlet has eigenvalues S(S + 1) = 0 and S, = 0, whereas
a spin triplet has eigenvalues S(S+ 1) =2and S, =0 or S, = £1.
Correspondingly, an isospin singlet has eigenvalues V(V + 1) =0
and V, = 0, whereas an isospin triplet has eigenvalues V(V + 1) =2
andV,=0o0rV, = £1.
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FIG. 2. The case with ES"} < Ey. VFECI lowest-energy spectrum, associated with the Hamiltonian Hyg + Hys (see text), for the case of a
2e Si DQD with a weaker individual-dot confinement /iwy = 0.40 meV = 96.719h GHz, for both dots, at a vanishing magnetic field B = 0.
The spectrum is plotted in the transition region between the (1,1) and the (2,0) charge configurations, as a function of the detuning ¢ and for a
total-spin projection S, = 0. The interdot separation was taken as d = 150 nm, and the valley gap was set as Ey, = 100 ueV = 24.180h GHz.
The first-excited state in the (2,0) configuration has both electrons in the same lowest-energy valley [the script letters g and e, outside the right
borders of (a) and (b), denote the ground and first-excited states in the (2,0) configuration, respectively]. The energy difference between the
e and g states at ¢ = 1.60 meV equals ES"} ~ 4.05h GHz in (a) and ESE*?r ~ 6.09h GHz in (b). (a) A high interdot barrier was implemented by

setting ef "™ — (.65 (see Sec. II B for the meaning of the input barrier-controlling parameter). (b) A low interdot barrier was implemented by

setting ef "™ — 0.50. The in-plane Si effective mass was taken as 0.191m, and the dielectric constant as k = 11.4. The symbols &, @, and ©
indicate states with both electrons in the low-energy valley (with V, = +1), with the electrons in different valleys (with V, = 0), and with both
electrons in the high-energy valley (with V, = +1), respectively. The five near-horizontal lines correspond to the (2,0) charge configuration
(as indicated). The three quasiparallel lines with a larger slope correspond to the (1,1) charge configuration (as indicated). The valley-orbit
and spin-isospin couplings were neglected, and as a result all states are associated with good total-spin [S(S + 1), S;] and valley-isospin
[V(V + 1), V,] quantum numbers (as indicated). The symbols made from a combination of the capital letters S and T have the following
meaning: a capital S denotes a singlet state, whereas a capital T denotes a triplet state. The subscripts & denote an S, = =1 spin projection or
a'V, = %1 valley projection, respectively, whereas a subscript 0 denotes an S, = 0 or V, = 0 projection. A superscript “s” denotes the regular
spin, whereas a superscipt “v” denotes the valley isospin. “xn” (with n = 1, 2, or 4) denotes the n-fold degeneracy associated with a given
energy curve; red color is used for the @ states (with V, = +1), green color for the (@) states (with V, = 0), and blue color for the © ones (with
V., = —1). The double-headed red arrows indicate avoided crossings between two spin-singlet states in the transition from the (1,1) to the (2,0)
configuration. These crossings are underdeveloped in the case of a high interdot barrier [see (a)], but become pronounced for low interdot
barriers [see (b)]. The single-head black arrows indicate avoided crossings between two spin-triplet states in the transition from the (1,1) to the
(2,0) configuration. These crossings are underdeveloped in both the cases of a high interdot barrier [see (a)], as well as a low interdot barrier
[see (b)]. The numerical labels in red outside the border of (b) are used to identify the energy curves by numbering them. This numbering is
used in the discussion in the text of Sec. III A; in addition, it will assist with the correspondence between charge densities (see Fig. 3) and the
states whose energies are plotted here. In all figures and the values mentioned in the text, the energies are referenced to 2/i\/@j + w?/4, where
w. = eB/(m*c) is the cyclotron frequency. The dots in this figure and in all subsequent figures are equidistant from the origin.

in the case of a high interdot barrier [see Fig. 2(a)], but be-
come pronounced for low interdot barriers [see Fig. 2(b)]. The
single-head black arrows indicate avoided crossings between
two spin-triplet states in the transition from the (1,1) to the
(2,0) configuration, which, however, remain underdeveloped
in both the cases of a high interdot barrier [see Fig. 2(a)], as
well as a low interdot barrier [see Fig. 2(b)].

A main conclusion from the VFCI results in Fig. 2 is that,
for a given V,, the energy gaps between the spin-singlet and
and spin-triplet states in the (2,0) configuration are drastically
suppressed compared to the orbital (single-particle) gap of
hwy = 0.40 meV = 96.719h GHz associated with the nonin-
teracting limit; see, e.g., the spin-singlet—spin-triplet gap ES.
at ¢ = 1.60 meV between the ground and first-excited states

195306-8



VALLEYTRONIC FULL CONFIGURATION-INTERACTION ...

PHYSICAL REVIEW B 106, 195306 (2022)

3

FIG. 3. Charge densities associated with the VFCI states whose energies are plotted in Fig. 2(b), at ¢ = 1.60 meV for curves Nos. 1-9,
at ¢ = 1.56 meV for curve No. 10, and at ¢ = 1.46 meV for curve No. 14. This is the case with a low interdot barrier that was implemented

by setting €™

= 0.50 (see Sec. II B for the meaning of the input barrier-controlling parameter). The displayed thin red decimal numbers in

each panel are the VFCI calculated electron occupancies in the left and right wells of the DQD. An asterisk denotes a state participating in an
avoided crossing, to a lesser or greater extent. The bold red numerical labels have the same meaning as those in Fig. 2(b).

