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The few-body problem for N = 4 fermionic charge carriers in a double-well moiré quantum dot (MQD),
representing the first step in a bottom-up strategy to investigate formation of molecular supercrystals in transition
metal dichalcogenide (TMD) moiré superlattices with integral fillings, ν > 1, is solved exactly by employing
large-scale exact-diagonalization via full configuration interaction (FCI) computations. A comparative analysis
with the mean-field solutions of the often used spin-and-space unrestricted Hartree-Fock (sS-UHF) method
demonstrates the limitations of the UHF method (by itself) to provide a proper description of the influence of the
interdot Coulomb interaction. In particular, it is explicitly shown for ν = 2 that the exact charge densities (CDs)
within each MQD retain the ringlike shape characteristic (for a wide range of relevant parameters) of a fully
isolated MQD, as was found for sliding Wigner molecules (WMs). This deeply quantum-mechanical behavior
contrasts sharply with the UHF CDs that portray solely orientationally pinned and well-localized dumbbell
dimers. An improved CD, which agrees with the FCI-calculated one, derived from the restoration of the sS-UHF
broken parity symmetries is further introduced, suggesting a beyond-mean-field methodological roadmap for
correcting the sS-UHF results. It is conjectured that the conclusions for the ν = 2 moiré TMD superlattice case
extend to all cases with integral fillings that are associated with sliding WMs in isolated MQDs. The case of
ν = 3, associated with a pinned WM in isolated MQDs, is an exception.
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Introduction. Understanding the electronic spectral and
configurational organization beyond that of natural atoms is
rapidly becoming a major research direction focusing on the
exploration of the nature of a few charged carriers trapped
in artificially fabricated, isolated or superlattice-assembled,
quantum dots (QDs) [1–3]. Such research is motivated by
the potential for utilizing these systems, with high tunability
and control, in future quantum information and computa-
tional platforms [4–7]. Earlier studies have unveiled a novel
fundamental-physics aspect in such nanosystems, namely,
formation of quantum Wigner molecules (WMs), originally
predicted theoretically [8–33] in two-dimensional (2D) semi-
conductor QDs, as well as trapped ultracold atoms, and
subsequently observed experimentally in GaAs QDs [34–37],
Si/SiGe QDs [38], and carbon nanotubes [39]. Remarkably,
recent work [40] extended the WM portfolio to the newly
arising and highly pursued field of TMD moiré materials, ow-
ing mainly to the promise for fundamental-physics discoveries
and the potential for advancing quantum-device applications.

Adopting a bottom-up methodology, and building on the
demonstrated emergence [40] of WMs in the quasi-isolated
moiré pockets [most often referred to as moiré quantum dots
(MQDs)], we address here the inevitable incorporation of
such single MQDs in a superlattice structure. Specifically,
this Letter focuses on the effects on WM formation result-
ing from the interaction between neighboring MQDs. Two
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different methodologies are used in this endeavor, namely:
(i) the spin-and-space unrestricted Hartree-Fock (sS-UHF)
[8,12,21,41,42] and (ii) the full configuration interaction
(FCI) [15,16,21,24,28,29,33,43–47]. In particular, through a
detailed comparison with the FCI exact resuts (serving here as
comparative benchmarks), we show that except when the clas-
sical equilibrium configuration of the ñ confined carriers in
each single MQD is commensurate with the trilobal symmetry
of the moiré confinement (see below, leading to a pinned WM
configuration, e.g., when ñ = 3), the sS-UHF approximation
(by itself) is unreliable for investigations of WM-exhibiting
moiré double quantum dots (MDQDs) in unstrained TMD
bilayers (that is, in naturally occurring, bias-free cases). This
deficiency dictates further corrective measures (beyond the
mean-field sS-UHF) that are provided by the theory of restora-
tion of broken symmetries and extensions thereof [12,19–
21,41,44,48–50]. Specifically, for ν = 2 and for a set of ma-
terials parameters suitable to moiré TMD superlattices, we
show that, in spite of the interaction with a neighboring MDQ,
the ground-state FCI charge densities within each MQD re-
main ringlike with a superimposed trilobal distortion, as in
the case of a single isolated MQD [40] illustrated in the
inset of Fig. 1(a). This contrasts sharply with the correspond-
ing (mean-field) sS-UHF CD prior to symmetry restoration,
which exhibits a pair of two antipodal and well-localized
charge carriers.

