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A B S T R A C T   

The efficiency of electroporation treatments depends on the application of a critical electric field over the tar-
geted tissue volume. Both the electric field and temperature distribution strongly depend on the tissue-specific 
electrical properties, which both differ between patients in healthy and malignant tissues and change in an 
electric field-dependent manner from the electroporation process itself. Therefore, tissue property estimations 
are paramount for treatment planning with electroporation therapies. Ex vivo methods to find electrical tissue 
properties often misrepresent the targeted tissue, especially when translating results to tumors. A voltage ramp is 
an in situ method that applies a series of increasing electric potentials across treatment electrodes and measures 
the resulting current. Here, we develop a robust deep neural network, trained on finite element model simula-
tions, to directly predict tissue properties from a measured voltage ramp. There was minimal test error 
(R2 > 0.94; p < 0.0001) in three important electric tissue properties. Further, our model was validated to 
correctly predict the complete dynamic conductivity curve in a previously characterized ex vivo liver model 
(R2 > 0.93; p < 0.0001) within 100 s from probe insertion, showing great utility for a clinical application. Lastly, 
we characterize the first reported electrical tissue properties of lung tumors from five canine patients 
(R2 > 0.99; p < 0.0001). We believe this platform can be incorporated prior to treatment to quickly ascertain 
patient-specific tissue properties required for electroporation treatment planning models or real-time treatment 
prediction algorithms. Further, this method can be used over traditional ex vivo methods for in situ tissue 
characterization with clinically relevant geometries.   

1. Introduction 

Electroporation is a biophysical phenomenon in which external 
pulsed electric fields (PEFs) generate nanoscale pores in the plasma 
membrane (Weaver and Chizmadzhev, 1996). The transitory formation 
of pores is called reversible electroporation (rEP) and has been used to 
successfully deliver chemotherapeutics (Mir et al., 1991; Sersa et al., 
1998; Serša et al., 2000), genes (Neumann et al., 1982; Chu et al., 1987), 
and substances that would otherwise be impermeant into the cell. With 
the application of larger and longer potentials, the pores in the cellular 
membrane persist long enough, so the cells can no longer maintain 
homeostasis and die through various cell death mechanisms, such as 
necrosis or apoptosis (Aycock and Davalos, 2019). This is termed 

irreversible electroporation (IRE) and is used to generate clinically 
relevant ablation volumes without the need for adjuvant therapies and 
without significant thermal heating (Edd et al., 2006; Davalos et al., 
2005; Al-Sakere et al., 2007). PEFs are being used clinically to treat 
atrial fibrillation (Sugrue et al., 2018) and skin (Serša et al., 2000), liver 
(Stillström et al., 2019; Kalra et al., 2019; Cheung et al., 2013), kidney 
(Benway, 2011), prostate (Guenther et al., 2019; Collettini et al., 2019), 
and pancreatic malignancies (Martin et al., 2013). 

The mechanisms and efficiency of electroporation depend heavily on 
burst number, applied potential, and pulse duration (Weaver et al., 
2012). A critical electric field magnitude is needed to encompass the 
desired tissue volume for treatment, thus prospective methods for 
modeling the electric field distribution within the tissue are often 
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required. The distribution of the electric field is strongly dependent on 
the electrical tissue properties, which vary significantly between pa-
tients in both healthy and malignant tissues (Beitel-White et al., 2021; 
Josowitz et al., 2014). Therefore, methods to accurately estimate tissue 
properties are needed for electroporation models, treatment planning, 
and treatment monitoring. 

Conventional methods for tissue characterization use ex vivo tissue 
slices placed between flat plate electrodes to find the impedance at 
different applied electric field magnitudes. The tissue is often cut to a 
specified geometry, so the impedance can be related to tissue conduc-
tivity using a calculated shape factor. Quantifications are often limited 
to healthy animal tissues and can misrepresent the targeted tissue, 
especially when translating results to malignant tissues (Beitel-White 
et al., 2021; Hendricks-Wenger et al., 2021; Brock et al., 2020). Tissue 
characterization using patient derived xenografts is more representa-
tive, but they can take weeks to grow, are not widely available during 
treatment planning, and do not replicate in situ conditions (Aycock, 
2022a; Brock et al., 2020). Further, even within a specific tumor type, 
there can be a high degree of tumor tissue heterogeneity between pa-
tients and even between tumors at different locations in the body. 

Translating experimentally found properties to an individual can be 
unreliable, so improved methods for patient specific tissue character-
izations are greatly needed. 