(denoted as g and e, respectively), which is Eg?r ~ 4.05h GHz
in Fig. 2(a) and Esf‘?F ~ 6.09h GHz in Fig. 2(b). This quenching
of the gaps, which recently was observed experimentally in Si
[31,67] (but also in GaAs [9]) DQD qubits, is the result of
strong-electron correlations and of the formation of Wigner
molecules. Namely, the ensuing spatial localization of the
electrons within the left or right QD reduces the Coulomb
repulsion between them, a process that leads to the conver-
gence of the energies between the states with symmetric and
antisymmetric space parts. For two electrons, this process
mimics the dissociation of the natural H, molecule, and it
was discovered earlier in the case of GaAs quantum dots
[18,38,39,43,51,85].

2. Charge densities

The formation of WMs (in the case of asymmetric confine-
ments) is graphically illustrated through the charge densities,
which are displayed in Fig. 3 . For the reader’s convenience
and for helping with establishing the correspondence between

the charge densities in Fig. 3 and the states whose energies
are plotted in Fig. 2, we assigned to the VFCI energy curves
the numbers in red displayed outside the border of Fig. 2(b).
These numbers are used in this section below.

To facilitate the identification and elucidation of the main
trends, we display, along with the charge densities, the VFCI
calculated electron occupancies (red lettering) in the left and
right wells of the DQD (rounded to the second decimal point).
[These VFCI occupations are further rounded to the closest
integer in order to obtain the n;’s and ng’s (n, + ng = 2) used
in the notation (1, ng) (Footnote 2) for the charge configura-
tions.] Naturally, the charge densities are normalized to the
total number of electrons N = 2.

The ground state at ¢ = 1.60 meV (curve No. 1) with a
symmetric space part and both electrons in the low-energy
valley (note the symbol @ in Fig. 3) exhibits a rather well-
developed WM inside the left well, which is aligned parallel
to the y axis. Curve No. 2 with an antisymmetric space part
and both electrons in the low-energy valley exhibits an even
better developed WM due to its nodal structure; again this
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WM resides within the left QD and is aligned parallel to the y
axis.

Promoting one electron to the high-energy valley [states
marked as @] leaves the charge densities unaltered. Indeed,
the density in Fig. 3(a) coincides with the densities in Fig. 3(c)
(curves Nos. 3 and 4), and the density in Fig. 3(b) coincide
with those in Fig. 3(f) (curves Nos. 7 and 8).

State No. 9 at ¢ = 1.60 meV with both electrons in the
low-energy valley deviates from a pure (2,0) configuration, as
is apparent from the density in Fig. 3(g). Indeed, at this point,
state No. 9 starts forming an avoided crossing with state No.
5 [an (1,1) state with the same spin-isospin quantum numbers
(TeTE)], and thus it becomes a superposition of both a (2,0)
and an (1,1) configuration; this behavior is denoted with an
asterisk as a superscript. Note that the (2,0) component of state
No. 9 is associated with a 2e-WM aligned along the x axis.
Naturally, state No. 5 is also a superposition, although weaker,
of both a (2,0) and an (1,1) configuration and is denoted with
an asterisk as a superscript. Another state that belongs in this
category is state No. 14.

The two remaining panels [i.e., Figs. 3(e) and 3(h)], cor-
responding to curve No. 6 at ¢ = 1.60 meV and to the curve
No. 10 at ¢ = 1.56 meV, respectively, display densities asso-
ciated with an (1,1) configuration. Similar (1,1) densities (not
shown) are also associated with curves Nos. 11, 12, 13.

3. Counting of states and the degeneracy of multiplets

The case of the (1,1) charge configuration. For S, = 0, the
valleytronic FCI produces a group of eight states with an (1,1)
configuration (shown in Figs. 2 and 4) that are grouped as 2
@, 4 @, 2 ©. Likewise, for S, = +1, the valleytronic FCI
produces a group of four states (not shown) with an (1,1)
configuration grouped as 1 @, 2 @), 1 ©. Finally, for S, = —1,
the valleytronic FCI produces another group of four states (not
shown) with an (1,1) configuration grouped again as 1 &, 2
@, 1 ©. In total, one obtains 16 states that are grouped in
multiplets as 4 &, 8 @, 4 ©.

The number of 16 states is the hallmark of a fully devel-
oped SU(4) symmetry that would be achieved in the 2e-VFCI
in the absence of any spin-isospin coupling (i.e., neglecting
the Hyoc and/or Hgic terms) and for the case of a vanishing
valley gap (Ey = 0). These 16 states are the product of the 4
spin states (one singlet S°, and three triplets T% and Tg) and
the 4 valley isospin states (one singlet SV, and three triplets
T4 and T§). Their quantum numbers are explicitly given as
follows: there are 6 antisymmetric combinations S*T% , STy,
S*TY, TLSY, TySY, TES” and 10 symmetric combinations
S*SY, TS T4, T3 Tg, TS, TV, ToTY, TyTy, ToT?, TS TY, TLTg,
T TY.