On the other hand, the symmetry-restored UHF (SR-UHF)
charge densities are in agreement with the exact (FCI) ones.
These results suggest a much desired gateway for systematic
large-scale computational studies of WM-MQD assemblies in
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FIG. 1. (a) Schematic moiré pattern produced by two twisted
monolayers. The area demarcated by the dashed red line corresponds
to the isolated moiré double quantum dot investigated in this Letter.
(b) The spin-singlet ground-state FCI charge density associated with
N = 2 holes in a single isolated moiré quantum dot, exhibiting a ring-
like shape with a trilobal distortion. This ringlike CD is characteristic
of a sliding (contrasted to a pinned) Wigner molecule. Parameters
used: effective mass m∗ = 0.9me, dielectric constant κ = 5, strength
of moiré modulation v0 = 10.3 meV, moiré lattice constant aM =
9.8 nm, trilobal distortion φ = 20◦; see Eq. (1). These parameters
are also used in all CD calculations (either FCI or UHF) for the
MDQD case below. (c) Broader view of the moiré periodic potential
structure given by Eq. (1) for an angle of φ = 10◦. (d) Potential of
a single moiré QD for φ = 30◦. In panels (c) and (d), v0 = 15 meV
and aM = 14 nm. Length units are in nanometers in panel (b) and in
aM in panels (c) and (d). The CD in panel (a) is in units of 1/nm2.
All CDs in this Letter are normalized to N = 4.

TMD materials using a beyond-mean-field-corrected SR-sS-
UHF methodology, capable of modeling systems comprised
of a much larger number of carriers (electrons or holes) that
may be treated with the exact-diagonalization, FCI, method.
Furthermore, in light of rapid advances in STM imaging tech-
niques [51,52], we expect that the FCI predictions shown here
will gain verification in the near future (see Note added at the
end).

Confinement potentials and many-body Hamiltonian. The
potential confining the extra charge carriers at the pockets
of the 2D moiré superlattice can be approximated by the
expression [53–55]

V (r) = −2v0

3∑
i=1

cos(Gi · r + φ), (1)

where Gi = {(4π/
√

3aM )[sin(2π i/3), cos(2π i/3)]} are the
moiré reciprocal lattice vectors. The materials specific pa-
rameters of V (r) are v0 (which can also be experimentally
controlled through voltage biasing), the moiré lattice con-
stant aM , and the angle φ. aM is typically of the order of
10 nm, which is much larger than the lattice constant of the
monolayer TMD material (typically a few Å). For the overall
periodic-array structure of V (r), see Fig. 1(c).

FIG. 2. The confining potential for the MDQD. (a) The TCO
potential according to Eq. (3), which does not include the trilobal
deformation. (b) The potential [Eq. (5)] for the MDQD, which does
include the trilobal deformation within each QD. Parameters used:
h̄ω0 = 36.71 meV (which corresponds to v0 = 10.3 meV, aM =
9.8 nm, and φ = 20◦), −x1 = x2 = 4.9 nm, εb = 0.44, and f = 0.15.
The interdot barrier is 84.07 meV in panel (a) and 71.46 meV in panel
(b).

The parameter φ controls the strength of the trilobal C3

crystal-field-type anisotropy in each MQD potential pocket
[see Fig. 1(d)]. This anisotropy can be seen by expanding
V (r) in Eq. (1) in powers of r and defining an approximate
confining potential, VMQD(r), for a single MQD as follows:

VMQD(r) ≡ V (r) + 6v0 cos(φ) ≈ m∗ω2
0r2/2 + C sin(3θ )r3,

(2)

where m∗ω2
0 = 16π2v0 cos(φ)/a2

M , C = 16π3v0 sin(φ)/
(3

√
3a3

M ), m∗ is the effective mass, and the expansion of V (r)
can be restricted to the terms up to r3. (r, θ ) are the polar
coordinates of the position vector r.

We construct a potential confinement for an isolated pair
of two neighboring MQDs [see the area marked by the thick
dashed red border in Fig. 1(a)] in two steps.

First, we consider the potential of a two-center-oscillator
(TCO) with a smooth neck [8,21,32,33,46,56], namely,

VTCO(x, y) = 1
2 m∗ω2

y y2 + 1
2 m∗ω2

xkx′2
k + Vneck(x), (3)

where x′
k = x − xk with k = 1 for x < 0 (left) and k = 2 for

x > 0 (right). Here y denotes the coordinate perpendicular
to the interdot axis (x). In this Letter, we take ωx1 = ωx2 =
ωy = ω0, with ω0 coinciding with that of a single MQD [see
Eq. (2)].