A voltage ramp (VR) is an in situ method that applies a series of 
increasing electric potentials (i.e. 25–2250 V) across the treatment 
electrodes to induce electric fields ranging from well below to above the 
electroporation threshold. The tissue impedance is a function of the 
applied potential, so both the applied voltage and resulting current are 
measured, and finite element modeling is employed to estimate the 
tissue properties. The electroporation-dependent tissue properties (bulk 
tissue conductivity, tissue conductivity due to electroporation effects, 
and fitting parameters) are iterated until the simulated current matches 
the measured current from the VR. This method was developed by our 
group and is being used for academic purposes, because a major limi-
tation for its adoption and use in the clinic is the time it takes to gather 
the in situ VR data, then simulate the VR with a variety of tissue char-
acteristics to match the currents. There are many models for use in 
treatment planning and monitoring during electroporation treatments 
(Perera-Bel et al., 2020, 2022; Marino et al., 2021; Campelo et al., 2022; 
Jacobs et al., 2023a), but they require a priori knowledge of the tissue 

Fig. 1. A) Experimental Setup. The (i) Pulse generator was monitored using an (ii.) oscilloscope attached to a (iii.) 1000× attenuated high-voltage probe and (iv.) 
10× attenuated current probe. (v.) A biphasic 2 μs pulse with 5 μs interpulse delay (repeated 50×). Each burst was applied at a 1s repetition rate. (vi.) A single 
insertion bipolar probe was used to deliver current directly into the (vii.) target organ or tissue. B) The probe insertion was replicated in COMSOL Multiphysics™ 
using a 2D axisymmetric geometry with an extra fine mesh size. C) The measured applied voltages and resulting currents from the voltage ramp were used as the 
input parameters to the deep neural network, with the tissue properties as the output parameters. 
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properties. The ability to rapidly estimate in situ tissue properties would 
then allow for more accurate intraoperative or intraprocedural models, 
thus improving electroporation treatments. 

Here, we developed an accurate and robust deep neural network 
(DNN) to directly predict tissue properties from an in situ VR. We show 
that this model can be implemented prior to treatments to rapidly and 
accurately predict electroporation-dependent tissue properties. Lastly, 
we demonstrate that the DNN can predict the unique electrical tissue 
properties of five canine lung tumor patients from their in situ VRs. We 
believe our DNN can be incorporated prior to treatment to quickly 
ascertain tissue properties needed in other electroporation treatment 
planning models. 

2. Materials and methods 

2.1. Creating a numerical model for current simulations 

To generate the dataset which the DNN was trained on, a two- 
dimensional axisymmetric finite element model (FEM) was employed 
in COMSOL™ Multiphysics 6.1 (COMSOL, Stockholm, Sweden) to 
simulate individual currents resulting from nine applied potential: 25, 
50, 100, 250, 500, 1000, 1500, 2000, and 2250 V. The tissue was 
modeled as an ellipsoid of dimensions 10 cm x 5 cm x 5 cm with the axis 
of symmetry being the center axis of the probe shaft (Fig. 1B). A single 
insertion bipolar probe was modeled as two cylinders with radius, re, 
and length, le, constituting the source and sink electrodes. The two 
electrodes were separated by insulation with radius, re, and length, li. 
The electric potential, Φ, at the end of an IRE pulse was calculated with a 
modified Laplace equation under the electro-quasistatic approximation: 
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where σo is the baseline tissue conductivity, σa is the maximum change 
in conductivity due to electroporation within the tissue, and A and E are 
empirically determined sigmoidal fit parameters. E is the center point 
along the sigmoid transition, corresponding with the electric field 
threshold required to induce electroporation-dependent conductivity 
changes in tissue. 

The boundary of the electrodes in contact with the tissue was set to 
Φ = V and Φ = 0, for the source and sink, respectively. The outer 
boundary of the tissue was treated as electrically insulated. The resulting 
electric field was calculated as: 

E→= − ∇Φ (3)  

2.2. Creating an input and output dataset for the deep neural network 

We chose to use a regression DNN, trained with supervised learning. 
The input to the DNN would be the voltage and current data, read from a 
VR and the output would be the dynamic tissue properties. All the pa-
rameters within the sigmoid function were randomly chosen using in-
dependent uniform distributions to generate 50,000 unique sets of 
dynamic tissue properties. The chosen boundaries for the uniform dis-
tribution range the possible values for electrical tissue properties, and 
the distributions are given in Table 1. The nine applied electric poten-
tials were chosen based off previously used VRs in the clinic. It is also the 
VR that was used here, prior to the treatments of five canine lung tumor 
patients. The VR electric potentials were previously arbitrarily chosen 
but are frequently used, so we kept these values and explored the 

individual impact they have in predicting tissue properties. The actual 
applied potentials can vary from the desired applied potentials set in the 
generator software. These variations have a direct impact on the applied 
current and, subsequently, the tissue property predictions. To account 
for potential deviations in applied potentials, we randomly chose po-
tentials from normal distributions, with means at the desired value and 
standard deviations of 5% the desired values. 