In the case of a single elliptic dot, these 16 SU(4) states,
that form the lowest-energy part of the spectrum, organize in
two multiplets® in analogy with the case of an SU(4) Heisen-
berg lattice dimer [see (a) in Refs. [64] and [86]), 6 of them in
one multiplet with a symmetric space part and the remaining

8We have indeed checked the accuracy of this statement for a single
elliptic Si QD using the VFCI code.

10 in a second higher-energy multiplet with an antisymmetric
Space part.9

In the case of two well-separated QDs in the strict SU(4)
limit, the energy gap between space-symmetric and space-
antisymmetric multiplets vanishes due to a vanishing left-right
spatial overlap, and this yields a total of 16 degenerate SU(4)
states in the (1,1) configuration. However, in Si DQDs, this
degeneracy is lifted due to the independent emergence of a
valley gap that results from finite-size effects, and the SU(4)
symmetry is lowered to an SU(2) x SU(2) one, characterized
by the 4 @, 8 @), 4 © multiplet organization discussed above.

The case of the (2,0) and (0,2) charge configurations. From
Fig. 2, it can easily be seen that, according to the VFCI
results, the hallmark number of the 16 states of the SU(4)
D SU(2) x SU(2) chain is preserved in the (2,0) configura-
tion; simply, the exhange gap J between the space-symmetric
and space-antisymmetric states acquires a nonvanishing finite
value. For example, as seen in Fig. 2(a), the two degenerate
@ states, S*TY and TyTY, in the (1,1) configuration transition
into the g and e states in the (2,0) configuration, exhibiting
a gap of 4.05h GHz at ¢ = 1.60 meV. A similar transition
applies also in the case of the four degenerate (1,1) states
in the @ manifold, which splits into two doubly degenerate
manifolds in the (2,0) configuration. Finally, a transition of
the doubly degenerate © manifold of the (1,1) configuration
to two nondegenerate states in the (2,0) configuration is not
shown in Fig. 2(a), but it was observed in our extensive VFCI
computational results.

Our verification in the VFCI spectra of the presence of
the 16 hallmark states associated with the SU(4) > SU(2)
x SU(2) chain contrasts with the counting from a Hubbard
two-site modeling [87] of a Si 2e-DQD that incorporates the
VDOF. Indeed, instead of the expected number of 16 states,
the model in Ref. [87] allows only for 6 states in the (2,0)
configuration. This incomplete conclusion follows directly
from the assumption that each Hubbard site has one level
only, an assumption that does not allow the construction of
2e antisymmetric space wave functions in the case of the (2,0)
configuration.

We note that adding a spin-isospin coupling term (in-
cluding one or both contributions, see Sec. IID) in the
many-body Hamiltonian will lift the degeneracies illustrated

°An additional multiplet of 10 states with an antisymmetric space
part appears also in a single elliptic Si QD at even higher energy. In-
deed, for a circular dot, there are two degenerate antisymmetric space
wave functions (associated with the two angular momenta L = £1)
and, thus, the second higher-energy multiplet consists of 20 states.
Including the 6-member lower-energy multiplet, this results in 26
SU(4) states. For an elliptic dot, the circular symmetry of the space
wave functions is lifted and the multiplet of 20 states splits in two
10-state multiplets. Although overlooked, and even misinterpreted in
earlier CI calculations [31], this underlying SU(4) D SU(2) x SU(2)
organization of the spectrum of a single elliptic Si quantum dot is
operational in other variants of CI calculations as well, as one can
attest by a careful examination of the associated CI results. Indeed
in Fig. 3 of the original arXiv-eprint version (arXiv:2009.13572v1)
of Ref. [31], panel (b) contains 16 states and panel (c) contains 10
states, for a total of 26 states.

195306-10



VALLEYTRONIC FULL CONFIGURATION-INTERACTION ... PHYSICAL REVIEW B 106, 195306 (2022)

CHORCH

895 —
x2 x4',a2)‘, x2

v A= e
[ (20)STT= 7 g
Yy A
\ ’
885 x1 Fooase
*

I fg9 0 (2,0 T8
: frmpemremremr—r——"

: x1

FN SN B

SR 1m ~ )
iRe 4 Rs X
+ N
@ooeee(m;?‘

O
© ®&> O

e e N =

Lol N e = ek v asTY 1
.,-m\;::ﬁ (Z,O)TSS S*To

[e]
3
[$)]

N
®w

Energy/h (GHz)
o]
(o))

O

855
2.
840
6 830
< © (2,0) g‘%
I \,’ H
5 820 e e
< 820
o o)
3 ] 810 - A (2,0 |®
(@)] -\
’(]__) '\_l @ . 1
c 810
L
800
'+
800
790 /@ (d)
2.4 250 255 260 265 270

= (meV)