L121302-2



WIGNER-MOLECULE SUPERCRYSTAL IN TRANSITION … PHYSICAL REVIEW B 109, L121302 (2024)

-10
-5

 0
 5  10 -10

-5
 0

 5
 10

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10
 0

 0.04
 0.08
 0.12

 0
 0.04
 0.08
 0.12

x (nm)
y (

nm)

(a)

(b)

FIG. 3. Ground-state FCI charge densities for the case of the
moiré double QD with N = 4 holes. (a) CD for the confinement
in Fig. 2(a) (no trilobal deformation). (b) CD for the confinement
in Fig. 2(b) (trilobal deformation included). Remaining parameters:
effective mass m∗ = 0.90me and dielectric constant κ = 5. See text
for a detailed description. CDs are in units of 1/nm2.

For the smooth neck, we use

Vneck(x) = 1
2 m∗ω2

0

[
Ckx′3

k + Dkx′4
k

]
	(|x| − |xk|), (4)

where 	(u) = 0 for u > 0 and 	(u) = 1 for u < 0. The four
constants Ck and Dk can be expressed via two parameters,
as follows: Ck = (2 − 4εb)/xk and Dk = (1 − 3εb)/x2

k , where
the barrier-control parameter εb = Vb/V0 is related to the
height of the targeted interdot barrier Vb, and V0 = m∗ω2

0x2
k/2.

The VTCO potential is illustrated in Fig. 2(a).
Second, we intoduce the trilobal deformation in each MQD

through the expression

VMDQD(x, y) = VTCO(x, y){1 + f sin[3θ ′
k + (−1)kπ/2]}, (5)

where θ ′
k is the counterclockwise angle around the point

(x′
k, 0), with x′

k defined as in Eq. (3). The factor f is taken such
that the modified interdot barrier Vb(1 − f ) equals the min-
imum barrier between the two MQDs, as determined by the
original moiré potential in Eq. (1). The VMDQD(x, y) employed
in all our calculations in this Letter is displayed in Fig. 2(b).

The effective many-body Hamiltonian [40,53–55] associ-
ated with the isolated MDQD is given by

HMB =
N∑

i=1

{
p2

i

2m∗ + VMDQD(ri )

}
+

N∑
i< j

e2

κ|ri − r j | , (6)

where m∗ is the effective mass of the holes and κ is the
dielectric constant. A brief outline of the FCI and sS-UHF
methodologies used to solve the corresponding many-body
Schrödinger equation is presented in the Supplemental
Material [57].
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FIG. 4. (a) and (b) Charge densities for N = 4 holes associ-
ated with the two lowest-energy UHF isomers (with Sz = 0) for
the MDQD confinement displayed in Fig. 2(b) (which includes the
trilobal deformation within each MQD). In both cases, the UHF CDs
consist of dumbbell-like pairs of well-localized charge carriers. In
panel (a), both the left and right pairs have axes oriented perpen-
dicular to the x axis. In panel (b), the axis of the left dumbbell is
parallel to the x axis, whilst the right dumbbell remains perpendic-
ular to the x axis. (c) CD of the x-parity-restored wave function
associated with the UHF isomer in panel (b). Note that, unlike the
pure UHF CDs in panels (a) and (b), the x-parity-restored CD in
panel (c) exhibits a ringlike shape in good agreement with the FCI
(exact) CD in Fig. 3(b). See text for a detailed description. Effective
mass m∗ = 0.90me and dielectric constant κ = 5. CDs are in units of
1/nm2.

FCI results for N = 4 holes in the double-dot confinements
of Fig. 2. The ground-state FCI charge densities for the four
holes confined in the double-MQD of Figs. 2(a) and 2(b) (that
is, corresponding to ν = 2 filling of the moiré superlattice) are
displayed in Figs. 3(a) and 3(b), respectively; the correspond-
ing FCI total spin is found to be S = 0 with the spin projection
Sz = 0.
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Unlike the CDs in Fig. 3(a), which are rather ellipsoidal-
like, the CDs in each MQD in Fig. 3(b) do exhibit a trilobal
deformation, reflecting the trilobal deformation of the con-
fining potential [Fig. 2(b)]. More importantly, in spite of
the Coulombic interaction between the left and right MQDs,
which is fully taken into account via our FCI calculation, the
N = 2 CDs in each MQD of Fig. 3, in both panels (a) and (b),
retain the ringlike shape [albeit pearlike distorted in panel (b)]
found for an N = 2 hole single MQD in our earlier study [40];
see also the inset in Fig. 1(b) shown above.