Both the randomized tissue properties and electric potentials were 
imported into COMSOL™ Multiphysics to simulate the resulting current 
from the source electrode surface. The currents were matched to each 
applied potential, creating the input dataset, and the tissue properties 
made up the output dataset. 5% of the total dataset (2,500 samples) was 
set aside prior to training the DNN to form the test dataset. It should be 
noted that this is data that the DNN is not trained on. 

2.3. Creating and training a deep neural network for electrical tissue 
property prediction 

A simple two-layer DNN was defined and trained within Google 
Colab (Alphabet) using the Keras python interface for the TensorFlow 
library (Fig. 1C). There were 18 input features (9 voltages and 9 cur-
rents) and two hidden layers, each with 128 neurons and a rectified 
linear activation function (ReLu). The output layer had 4 neurons with a 
sigmoid activation function. The final DNN had 5,504 total trainable 
parameters. The model was trained with the mean squared error (MSE) 
loss function and Adam optimizer over 50 epochs. Validation during 
training was performed with 10-fold cross validation that was shuffled 
every epoch. 

2.4. Voltage ramp and treatment for ex vivo liver validation 

The DNN developed in this work was experimentally validated using 
an ex vivo porcine liver model. Porcine livers were excised at a local 
abattoir within 15 min of euthanasia and transported on ice. Experi-
ments were performed at room temperature (23 ◦C, measured) within 
90 min following organ excision to reduce the impact of degradation on 
the measured tissue impedance. 

Electrical impedance spectroscopy (EIS), VR, and treatment were all 
performed at the same insertion location to mimic realistic treatment 
conditions. EIS was performed prior to the VR, after the VR, and after the 
treatment using a potentiostat (Reference 600, Gamry Instruments). 
Impedance and phase were measured from 1 Hz to 1 GHz (Supplemental 
Fig. S1). After the initial EIS measurement, a custom high-voltage 
generator (Voltmed Inc., Blacksburg, VA) was used to deliver a series 
of 3 bursts at each of the 9 voltages mentioned above at the same 

Table 1 
Varied COMSOL parameters.  

Parameters Symbol Value(s) 

Probe Radius re [mm] 0.8 
Electrode Lengths le [mm] 8 
Insulation Length li [mm] 7 
Bulk Tissue Conductivity σo

[
S⋅m− 1] X ~ U[0.1, 0.6] 

Increase in Electroporated Tissue 
Conductivity 

σa
[
S⋅m− 1] X ~ U[0.1, 0.6] 

Fitting Parameter (Slope) A
[
cm⋅V− 1] X ~ U[0.002, 0.01] 

Fitting Parameter (Midpoint) E
[
V⋅cm− 1] X ~ U[500, 1500] 

Applied Voltages V [V] 25 ~ J(25, 1.25), 50 ~ J(50, 
2.5), 
100 ~ J(100, 5), 250 ~ J 
(250, 12.5) 
500 ~ J(500, 25), 1000 ~ J 
(1000, 50) 
1500 ~ J(1500, 75), 2000 ~ J 
(2000, 100) 
2250 ~ J(2250, 112.5) 

U[min, max] uniform distribution; J(mean, std) Gaussian distribution. 
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location. Each burst was constructed of 2 μs biphasic pulses, each 
separated by a 5 μs delay, and repeated until 100 μs of energized time 
was achieved (Fig. 1). The dynamic conductivity curve varies for 
different applied pulse widths (Martin et al., 2013), so the VR must use 
the same applied pulsing scheme as the chosen treatment. The VR per-
formed for the canine treatment plan (Method 2.5) was done with a 2 μs 
pulse width, so we used the same pulsing scheme for the ex vivo liver 
experiments. 

During pulse delivery, the applied voltages and currents were 
monitored with a 1000× high-voltage attenuator (Enhancer 3000, 
Harvard Apparatus, Holliston, MA) and 10× attenuated passive current 
probe (Pearson Electronics, Palo Alto, CA) connected to a 4 GS/s oscil-
loscope (WaveSurfer 3024z, Teledyne LeCroy, Chestnut Ridge, NY). A 
custom python script was used to immediately extract the applied 
waveform saved to the oscilloscope (1.2 s for the entire VR). The time- 
series voltage and current data were processed and the last 250 ns of 
the last pulse within a given burst was averaged to obtain a singular 
voltage and current value for that burst. At each administered voltage, 
values extracted from each of the three bursts were averaged to build the 
input to the DNN. After the VR, the trained neural network then pre-
dicted the electric tissue properties (<0.1 s) and subsequent dynamic 
conductivity curve (eq (2)). The time from the start of the voltage ramp 
to obtaining the tissue-specific electrical properties was recorded using a 
timer. 