FIG. 4. The case with EE. > Ey. VFCI lowest-energy spectrum for the case of a Si 2¢-DQD with a stronger individual-dot confinement,
hiwy = 0.80 meV, for both dots, at a vanishing magnetic field B = 0. The spectrum is plotted in the transition region between the (1,1) and the
(2,0) charge configurations, as a function of the detuning ¢ and for a total-spin projection S, = 0. The interdot separation was taken as d = 150
nm and the valley gap as Ey = 60 ueV = 14.508h GHz. The first-excited state in the (2,0) configuration (state No. 2) is characterized by
the symbol ©), that is, it has one electron in the low-energy valley and the second electron in the higher-energy valley [the script letters g
and e, outside the right borders of (a)—(c) and inside (d), denote the ground and first-excited states in the (2,0) configuration, respectively].
(a) With a Hamiltonian Hyg + Hys, a high interdot barrier was implemented by setting ef“"p = 0.65 (see the text for the meaning of this input
barrier-controlling parameter). (b) With a Hamiltonian Hyg + Hys, a low interdot barrier was implemented by setting ef’i"p = 0.35. (c) Same
as in (b), but with a Hyoc term (pure valley-orbit coupling, see text) with A = 0.05 meV and ¢y = 0 added in the Hamiltonian. The red
strikethrough bars in (c), and the dashed circles outside the left and right borders of that panel, indicate that the valley isospin in this panel
does not possess good quantum numbers due to the intervalley mixing. (d) The three lines labeled 1, 2, and 3 on a blue disk in (b) reproduced
according to the toy effective Hamiltonian (22). For an analysis of the trends in the spectra of this figure, see the text. The symbols @, @, and

© have the same meaning as in Fig. 2. The in-plane Si effective mass in (a)—(c) was taken as 0.191m, and the dielectric constant as x = 11.4.

in the spectra of Fig. 2; however, the overall organization of  i.e., it exhibits a valley-isospin projection V, = 0 [denoted as
such Si-DQD spectra will be traceable back to that in Fig. 2, @]. The evolution of the VFCI low-energy spectra in this
as long as the strength of the spin-isospin coupling is not  case is investigated in Fig. 4, as a function of the height
extreme. of the interdot barrier [Figs. 4(a) and 4(b)] and in response
to the inclusion of the pure intervalley-coupling Hamiltonian
term Hyoc (see Sec. IID), in the Hamiltonian Hyg + Hyg

B. First-excited state with electrons in different valleys [Fig. 4(c)].
We turn now to the case when the first-excited state in Specifically, for a total-spin projection S; = 0, Fig. 4 dis-
the (2,0) configuration has one electron in the low-energy ~ Plays, as a function of the detuning &, the VFCI low-energy
valley and the second electron in the higher-energy valley,  spectrum for a Si 2e-DQD with a stronger individual-dot
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confinement of /iwy = 0.80 meV in the transition region be-
tween the (1,1) and the (2,0) charge configurations. The valley
gap was taken as Ey = 60 peV = 14.508h GHz. As in the
weaker individual-dot-confinement case of Fig. 2, the interdot
separation was set to d = 150 nm, the in-plane Si effective
mass was taken as 0.191m,, and the dielectric constant as
k =11.4. A high interdot barrier (¢/™™ = 0.65) was cho-

sen for Fig. 4(a), whereas a low interdot barrier (ef’i"p =
0.35) was used for Fig. 4(b). In Fig. 4(c), the low interdot

barrier with ef’mp = 0.35 was maintained, but, as aforemen-
tioned, a pure intervalley-coupling term (VOC, see Sec. II D)
with A = 0.05 meV and ¢y =0 was added to the many-
body Hamiltonian Hyp + Hys. The red strikethrough bars
over the capital letters with a “v” subscript, as well as the
dashed circles over “+”, 0, and “—,” indicate that the val-
ley isospin in this panel does not possess good quantum
numbers due to the intervalley mixing. Nevertheless, the num-
ber of states remains unaltered and the associated topology
of the spectrum in Fig. 4(c) can be traced back to that in
Fig. 4(b).

For ¢ > 2.8 meV, the energy difference between the (2,0)
lines indicated as e [doubly degenerate first-excited state, Nos.
2 and 3 lines in Fig. 4(b)] and the line g [ground state, No. 1
in Fig. 4(b)] equals Ey. Ey equals also the energy difference
between the middle and any outer of the three (1,1) parallel
lines. The energy difference at € > 2.8 between the (2,0) line
indicated in Fig. 4(b) as No. 4 and the line No. 1 (ground state)
equals E&. It is clear that ES. > Ey for the case illustrated in
this section.

In all three panels, Figs. 4(a), 4(b), and 4(c), the three
quasiparallel lines with a large slope correspond to the (1,1)
charge configuration (as indicated), whereas the quasihori-
zontal lines correspond to the (2,0) charge configuration. In
Fig. 4(a), where the intervalley coupling was neglected and
a high barrier was applied, the avoided crossings expected
between curves with the same quantum numbers (see dashed
circles) are very weak. Lowering the interdot barrier, how-
ever, while still neglecting intervalley coupling, yields the
pronounced avoided crossings enclosed in the dashed circles
of Fig. 4(b).

Introducing a non-negligible intervalley coupling in
Fig. 4(c) has three effects: (1) the valley isospin is not
conserved, (2) the degeneracy of states with the same valley-
isospin quantum numbers is lifted [see the two separate @
lines (Nos. 2 and 3) in Fig. 4(c) that developed out from the
doubly degenerate (@) line (marked as “2,3”) in Fig. 4(b)], and
(3) the pure crossings between curves with different valley
quantum numbers in Fig. 4(b) transform to avoided crossings
[contrast Fig. 4(b) with Fig. 4(c)].