Naively, these ring-shaped CDs are incompatible with
the dumbbell shape of the bonding charge distribution of a
“generic” natural molecule (e.g., H2). However, the case here
pertains to a genuinely quantum-mechanical effect: namely,
the two-hole antipodal arrangement is hidden (unseen) in the
CDs, but its presence is revealed via the conditional proba-
bility distributions (CPDs) (which are second-order, density-
density correlation functions [58]). Indeed the CPD analysis
[40] of such WMs in MQDs (for 2 � N � 6) applied to re-
sults obtained via FCI (exact) calculations is supplemented
and complemented in this Letter through the comparative
investigation of exact and mean-field sS-UHF results, with the
latter corresponding to approximate solutions of the confined
quantum few-body problem. Such UHF vs FCI comparative
analysis is part of a constructive hierarchical approach to the
complex few-body problem (see Fig. 1 in Ref. [21]).

UHF charge densities for N = 4 holes in the double-
dot confinement of Fig. 2(b). Charge densities for the two
lowest-energy sS-UHF isomers with Sz = 0 [59] (for N =
4, considered with the same model parameters as in the
FCI calculations) in the double MQD confining potential
of Fig. 2(b), which includes the sin(3θ ′

k ) trilobal contribu-
tions referenced to the center of each QD, are displayed

in Figs. 4(a) and 4(b). Unlike the electron charge distribu-
tion obtained via the exact-diagonalization (FCI) calculation,
the sS-UHF CDs in Figs. 4(a) and 4(b) exhibit prominently
a dimer of two well-localized particles within each QD.
The difference between these two sS-UHF CDs pertains to
the different relative orientations between the axes of the two
dimers in the right and left MQDs. Namely, in Fig. 4(a) the
left and right dimers are perpendicular to the x axis, while in
Fig. 4(b) the left dimer is oriented parallel to the x axis, with
the right dimer retaining an orientation perpendicular to the x
axis.

It is clear that the sS-UHF CDs do not agree with the FCI
CD in Fig. 3(b). This disagreement indicates that, in order
to obtain a reliable and satisfactory approximate solution, it
is imperative that further corrective steps, beyond the mean-
field level, need to be taken. Indeed, a complete theory of
such correctional steps is known under the umbrella term
of restoration of broken symmetries [21,49,50]. The full set of
corrections [21,49,50] which can produce better beyond-UHF
approximate solutions and results for both the CDs and the
total energies is beyond the scope of this Letter. Nevertheless,
an immediately recognizable and available correction is the
restoration of the x-parity symmetry of the sS-UHF wave
function about the y axis, which is visibly broken in the CD of
Fig. 4(b). Such an x-parity restoration can be implemented as
described in the following paragraph.

Denoting the UHF Slater determinant as 
(x, y), its mirror
image about the y axis is given by 
(−x, y), and the x-parity-
restored wave function is ∝ 
(x, y) + p
(−x, y), with p =
±1. Then, because the Slater determinant 
(−x, y) is, in
general, not orthogonal to 
(x, y), the expectation value of an
operator O is given by (here we exhibit the lower-energy case,
which was found for the restored wave function with p = +1)

〈
(x, y)|O|
(x, y)〉 + 〈
(x, y)|O|
(−x, y)〉 + 〈
(−x, y)|O|
(x, y)〉 + 〈
(−x, y)|O|
(−x, y)〉
〈
(x, y)|
(x, y)〉 + 〈
(x, y)|
(−x, y)〉 + 〈
(−x, y)|
(x, y)〉 + 〈
(−x, y)|
(−x, y)〉 . (7)

The operator associated with the charge density is a one-body
operator,

∑N
i δ(r − ri ), and the charge density is calculated

using Eq. (7) and the Löwdin rules [60,61] for calculating ma-
trix elements between Slater determinants with nonorthogonal
orbitals. The energy of the symmetry-restored wave function
[calculated from Eq. (7) with O = HMB] is lower than the
mean-field UHF result, reflecting a gain in correlation energy
when going beyond the single-determinant wave function of
the UHF method; HMB is the many-body Hamiltonian.