Following the VR, without removing the probe, a treatment con-
sisting of 100 bursts at 2250 V was delivered. Again, the voltage and 
current were recorded using the same methods mentioned above. The 
recorded voltage and current values obtained were compared to those 
simulated using the AI-predicted tissue values at the same location. A 
time-dependent COMSOL™ Multiphysics model was implemented to 
predict the electric field, temperature, and thermal damage distribution 
as previously described by our group (Aycock et al., 2022b; 
Beitel-White, 2021; Jacobs IV et al., 2023b). 

2.5. Voltage ramp for canine patient lung tumors tissue characterization 

The DNN developed in this work was used to estimate the tissue 
properties using VR data collected in five canine lung tumor patients 
treated with high-frequency IRE at the Virginia-Maryland College of 

Veterinary Medicine (Blacksburg, VA, USA). Once the bipolar electrode 
was inserted into the target tumor, but before treatment was started, a 
VR was administered. Briefly, a custom high-voltage generator (Voltmed 
Inc., Blacksburg, VA) was used to deliver a series of 3 bursts at each of 
the 9 voltages mentioned above (Fig. 1A). Each burst was constructed of 
2 μs biphasic pulses, separated by 5 μs delays, and repeated until 100 μs 
of energized time was achieved. During pulse delivery, applied voltages 
and currents were monitored with a 1000× high-voltage attenuator 
(Enhancer 3000, Harvard Apparatus, Holliston, MA) and 10× attenu-
ated passive current probe (Pearson Electronics, Palo Alto, CA) con-
nected to an 4 GS/s oscilloscope (WaveSurfer 3024z, Teledyne LeCroy, 
Chestnut Ridge, NY). A custom script was written in MATLAB (Math-
works Inc., Natick, MA) in which the voltage and current during the last 
250 ns of the last pulse within each burst were extracted and averaged. 
At each administered voltage, these three voltage and current datapoints 
were again averaged to build the dataset for each canine patient. 

3. Results 

3.1. The model accurately predicts electrical tissue properties from the 
simulation test dataset 

The DNN was trained for 50 epochs to minimize the MSE loss func-
tion, and the model error quickly converged within 10 epochs and pla-
teaued before the end of training. The validation dataset and training 
dataset did not diverge, suggesting the model was not overfit (Fig. 2A). 
The percent error (Fig. 2B) and the linear regression (Fig. 2C) were 
compared between the AI predicted and the COMSOL Multiphysics™ 
simulated electric tissue values from the test dataset. The bulk conduc-
tivity (σo), change in conductivity (σa), and midpoint (E) all had a low 
percent error. The quartiles for the percent error were all <1 %, and the 
R2 values were >0.94. This suggests the trained model can translate the 
relationship found between the voltage and current readings and these 
tissue properties to data it has not explicitly seen before. 

One of the tissue parameters, the slope fitting parameter (A), showed 
a uniform error and minimal correlation between the predicted and real 
parameter (R2 = 0.1477). In the finite element model, we saw that while 
keeping the other parameters (σo,σa,E) constant at the median, varying 
A from 0.002 cm/V to 0.01 cm/V only led to an 10.4% difference in 

Fig. 2. The trained DNN has high accuracy in predicting fundamental electroporation-dependent tissue properties in the test dataset. A) Training and 
Validation Mean Squared Error over model training. B) Percent error and C) linear regression between the AI predicted parameters and the COMSOL parameters. 
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current. This is reflected further in simulated ablation volumes (800 V/ 
cm lethal threshold for the 2 μs pulse width) only differing 1.6% over the 
A range. There may not be as strong a relationship between A and targets 
of electroporation modeling as the other parameters. 