As mentioned earlier, experimental reports [31,67] from
the Wisconsin-Madison group indicated that the first-excited
state in the (2,0) configuration in a Si/SiGe DQD is the
spin-triplet state with both electrons in the same lower-
energy valley, whereas experimental measurements [28,30]
from other groups on Si-DQD devices (with apparently dif-
ferent parameters) indicated that the first-excited energy level
in this configuration is associated with a state having each
electron in a different valley [see states Nos. 2 or 3 in
Fig. 4(b)]. In particular, using microwave-frequency scanning

gate microscopy, Ref. [30] reported a measured spectrum of
three lowest-energy states in the detuning window covering
the transition from the (1,1) to the (2,0) configuration.'” In
Fig. 4(b), one can identify a triad of lowest-energy VFCI
levels (denoted by Nos. 1, 2, and 3 inside a blue disk) that
have the same topology as the group of the (1,1) and the two
(2,0) states in Fig. 4(b) of Ref. [30]. To further demonstrate the
analogies with the experimental trends, we note that this triad
of energy levels can be isolated from the full VFCI spectrum
and that it can be reproduced [see Fig. 4(d)] by an effective
three-level Hamiltonian as follows:

a€+C ) 0
Heff = ) 0{25 +C 0 s (22)
0 0 a3 +C + Ey
where € = ¢ — g9 with g9 = 621.63h GHz (= 2.575 meV),
o; = 0.957, o, = a3z = 0.065, C = 808.25h GHz,

8 =1.3h GHz, and Ey = 14.51h GHz (=60 peV), i.e.,
the valley splitting used in the VFCI calculation.

The interaction between the (2,0) @ ground state and the
(1,1) @ ground state generates a visible avoided crossing, in
agreement with the experiment. In contrast, using the parame-
ters above, the (2,0) @ first-excited state in Fig. 4(d) does not
develop any avoided crossing with the (1,1) @ ground-state
curve. This is in remarkable agreement with the behavior
of the experimental curves, suggesting that the valley-orbit
coupling in the experimental device is either absent or rather
weak.

We note that, although the value of the Wigner parameter
Ry = 7.07 in this section is not strong enough (compared to
Rw = 10.0 in Sec. III A) to suppress the Eg‘?F energy below
Ey, the value of Eé’} at ¢ = 2.8 is still drastically lower than
the orbital gap fiwy = 0.80 meV = 193.44h GHz, i.e., at ¢ =
2.95 meV, one has Eé'} ~ 21.52h GHz in Fig. 4(a) and, at ¢ =
2.81 meV, E% ~ 27.84h GHz in Fig. 4(b); for the definition
of the Wigner parameter Ry, see Sec. I A.

C. Magnetic-field spectra

To further illustrate the capabilities of the present VFCI,
we investigate in this section the dependence on the magnetic
field B of the spectra of a Si 2¢-DQD in the (1,1) charge con-
figuration. For the example case here, we use an individual-dot
confinement /iwy = 0.40 meV, an interdot separation d = 150
nm, and a valley splitting Ey = 0.06 meV = 14.508h GHz, as
was the case in Sec. IIT A. For the detuning, a small value of
& = 0.05 meV was used to guarantee that the DQD remains
in the (1,1) charge configuration. The Landé factor was taken
as g = 2, appropriate for silicon.

Figure 5 displays, as a function of B, the spectra associated
with the 16 low-energy states of the 2e-DQD specified in
the previous paragraph. We stress again that the number 16
is a hallmark of the underlying SU4) D SU(2) x SU(2)
symmetry-group chain, as discussed in Sec. IIT A 3. In partic-
ular, for comparison, Fig. 5(a) displays the 16-state spectrum

!0Reference [30] proposes a more general framework. The case of
the transition from the (1,1) to the (2,0) configuration happens by
setting Ny = 1 and N, = 0 in Fig. 4(b) of Ref. [30].
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FIG. 5. VECI spectra of the extended Hamiltonian Hyg + Hys + Hsic for the 16 low-energy states associated with the (1,1) configurations
of a singlet-triplet Si 2e-DQD qubit at small detuning as a function of a perpendicular magnetic field B. Hgjc includes both contributions
according to Eq. (18). (a) Case of a very small SIC coupling parameter A = 0.000 01 meV. This practically vanishing value does not generate
visible avoided crossings, but it helps to enforce good spin and isospin quantum numbers by lifting the degeneracies in the spectrum by
imperceptible amounts. For the @ (both electrons in the lower-energy valley) and © (both electrons in the higher-energy valley) states, these
quantum numbers are indicated in the figure. For the (@ states (one electron in each valley), these quantum numbers are as follows: T%.S” and
T4 T for the upper branch; S*S?, S*Tg, T;S?, and T T; for the middle branch; T* S” and T T} for the lower branch. These quantum numbers
correspond to the VFCI results for the spin and isospin quantum numbers; for a detailed example, see Table I in Appendix B. (b) Case of
a larger SIC parameter A = 0.03 meV. The generation of avoided crossings is visible in the three encircled areas. Because of the avoided
crossings brought about by the large SIC parameter, the electronic states are mixed [lose their good quantum numbers; see for comparison
the labeled states for the practically vanishing A parameter in (a)]. Therefore, the labels of the states are omitted in (b), but the “parentage”
of the states may be inferred straightforwardly from comparisons and direct correspondences with the labeled states in (a). There is good
overall agreement with the experimental results and phenomenological analysis in Ref. [68]. The remaining parameters for the DQD are