The resulting CD of this x-parity restoration is displayed in
Fig. 4(c), and it exhibits an overall shape qualitatively similar
to that of the FCI CD in Fig. 3(b) [62]. This result provides
a vivid illustration of the limitation of the sS-UHF method
to yield a proper description of the Wigner molecules formed
in assembled neighboring quantum dots and the imperative
need for improvements, such as the one shown here, gained
through the application of the beyond-mean-field symmetry-
restoration corrective step to the sS-UHF solutions.

FCI and sS-UHF results for N = 6 holes in the double-dot
confinement of Fig. 2(b). As uncovered in our earlier study

[40] on single MQDs, in the case of ñ = 3 holes, the coin-
cidence of the threefold symmetries associated with the C3

intrinsic geometry of the trimer WM and with the trilobal
crystal-field MQD potential [see Fig. 1(b)] results in a pinned,
empty center, three-hump (0, 3) charge density (see Fig. 2(b)
in Ref. [40]). For the double-dot confinement, the calcu-
lated exact FCI [see Fig. 5(a)] and approximate sS-UHF [see
Fig. 5(b)] charge densities, obtained for N = 6 holes (ñ = 3
holes per well, corresponding to ν = 3 filling of the moiré su-
perlattice), are qualitatively very similar. Indeed they maintain
close resemblance to the above-noted pinned threefold sym-
metric configuration in a single MQD. This behavior contrasts
with that for N = 4 holes in the same MDQD confinement,
where the FCI CDs in each well exhibit a sliding WM [see
Fig. 3(b)] which differs drastically from the pinned-WM CDs
of the sS-UHF approach [see Figs. 4(a) and 4(b)] .

Conclusions. The bottom-up research strategy followed in
this Letter enables a reliable determination of the influence
of interdot Coulomb effects on the formation of quan-
tum WMs in MQDs associated with integer-filling, ν > 1,
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FIG. 5. Charge densities for N = 6 fully polarized holes asso-
ciated with the corresponding lowest-energy state. (a) FCI result
(with total spin S = 3 and spin projection Sz = 3). (b) sS-UHF result
(with broken total-spin symmetry and total spin projection Sz =
3). The employed MDQD double-well confinement is displayed
in Fig. 2(b) (which includes the trilobal deformation within each
MQD). In both cases, the CDs consist of strongly pinned (0,3)
WMs within each potential well. Effective mass m∗ = 0.90me and
dielectric constant κ = 5. CDs are in units of 1/nm2.

supercrystals in moiré TMD superlattices. Specifically, for
the ν = 2 case, we demonstrated explicitly that, in spite of
the interdot Coulombic interaction, the exact FCI CDs within
each MQD retain the ringlike shape characteristic (for a wide
range of relevant parameters [40]) of a fully isolated MQD.

This persisting behavior, which is deeply counterintuitive and
quantum mechanical, is associated with the formation of a
sliding WM (referred to also as rotating when the confinement
exhibits perfect circular symmetry [21]). We also demon-
strated that using the mean-field UHF in order to account for
the interdot Coulomb interaction is an unreliable approach,
with the corresponding CDs portraying orientationally pinned
and well-localized dumbbell dimers, in contrast to the exact
result. Notably, we illustrated that the gap between exact and
UHF results can be bridged by going beyond the mean-field
step within a hierarchical strategy that employs the theory
of restoration of broken symmetries and its generalizations
[21,49]. In contrast to the mean-field results, our corrected
sS-UHF methodology, with the parity of the ground-state
wave function being restored, yielded (for WMs formed in
the coupled MQDs studied here at ν = 2) charge densities that
agree with those obtained via exact (FCI) calculations for that
system.

We conjecture (to be confirmed both computationally and
experimentally) that our conclusions for the ν = 2 superlattice
case would extend to other cases, e.g., to all cases with 4 �
ν � 6, where our previous study [40] determined that a fully
quantum mechanical sliding WM (exhibiting a ringlike CD) is
formed in an isolated MQD instead of an azimuthally pinned
WM. Finally, we showed that the case of ν = 3 is an exception
to the above behavior due to the commensurability between
the classical equilibrium configuration of the confined charges
and the trilobal C3 crystal-field-type anisotropy in each MQD
potential pocket.