3.2. Each applied potential was influential in predicting certain tissue 
properties 

We investigated the relationship between the voltages and currents 
within the VR and the tissue properties using the Shapley Additive ex-
Planations (SHAP) library within Python. SHAP operates through 
cooperative game theory to find the importance of an input feature on 
the output metric (Ribeiro et al., 2016; Štrumbelj and Kononenko, 
2014). SHAP values were calculated and normalized for each input 
parameter to the DNN (Fig. 3). We represent the applied voltage, Vp, and 
resulting current, Cp, within each ramp by the intended applied poten-
tial, p (i.e. V50 and C50 are the recorded or simulated voltage and current 
when applying 50 V, respectively). The SHAP values show that current 
had more influence overall on the model error and prediction than 
voltage. The resulting currents (C25, C50, and C100) from the lowest 
applied potentials had the most influence on the prediction of bulk 
conductivity (σo). Both the change in conductivity (σa) and midpoint 
fitting parameter (E) were influenced by currents throughout the entire 
VR. The change in conductivity sets the maximum conductivity within 
the tissue due to electroporation effects and had the most influence at 
C100, C2000 and C2250, with a lowest influence at C1000 and C1500. The 
midpoint fitting parameter (E) had the most influence at C100, C1000, and 
C1500. The slope fitting parameter (A) only had a large influence at C1500. 
While certain resulting current values were not influential on specific 
parameters, every current measurement was influential for predicting at 
least one tissue parameter. 

3.3. Model validation in an ex vivo liver 

To validate our tissue prediction AI model, we chose to use an ex vivo 
porcine liver, since its electroporation properties have been character-
ized (Beitel-White et al., 2021). Previously, our group used biopsy 
punches to produce cylinders of tissue samples, which allowed for easy 
calculations of the conductivity from the measured impedance, using the 
chosen shape factor. Our experiments were performed at room tem-
perature (23 ◦C) to match the previous experimental conditions. The 
three tested locations yielded slightly different current measurements 
for the given applied voltages (Fig. 4A), which was reflected in the 
differences in their impedance measurements (Fig. 4B). Since each 
sample location was electrically unique from the other locations, the 
DNN predicted slightly different dynamic conductivity curves (Fig. 4C). 
The predicted bulk conductivities (σ0, 0.105, 0.113, and 0.108 S/m) 
were not significantly different than those calculated previously using 
flat plate electrodes (0.113 S/m) (Beitel-White et al., 2021). A t-test 
showed that our predicted bulk conductivity was not significantly 
different from those previously measured (p > 0.9). Further, the 

predicted bulk conductivities are close to those found on the IT’IS 
foundation database for liver tissue, 0.11 S/m (IT’IS Database). Our 
predicted electroporated conductivity (σf , 0.214, 0.224, 0.231 S/m) was 
marginally higher than that previously found (0.195 S/m) using flat 
plate electrodes (Beitel-White et al., 2021); however, a t-test again did 
not show a significant difference between our predicted electroporated 
conductivity and previously characterized values (p > 0.8). Further, our 
predicted midpoint fitting parameter (E, 1400, 1345, and 1424 V/cm) 
was lower than previously found, 1620 V/cm. 

We also used a potentiostat (Gamry™) to perform electrical imped-
ance spectroscopy (EIS) prior to the voltage ramp, after the voltage 
ramp, and after a treatment with 100 bursts, while maintaining the 
probe in the same position. We found that calculated pre-VR impedance 
using the potentiostat matched the calculated impedance from the VR at 
low voltages (Supplement S2). 

To validate that the predicted dynamic conductivity curve correctly 
represents that in situ location, we applied 100 bursts at the target 
voltage (2250 V) at the same location immediately following the VR 
(<1 min). The current was measured for each burst. Further, the DNN- 
predicted dynamic conductivity curve was used to simulate the treat-
ment in COMSOL™ Multiphysics. The simulated current using the DNN- 
predicted dynamic conductivity curve was compared to the recorded 
current at that location. Fig. 4D gives both the simulated and measured 
current over treatment. Due to minor changes in tissue properties even 
within the same tissue, both the simulated and measured current 
differed between each location. The simulated current using the DNN- 
predicted dynamic conductivity was statistically similar to the real 
recorded current. The three tested locations matched with R2 values 
0.9526, 0.9337, and 0.9469, all with p-values <0.0001. 

3.4. The trained neural network can accurately predict the electrical 
tissue properties for in situ canine lung tumors 

To further validate that our model can accurately estimate electric 
tissue properties in situ, we characterized the electrical properties of five 
canine lung tumor patients using VR data that was previously gathered 
by our group prior to IRE treatment. We demonstrate that the DNN can 
predict the unknown electric tissue properties in a clinical setting. To the 
best of our knowledge, this is also the first study characterizing the 
dynamic conductivity of lung tumors. The DNN-predicted tissue prop-
erties are given in Table 2, and the constructed dynamic conductivity 
curve for each patient is given in Fig. 5B. 