individual-dot confinement /iwy = 0.40 meV (for both dots), Ey, = 0.06 meV, € = 0.05 meV, m* = 0.191 m,, ef’i"[’ = 0.50, and Landé factor

g* = 2; see Sec. II B for the meaning of the input barrier-controlling parameter €,

in the absence of any spin-isospin coupling. Actually, con-
sidering both terms in Eq. (18), we implemented such a SIC
coupling with a very small strength A = 0.00001 meV. This
small value does not generate visible avoided crossings, but it
helps to enforce good spin and isospin quantum numbers by
lifting the degeneracies in the spectrum by an imperceptible
amount.

From Fig. 5(a), it is seen that the three original multiplets
at B = 0 (grouped as 4 @, 8 ), 4 ©) break down and fan out
with increasing B. Indeed, the states with S, = O run parallel
to the B axis, whereas states with S, = 1 exhibit an ascending
sloping and states with S; = —1 exhibit a descending sloping.
No avoided crossings are visible in Fig. 5(a), and the energy
lines can be characterized by good spin and valley-isospin
quantum numbers [as indicated in Fig. 5(a)].

We note that consideration of the full spin-isospin coupling
requires the enlargement of the Hilbert-space defined by the
basis Slater determinants (see Sec. II), i.e., Slater determinants
preserving individually all three values (0, 1) of the total-
spin projection S, and isospin projection V, must be included
in the basis, and this was done for the calculations in both
Figs. 5(a) and 5(b).

In contrast to Fig. 5(a), the results displayed in Fig. 5(b)
correspond to an Hgyc term with a rather large strength A =
0.03 meV. The spin and valley isospin do not have good

b,inp

quantum numbers anymore, but the number of states remains
unaltered and the associated topology can be traced back to
that in Fig. 5(a). On the other hand, well visible avoided
crossings develop in three spots (highlighted within circles)
whenever the valley gap Ey equals the Zeeman energy E; =
g usB (g = 5.788383 107> eV/Tesla is the Bohr magne-
ton).

Our VFCI results for the case of a Si 2e-DQD portrayed
in Fig. 5(b) are in agreement with the experimental results
and the phenomenological analysis of Ref. [68] [see, e.g.,
Fig. 5(b) therein]. We note further that such an avoided cross-
ing associated with the condition Ey = E7 has been observed
experimentally for other Si nanostructures, e.g., in the case of
a single QD [21]. In Ref. [82], the avoided crossing at Ey =
E;z was produced in a Si 2e-DQD by keeping the magnetic
field constant while varying the valley splitting as a result of
the application of a changing gate voltage.

IV. SUMMARY

In this paper, a valleytronic FCI has been introduced that
integrates in its formalism the SU(4) D SU(2) x SU(2) group-
theoretical organizational principles underlying the variety of
multiplicities in the electronic spectra of a Si DQD qubit.
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FIG. 6. Illustration of the single-particle basis. (a) Energies, as a function of the detuning ¢, of the first 10 states of the one-dimensional
Hamiltonian H) [see Eq. (A1)] that participate in the single-particle basis associated with the 2D Hamiltonian H,,. Frames (b) and (c) display

aux

the corresponding potential confinements m*? x;* /2 + h;. at two values of the detuning (indicated by the two upwards-pointing arrows), i.e., at
¢ = 0 and 2.0 meV, respectively; here #; = 0 and h, = ¢. The associated single-particle wave functions X,,(;(x) for j =1, ..., 3 [see Eq. (A2)]
are also displayed at these two points; see (d)—(f) for ¢ = 0 and (g)—(i) for ¢ = 2.0 meV. We mention that the smooth-neck Hamiltonian term
Vaeck (X) is not included in Hyyx. The parameters entering in HS) were chosen as confinement fiw,; = fiwy, = fiwy = 0.40 meV, interwell
distance d = 150 nm (with —x; = x, = 75 nm), and effective mass m* = 0.191m, (appropriate for Si). The wave functions in (d)—(f) and

(2)—(i) are in units of 1/4/nm.

A first application was presented concerning a detailed and
complete analysis of the spectra of a 2e-DQD qubit.

In the case of the two operational low-energy valleys of
a Si qubit, this was achieved by exploiting the fact that the
valley degree of freedom can, to a very good approximation,
be treated as an isospin [60] in complete analogy with the reg-
ular spin, as was to be intuitively expected from well-known
quantum systems in other fields consisting of four species of
fermions, such as atomic nuclei [63] and metal ions of many
transition metal oxides [64].

Using the effective mass treatment of the low-energy
valleys of Si nanodevices in conjunction with a highly
adaptable TCO emulation of the artificial gate confinement
in a Si DQD qubit, we have introduced an appropriate
single-particle set of space orbitals, which, when augmented
through multiplication with the spin and isospin up and
down functions, are used as the input of spin-isospin or-
bitals in the construction of the many-body CI basis of Slater
determinants (Sec. II).