Note added. A recent preprint [63] presents measured STM
images for ν = 2–4 integral fillings of hole-doped moiré TMD
superlattices that are in remarkable agreement with our pre-
dictions here (as well as in our Ref. [40]). Reference [63]
presents also sS-UHF calculations for the WM superlattice
and comments on their limitations.
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THE CONFIGURATION INTERACTION

METHOD

The full con�guration interaction (FCI) methodology
has a long history, starting in quantum chemistry; see
Refs. [1, 2]. The method was adapted to two dimensional
problems and found extensive applications in the �elds of
semiconductor quantum dots [3�10] and of the fractional
quantum Hall e�ect [11, 12].
Our 2D FCI is described in our earlier publications.

The reader will �nd a comprehensive exposition in Ap-
pendix B of Ref. [9], where the method was applied
to GaAs double-quantum-dot quantum computer qubits.
We specify that, in the application to moiré DQDs, we
keep similar space orbitals, φj(x, y), j = 1, 2, . . . ,K, that
are employed in the building of the single-particle ba-
sis of spin-orbitals used to construct the Slater determi-
nants ΨI , which span the many-body Hilbert space [see
Eq. (B4) in Ref. [9]; the index I counts the Slater de-
terminants]. Accordingly, for a moiré DQD, the orbitals
φj(x, y) are determined as solutions (in Cartesian coor-
dinates) of the auxiliary Hamiltonian

Haux =
p2

2m∗ +
1

2
m∗ω2

yy
2 +

1

2
m∗ω2

xkx
′2
k , (S1)

where the index k = 1 for x < 0 (left well) and k = 2 for
x ≥ 0 (right well).
Following Ref. [9], we use a sparse-matrix eigensolver

based on Implicitly Restarted Arnoldi methods to diago-
nalize the many-body Hamiltonian in Eq. (6) of the main
text.
The smooth-neck (one-body) and Coulomb (two-

body) matrix elements required for the sparse-matrix
diagonalization are calculated numerically as described
in Ref. [9]. Similarly, the matrix elements between the
orbitals φi(x, y) and φj(x, y) of the trilobal (one-body)
term in the moiré DQD con�nement [second term in Eq.
(5) of the main text] are also calculated numerically.

THE SPIN-AND-SPACE UNRESTRICTED

HARTREE-FOCK AND SYMMETRY

RESTORATION

Early on in the context of 2D materials, the spin-and-
space unrestricted Hartree-Fock (sS-UHF) was employed

in Ref. [13] to describe formation of Wigner molecules
at the mean-�eld level. This methodology employs the
Pople-Nesbet equations [2, 7]. The sS-UHF WMs are
self-consistent solutions of the Pople-Nesbet equations
that are obtained by relaxing both the total-spin and
space symmetry requirements. For a detailed description
of the Pople-Nesbet equations in the context of three-
dimensional natural atoms and molecules, see Ch. 3.8
in Ref. [2]. For a detailed description of the Pople-
Nesbet equations in the context of two-dimensional ar-
ti�cial atoms and semiconductor quantum dots, see Sec.
2.1 of Ref. [7]. Convergence of the self-consistent itera-
tions was achieved in all cases by mixing the input and
output charge densities at each iteration step. The con-
vergence criterion was set to a di�erence of 10−12 meV
between the input and output total UHF energies at the
same iteration step.
We note that the book of Szabo and Ostlund [2] does

not describe the post-Hatree-Fock theory of symmetry
restoration. For a detailed description of the theory of
symmetry restoration, see Sec. 2.2 in Ref. [7].

CHARGE DENSITIES FROM FCI AND UHF

WAVE FUNCTIONS

The FCI single-particle density (charge density) is the
expectation value of a one-body operator

ρ(r) = ⟨ΦFCI|
N∑
i=1

δ(r− ri)|ΦFCI⟩, (S2)

where ΦFCI denotes the many-body (multi-
determinantal) FCI wave function, namely,

ΦFCI(r1, . . . , rN ) =
∑
I

CIΨI(r1, . . . , rN ), (S3)

with ΨI(r) denoting the Slater determinants that span
the many-body Hilbert space.
For the sS-UHF case, one substitutes ΦFCI in Eq. (S2)

with the single-determinant, ΨUHF(r), solution of the
Pople-Nesbet equations. ΨUHF(r) is built out from the
UHF spin-orbitals whose space part has the form:

uα
i =

K∑
µ=1

Cα
µiφµ, i = 1, . . . ,K, (S4)



and

uβ
i =

K∑
µ=1

Cβ
µiφµ, i = 1, . . . ,K, (S5)

where the expansion coe�cients Cα
µi and Cβ

µi are solutions
of the Pople-Nesbet equations.
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