The lung tumors all have much lower impedance values than that 
seen in healthy liver (Fig. 5A). Further, there was much more variability 
in the electric tissue properties between each tumor, compared to the 
low variability found in the healthy liver (Fig. 5B). Finally, the predicted 
bulk conductivity, σ0, is higher for each tumor than healthy lung (0.115 
S/m) (IT’IS Database). 

Since lung tumor electroporation properties are unknown and since 
in situ tissue properties can vary greatly (especially between tumors), we 
could not compare the predicted tissue properties with known values. 

Fig. 3. Each voltage and current value within the voltage ramp was important in the overall model prediction. A) Normalized SHapley Additive exPlanations 
(SHAP) plot and B) heat map to explain the local influence model inputs have on the output. 
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Instead, the predicted values were defined for the tissue material 
properties within COMSOL™ Multiphysics, with the recorded voltages 
being the applied electrical potential. The simulated current was then 
compared with the known, recorded current from the in situ lung tumor 
VR. The simulated current matched the recorded current for each canine 
patient with R2 values all above 0.9930 (Fig. 5C). The maximum error 
(Fig. 5D) and percent error (Fig. 5E) between the predicted and recorded 
currents was <2.8A and 25%, respectively. The mean and standard 
deviation indicate there is minimal error. 

We were able to predict the unique electrical tissue properties for all 
five canine patients. To highlight the clinical need for obtaining pro-
spective electrical properties, we simulated the electric field distribu-
tion, temperature distribution, and subsequent thermal damage for the 
five patients (Fig. 6). The dynamic conductivity curves for canines 1–3 
did not vary greatly (Fig. 5B), so their simulations were similar. Canine 4 
had a larger bulk conductivity, larger electroporated conductivity, and 
lower midpoint fitting parameter. The simulated electric field distribu-
tion is larger than the other patients, with the max simluated 

temperature rise >10 ◦C more than canines 1–3. The subsequent thermal 
damage volume was also 5× larger than for canines 1–3. Canine 5 was 
the opposite, with a lower bulk conductivity, a lower electroporated 
conductivity, and a higher midpoint fitting parameter. The estimated 
thermal heating was noticeably smaller with no indicated thermal 
damage. 

4. Discussion 

Currently, electroporation treatments are performed with mininal 
information about the tumors, with predictions about the electric field 
distribution done entirely a priori. Consequently, the electric field dis-
tributions could differ significantly from reality, with very few methods 
to validate or monitor treatment, often leading to under- or over-
treatment. There is a trust that characterized tissue properties found in 
literature are representative of the target tissue, which leads to a risk if 
they vary significantly. The risk of heating and thermal damage can vary 
substantially between patients, organs, and even across tumors of the 
same type. Therefore, a “point-of-care” tool to measure patient-specific 
properties would allow for the most refined treatment predictions 
possible. In this study, we have demonstrated that an accurate and rapid 
electroporation-dependent tissue properties prediction model can be 
developed using finite element modeling of a VR. We saw the predictions 
converged to an accurate solution in three of the four tissue parameters 
and that the trained model can be translated for the tissue character-
ization of five canine lung tumor patients. 

Our choice for applied potentials to use in our VR was based on 
previous tissue characterization and clinical work by our group (Neal 
et al., 2012; Partridge et al., 2020; O’Brien et al., 2019). The choice of 
voltages within the VR was arbitrary, so we characterized the 

Fig. 4. The DNN-predicted dynamic conductivity correctly predicts the unique local tissue properties. A) Recorded voltage and current at 3 locations. B) Each 
location has a unique impedance in response to the applied electric field. C) The DNN predicted dynamic conductivity curves with similar values as previously 
characterized liver tissue. D) The simulated current (dashed) using the DNN-predicted dynamic conductivity curve and the recorded current (symbol) are not 
significantly different (p < 0.0001), with R2 values of 0.9526, 0.9337, and 0.9469. 

Table 2 
Predicted canine lung tumor tissue properties.   

σ0 [S/m] σa [S/m] σf [S/m] A [cm/V] E [V/cm] 

Canine 1 0.234 0.346 0.58 0.00575 1022.6 
Canine 2 0.233 0.233 0.466 0.00560 988.8 
Canine 3 0.325 0.113 0.438 0.00558 950.4 
Canine 4 0.316 0.589 0.905 0.00859 696.8 
Canine 5 0.165 0.112 0.277 0.00859 999.4 
Mean ±

STD 
0.255 ±
0.066 

0.279 ±
0.199 

0.529 ±
0.233 

0.0068 ±
0.0016 

931.6 ±
133.8  
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contribution of each applied potential and resulting current in predict-
ing electrical tissue properties for the first time. We saw that every 
applied electric potential was useful in the prediction of at least one 
property; however, any future changes to the VR should be checked 
using feature contribution analysis to minimize unnecessary energy 
delivered into the treatment tissue. 