We demonstrated that our VFCI is able to offer a unified
analysis for the spectra of a Si 2e-DQD that encompasses all
three cases considered. The first two cases concerned the full

spectra, including the most important avoided crossings, as
a function of detuning in the transition range from the (1,1)
to the (2,0) charge configuration when (i) the formation of a
strong Wigner molecule (see Fig. 2) suppresses the energy of
the first-excited state Eé'}, within the same low-energy valley
below the valley gap Ey (Sec. III A), and (ii) in conjunc-
tion with the formation of a weaker WM, the valley gap Ey
determines the energy of the first-excited state (Sec. IIIB).
The third case concerned the evolution of the spectrum in the
(1,1) configuration as a function of the magnetic field, while
keeping the detuning parameter constant (Sec. II1C).

When the many-body Hamiltonian accounts for the valley
splitting, but does not include any valley-orbit or spin-valley
coupling, the 16 hallmark (Sec. III A 3) low-energy states
of the SU4) D SU(2) x SU(2) chain are organized in mul-
tiplets according to a 4 @, 8 @, 4 © scheme for all three
cases mentioned above and as long as the system remains
in the (1,1) configuration, which induces spin-singlet—spin-
triplet degeneracies due to the large interdot distance; for
convenience we reiterate here the definitions of the symbols
@, 0, and ©, which indicate states with both electrons in the
low-energy valley, with the electrons in different valleys, and
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with both electrons in the high-energy valley, respectively (see
Sec. IIT A 1).

When the system transitions to the (2,0) charge configura-
tion, this scheme is modified because the spin-singlet—spin-
triplet degeneracies are lifted; however, the hallmark family
of 16 states persists and is easily traceable in the spectra
(see Figs. 2 and 4), as it fans out from the 4 @, 8 @, 4 ©
scheme in response to the increasing values of the detuning
&. For the cases (i) and (ii), the enhancement of the avoided-
crossing gaps in response to a reduced interdot barrier has
been demonstrated explicitly [see Figs. 2(b) and 4(b)]. Fur-
thermore, the transformation of additional simple crossings to
prominent avoided ones upon consideration of a valley-orbit
coupling has been discussed in Sec. III B and illustrated in
Fig. 4(c).

Of particular interest are the magnetic-field-dependent
VFCI spectra (third case considered, see Sec. III C), which
illustrate the influence of the full SIC coupling, including
a spin-valley coupling [21,68,82,88,89] which flips both the
valley and spin indices. In particular, the VFCI magnetic-field
spectra in the (1,1) configuration do confirm the appearance
of avoided crossings [see Fig. 5(b)] at the point where the
Zeeman energy E equals the valley splitting Ey .

As elaborated in the main text, the VFCI results presented
here are in agreement with the many trends revealed in ex-
perimental measurements on actual DQD artificial devices
that aim at establishing the proof-of-principle feasibility of
solid-state qubits and logical gates; specifically, among others,
the VFCI results were shown to emulate trends reported in
Refs. [28,30,31,67,68].

In conclusion. With respect to the broader picture, this
paper takes a definitive step towards remedying the current
incomplete understanding of the complexity of the spectra
of Si solid-state qubits. Indeed, it has succeeded in integrat-
ing under the same framework of an efficient microscopic
approach (namely, the valleytronic FCI, see Sec. II C) the fol-
lowing pertinent aspects: (1) the valley degree of freedom as
an isospin, in complete analogy with the regular spin, (2) the
SU4) D SU(2) x SU(2) group-theoretical organization of the
spectra, containing the salient features of avoided crossings,
(3) the effect of strong e-e correlations and of the ensuing
formation of WMs in the experimentally relevant context
of realistic double-well confining potentials, which strongly
suppresses the spin-singlet—spin-triplet gaps within the same
valley, and (4) the influence of valley-orbit and spin-valley
Hamiltonian terms, in particular under an applied magnetic
field.

This valleytronic FCI, demonstrated for the case of two
electrons confined in a tunable double quantum dot, of-
fers also a most effective tool for analyzing the spectra
of Si qubits with more than two wells and/or more than
two electrons under field-free conditions and in the pres-
ence of a magnetic field. Moreover, this methodology can
be readily adapted and employed for treatment of the
many-body problem in diverse model devices, with carri-
ers (electrons or holes in semiconductors, e.g., Si or Ge)
confined in dots of variable sizes and symmetries, e.g., two-
dimensional (circular, elliptical), or quasi-one-dimensional
elongated structures (wire-ike [11,14,16]), or like the one
presented most recently in Ref. [90], as well as be ex-

tended [91] to treat the case of bilayer graphene quantum
dots [69,70].
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APPENDIX A: SOLVING THE AUXILIARY HAMILTONIAN
EIGENVALUE PROBLEM

For a given interwell separation d, the spatial orbitals ¢;(r),
i=1,..., K, that form the single-particle basis [see Eq. (9)]
are obtained by a semianalytic diagonalization of the auxiliary
single-particle Hamiltonian specified in Eq. (8).