We found that the slope fitting parameter, A, was not as well pre-
dicted by a VR as the other tissue parameters. However, feature 
contribution analysis suggested that A does not have a large influence on 
the model output. Further, finite element modeling also showed a 10.4% 
difference in resulting current when varying A from its minimum value 
to maximum value; at its maximum the sigmoid acts like a Heaviside 
function and at its minimum it is almost a line (Martin et al., 2013). 
Within the tissue, there is a nonlinear electric field distribution with 
areas above and below the electric field threshold. At the lower applied 
potentials (25 V, 50 V, 100 V, and 250 V), there is very little or no tissue 
electroporation by the generated electric field, so these voltages had the 
most influence on predicting the bulk conductivity, σ0. Similarly, at 
higher applied potentials (2000 V and 2250 V), there are larger amounts 
of tissue being electroporated, so these voltages had more influence on 
the electroporated conductivity, σa. The applied electric potentials 
which induce a progression in tissue conductivity changes are 500 V, 
1000 V, and 1500 V; subsequently, these are the values that had the most 
influence on predicting the slope, A. These applied potentials may not 
contain enough information for the model to predict A, and adding 
additional readings at 1250 V and 1750 V might improve the resolution 
in this transition region. However, it seems unlikely since A does not 
influence current as significantly as the other parameters. This is further 
seen with the current simulations using the DNN-predicted liver dy-
namic conductivity curves; the simulated current and the recorded 
current were not significantly different. For this study, our dynamic 

conductivity curve incorporated the slope fitting parameter, A, to 
explore if our DNN could predict the value with reasonable accuracy. To 
our knowledge, no method has a validated A value, when compared to a 
known ground truth. A few models leave out A and assume a minimal 
transition range (Zhao et al., 2018), so future iterations of this model 
may remove A to decrease the trainable parameters. 

The current limitation of our model is both the inflexibility to use 
voltages other than what the model is trained on and the rigid geometry 
chosen. We saw that C2000 and C2250 had the most influence on the 
change in conductivity, σa, but a larger applied potential may increase 
the accuracy where the dynamic conductivity curve has not plateaued. 
To insert additional voltages and currents into the input dataset, the 
finite element models would need to be run again with the new desired 
electric potentials, then matched to the exact tissue properties in the 
output dataset. The limit for how many potentials to add to the VR de-
pends on the clinical safety of adding more or higher voltages, as well as 
the increased time needed to conduct the VR prior to beginning treat-
ment. Voltages that generate an electric field above the lethal electric 
field threshold could partially treat the tissue, which may not be desired, 
but this effect should be minimal since the burst number is low (≤ 3) 
(Jacobs IV et al., 2023b). We confirmed this through the gathered EIS 
data prior to the VR, after the VR, and after treatment (Supplemental 
Fig. S1). We deliver three bursts within each ramp to minimize the 
unnecessary treatment of the tissue, but methods to gather electropo-
ration specific properties must partially treat the tissue to characterize 
when this transition occurs. 

We found that every applied voltage and resulting current was useful 
in the prediction, but to remove a specific ramp, we would simply 
remove the column corresponding to that voltage and current from the 
input dataset and retrain the DNN. The AI model itself is flexible to 
removing voltages, but it is not time efficient to add new voltages to the 

Fig. 5. The developed DNN can rapidly characterize in situ tissue properties in a clinical setting to obtain patient-specific tissue properties. A) Calculated 
impedance and B) predicted dynamic conductivity curves for the 5 canine lung tumors. C) Simulated current using the AI predicted tissue parameters versus the 
measured current. D) The relative and E) percent error between the simulated current using the AI predicted tissue parameters and the measured current. 
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dataset itself. Therefore, it may be beneficial to create a larger dataset 
with extra ramps (50V–3000V, step size 50V), so that dataset can be 
easily trimmed for a specific application. While temperature was not 
explicitly defined within our model, temperature-dependent conduc-
tivity changes are intrinsic to the tissue and will be reflected in the 
current read during the voltage ramp. Further, electroporation is a 
temperature-dependent process, and increases in temperature are shown 
to decreases the electroporation threshold (Aycock, 2022a; Fesmire 
et al., 2020). Therefore, to predict the dynamic conductivity at a specific 
temperature, the voltage ramp needs to be performed at that tempera-
ture. When characterizing tissue in situ, the voltage ramp and treatment 
are both performed at the same temperature. 

While our DNN was trained using a dataset created with bipolar 
probe simulations, it can be trained on any number of datasets repli-
cating any arbitrary geometry. DNNs trained using new geometries 
would need to be validated similarly to the one presented here. De-
cisions about what electrode geometry, voltages, and IRE waveform to 
use would need to be made before its use in the clinic, but, after the DNN 
is trained, it can be used repeatedly for that specific set up. 

Electroporation treatments require accurate estimation of tissue 
properties for effective modeling and treatment planning. We saw that 
the DNN predicted unique electrical tissue values for each canine lung 
tumor. Since each tumor is electrically distinct from another, this should 
allow for personalization of each canine treatment versus using pre-
defined properties found ex vivo or in other systems (Beitel-White, 2021; 
Brock et al., 2020; Hendricks-Wenger, 2021). Further, there are not 

already available electroporation tissue properties for most tumors. 
Since this model is easy to implement, we expect it to assist with char-
acterizing the electroporation-dependent tissue properties of various 
tumors and tissues. However, in situ tissue properties should still be 
gathered prior to treatment, due to tumor heterogeneity. We saw large 
variations in measured current across all 5 canine patients (Fig. 5A), 
even though we applied the same electric potentials with the same probe 
geometry. Canine computed topography (CT) scans indicated that 
canine patient 4 had increased areas of hypoattenuation compared to 
the other patients (Supplemental Fig. S2). These areas can indicate 
necrotic tissue or fluid within the tumors, which can have higher con-
ductivities than normal tissue (0.688–1.41 S/m) (IT’IS Database). Pre-
vious groups have tried to relate impedance changes with 
electroporation outcomes (Dunki-Jacobs et al., 2014), but the nonlinear 
nature of the electric field distribution makes it difficult to quantify the 
electric tissue properties. VRs can give detailed in situ information about 
a patient’s tumor which opens avenues for correlating to patient out-
comes and clustering groups for immunological or histopathological 
analysis. 

Though VRs allow for more personalization, the method to extract 
tissue properties using finite element modeling is time consuming, 
greatly limiting its clinical application. We overcome this limitation 
with our time-efficient AI model, and we believe our model can be 
incorporated prior to treatment to quickly ascertain tissue properties 
needed in other electroporation treatment models. Of course, advances 
in treatment planning software will be necessary to realize this goal, but 

Fig. 6. 2D-axisymmetric FEM models of the electric field distribution, temperature distribution, and thermal damage volume highlight the clinical need 
for rapid patient-specific property predictions. Each tumor is electrically unique, which leads to varying electric field, temperature, and thermal distributions. 
(thermal damage: Ω > 0.53). 
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significant progress has been made in recent years to rapidly predict the 
electric field and temperature distribution resulting from the applied 
treatment (Perera-Bel et al., 2020, 2022; Marino et al., 2021; Campelo 
et al., 2022; Jacobs et al., 2023a). 

5. Conclusion 

Here, we developed an accurate and robust deep neural network to 
rapidly and accurately predict electroporation-dependent electrical tis-
sue properties. Through feature contribution calculations, we found 
each chosen voltage within the voltage ramp was important in the 
electrical tissue property prediction. There was minimal test error (R2 >

0.94; p < 0.0001) in three important tissue properties (bulk conduc-
tivity, electroporation threshold, and conductivity change due to elec-
troporation), with a uniform error in the slope fitting parameter. Our 
model was able to correctly predict the dynamic conductivity curve in a 
previously characterized ex vivo porcine liver model (R2 > 0.93; p <

0.0001) within 100 s from probe insertion, showing great utility for a 
clinical application. Lastly, we characterized the first reported electrical 
tissue properties of lung tumors from five canine patients 
(R2 > 0.99; p< 0.0001). We believe this platform can be incorporated 
prior to treatment to quickly ascertain electroporation-dependent elec-
trical tissue properties critical for treatment planning models or real- 
time treatment prediction algorithms. Further, this method can be 
used over traditional ex vivo methods for in situ or patient-specific tissue 
characterization with clinically relevant geometries. 
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Serša, G., Stabuc, B., Miklavcic, D., Rudolf, Z., 2000. Electrochemotherapy with cisplatin: 
clinical experience in malignant melanoma patients. Clin. Cancer Res. 6, 863–867 
[Online]. Available: http://aacrjournals.org/clincancerres/article-pdf/6/3/863/20 
76012/df030000863.pdf. 

Stillström, D., Beermann, M., Engstrand, J., Freedman, J., Nilsson, H., 2019. Initial 
experience with irreversible electroporation of liver tumours. Jan. Eur. J. Radiol. 
Open 6, 62–67. https://doi.org/10.1016/J.EJRO.2019.01.004. 
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