Specifically, the eigenvalue problem associated with the
auxiliary Hamiltonian [Eq. (8)] is separable in the x and y
variables, i.e., one has

Hyx = HY 1+ g

aux aux’

(AD

and as a result the single-particle wave functions are written
as

(pj(X, y) = Xu(x)Yn(y),

with j={u,n}, j=1,2,...,K. As mentioned earlier, K
specifies the size of the single-particle basis.

The Y, (y) are the eigenfunctions of a one-dimensional
oscillator in the y direction, and the X,(x <0) and
X,,(x > 0) can be expressed through the parabolic cylinder

(A2)

TABLE 1. The VFCI calculated expectation values (...) for
the total spin and total isospin associated with the VFCI states in
Fig. 5(a) at a magnetic-field value of B = 0.05 T. The 16 displayed
states are labeled in this table in ascending energy-eigenvalue or-
der, with the ground state being labeled as No. 1. Deviations from
the expected group-theoretical values, i.e., (SZ)exact =8(S+1)and
(Vexaer = V(Y + 1) (0 or 2), and (S.)exaer = 0, £1, (Vo) exaer = 0,
=+1, appear at most at the fifth decimal point. The symbols &, @,
and © have the same meaning as in Fig. 2.

Energy/h (GHz)  (8%) (V%) (S:) (V2)
1 201.722160 2.00000 2.00000 —1.0000 1.0000 &
2 203.121755 0.00000 2.00000 —0.0000 1.0000 &
3 203.121774 2.00000 2.00000 —0.0000 1.0000 &
4 204.521388 2.00000 2.00000 1.0000 1.0000 &
5 216.229963 2.00000 0.00001 —1.0000 0.0000 ©
6 216.229983 2.00000 1.99999 —1.0000 0.0000 @
7 217.629577 0.00000 1.99999 —0.0000 0.0000 @
8 217.629577 2.00000 0.00001 —0.0000 0.0000 ©
9 217.629596 0.00000 0.00001 —0.0000 0.0000 @
10 217.629596 2.00000 1.99999 —0.0000 0.0000 @
11 219.029191 2.00000 0.00001 1.0000 —0.0000 @
12 219.029210 2.00000 1.99999 1.0000 —0.0000 @
13 230.737805 2.00000 2.00000 —1.0000 —1.0000 e
14 232.137399 0.00000 2.00000  0.0000 —1.0000 e
15 232.137419 2.00000 2.00000  0.0000 —1.0000 ©
16 233.537032 2.00000 2.00000 1.0000 —1.0000 &
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functions U [y, (—1D*&] [92], where & = X,/ 2m* o /1,
Yk = (=Ey + )/ (hww), and Ex = (u + 0.5)hw,1 + hy de-
notes the x eigenvalues. The matching conditions at x = 0
for the left (k = 1) and right (k = 2) domains yield the x
eigenvalues and the eigenfunctions X),(x). The n indices are
integer numbers. The u indices are in general real numbers,
but their number is finite.

An advantage of the single-particle orbital basis described
in this section is the fact that it adapts continuously to both
the interwell separation d and the detuning parameter €. As a
result, a very efficient convergence is achieved for any d and
¢. The adaptability of our single-particle orbital basis is illus-
trated in Fig. 6. In particular, Fig. 6(a) displays eigenvalues of
the nontrivial auxiliary Hamiltonian H") [see Eq. (A1)] which
implements the TCO confinement along the x direction. One
observes that for larger values of detuning, these eigenvalues
become constant (as was to be expected), and they run parallel
to the ¢ axis.

Two cases of the TCO potential confinement are also dis-
played in Figs. 6(b) and 6(c), the former corresponding to
a symmetric double well (¢ = 0) and the latter to the case

"For another illustration of the adaptability of our single-particle
orbital basis in the case of a symmetric double well (¢ = 0) as the
interwell distance d is varied from zero (“unified atom”) to large
values (“separated atoms”), see Fig. 9 in Ref. [44].

when the right well is strongly higher by ¢ = 2.0 meV. The
corresponding three lowest-energy eigenfunctions are also
displayed in the triad of Figs. 6(d)-6(f) and the triad of
Figs. 6(g)-6(i) for these two values of e, respectively. It is
seen that the eigenfunctions in Figs. 6(d)-6(f) preserve the
parity around the origin and extend over both wells (as was
to be expected for a symmetric double well), whereas those in
Figs. 6(g)—6(i) are restricted within the left well (as was to be
expected again for a highly tilted double well).!!

We mention again that the smooth-neck Hamiltonian term
Vaeek () 1s not included in H,,. The contributions in the
many-body Hamiltonian from the smooth-neck term, the
magnetic-field-dependent terms, and the spin- and isospin-
dependent terms are calculated as part of the many-body exact
diagonalization by using the Slater-Condon rules for one-body
operators between pairs of the Slater determinants WY [see

Eq. (11)].

APPENDIX B: AN EXAMPLE OF VFCI RESULTS
CONCERNING THE SPIN AND ISOSPIN QUANTUM
NUMBERS

In this Appendix, we give an example (see Table I) of VFCI
calculated expectation values that correspond to complete sets
of the four integer quantum numbers that are expected from
group-theoretical considerations for the total spin and the total
valley isospin. Deviations from the appropriate integer values,
if any, appear at most at the fifth decimal digit.
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