
Computers in Biology and Medicine 161 (2023) 107019

Available online 16 May 2023
0010-4825/© 2023 Published by Elsevier Ltd.

Spatiotemporal estimations of temperature rise during electroporation 
treatments using a deep neural network 

Edward J. Jacobs IV a,*, Sabrina N. Campelo a, Kenneth N. Aycock a, Danfeng Yao b, 
Rafael V. Davalos a 

a Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA, USA 
b Department of Computer Science, Virginia Tech, Blacksburg, VA, USA   

A R T I C L E  I N F O   

Keywords: 
Electroporation 
Thermal heating 
Artificial intelligence 
Pulsed electric field 
Tissue ablations 

A B S T R A C T   

The nonthermal mechanism for irreversible electroporation has been paramount for treating tumors and cardiac 
tissue in anatomically sensitive areas, where there is concern about damage to nearby bowels, ducts, blood 
vessels, or nerves. However, Joule heating still occurs as a secondary effect of applying current through a 
resistive tissue and must be minimized to maintain the benefits of electroporation at high voltages. Numerous 
thermal mitigation protocols have been proposed to minimize temperature rise, but intraoperative temperature 
monitoring is still needed. We show that an accurate and robust temperature prediction AI model can be 
developed using estimated tissue properties (bulk and dynamic conductivity), known geometric properties 
(probe spacing), and easily measurable treatment parameters (applied voltage, current, and pulse number). We 
develop the 2-layer neural network on realistic 2D finite element model simulations with conditions encom-
passing most electroporation applications. Calculating feature contributions, we found that temperature pre-
diction is mostly dependent on current and pulse number and show that the model remains accurate when 
incorrect tissue properties are intentionally used as input parameters. Lastly, we show that the model can predict 
temperature rise within ex vivo perfused porcine livers, with error <0.5 ◦C. This model, using easily acquired 
parameters, is shown to predict temperature rise in over 1000 unique test conditions with <1 ◦C error and no 
observable outliers. We believe the use of simple, readily available input parameters would allow this model to 
be incorporated in many already available electroporation systems for real-time temperature estimations.   

1. Introduction 

Irreversible electroporation (IRE) is a nonthermal focal ablation 
modality that employs high-magnitude (1–3 kV), short (70–100 μs) 
electric pulses applied directly into tissue [1]. The resulting electric field 
generates a transmembrane potential (TMP) on cells to overcome the 
forces holding the phospholipid bilayer together and achieve a dielectric 
breakdown of the membrane. Electroporation theory and experiments 
show that nanoscale pores form when induced TMP values exceed a 
critical threshold (~0.2–1 V) [2] [-] [6], allowing for the flow of current 
across the membrane. The transitory formation of pores is called 
reversible electroporation and has been used to successfully deliver 
chemotherapeutics [7] [-] [9], genes [10,11], and substances that would 
otherwise be impermeable into the cell. With the application of larger 
and longer potentials, cells are unable to maintain homeostasis and die 
through necrosis or apoptosis. This is termed irreversible 

electroporation (IRE) and is used to generate clinically relevant abla-
tions without the need for chemotherapeutics and without significant 
thermal heating [12–14]. IRE is being used clinically to treat tumors 
situated near sensitive structures, where surgical resection and thermal 
ablation methods are contraindicated; this includes locally advanced 
and unresectable liver [15–17], kidney [18], prostate [19,20], and 
pancreatic [21] malignancies. Furthermore, IRE is being investigated as 
an alternative cardiac ablation modality in the treatment of atrial and 
ventricular fibrillation [22]. 

IRE has the advantage of ablations formation being independent of 
thermal effects, which is paramount for treating tumors in anatomically 
sensitive areas where there is concern about damage to nearby bowels 
[23], ducts [24], blood vessels [25], or nerves [26]. Further, IRE does 
not suffer from the heat sink effect seen in other ablation modalities, 
which may allow bulk tumor around blood vessels to survive treatment. 
However, Joule heating still occurs as a secondary effect of applying a 
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current through a resistive tissue and must be minimized to maintain 
these benefits, especially at high voltages. The administration and pro-
tocol for IRE treatments can generate varying degrees of thermal dam-
age, which correlate to reported complications [27,28]. A recent 
systematic review estimated that 30% of the IRE-treatment region ex-
periences mild-hyperthermic temperatures (40–50 ◦C) with ~5% being 
exposed to temperatures >50 ◦C [29]. Thermal heating is the main 
limiting factor in achieving larger ablations clinically; however, ablation 
size and temperature rise are both multifaceted and influenced by 
applied energy (voltage, pulses, pulse width), the rate the energy is 
applied (repetition rate), and tissue properties, which vary between 
patients and may be unknown for tumors. Further, existing clinical 
electroporation protocols do not actively consider thermal heating 
during IRE procedures, and generating larger ablation volumes is often 
at the expense of increased thermal damage [30]. 

Numerous thermal mitigation (TM) protocols have been proposed to 
minimize temperature rise. Innovative probe designs that incorporate 
heat-dissipating technologies such as phase-change materials or active 
cooling and pulse paradigm adjustments (that facilitate tissue perfusion 
to disperse heat between subsequent pulses) have been shown to reduce 
thermal damage [31–33]. The benefits of these techniques, however, 
must be evaluated against the added time, money, and effort needed to 
modify probes [34,35]. These methods only remove heat at the electrode 
surface and do not eliminate thermal effects altogether. Computer 
modeling is often used to prospectively and retrospectively simulate 
temperature rises during treatment, but without the addition of invasive 
sensing devices, real-time temperature monitoring is limited. Further, 
finite element modeling requires a priori knowledge about the system 
that may vary significantly from reality; the resulting current from an 
applied potential may be different during treatment than is simulated, 
making the prospective simulations imprecise. A recent study integrated 
Fourier Analysis SpecTroscopy (FAST), an approach for obtaining bio-
impedance measurements during electroporation-based therapies, to 
predict temperature increases from the application of an electric field in 
agar phantoms [36,37]. However, FAST technologies are not commonly 
integrated in pulsing generators, making it difficult to extract diagnostic 
bioimpedance measurements in real time. Therefore, without real-time 
temperature monitoring during electroporation treatments, there is 
risk of undesired thermal damage since the amount of excessive thermal 
heating can significantly differ from developed models. 

Here, we propose a 2-layer neural network (NN) to accurately 
monitor spatiotemporal temperature rise during pulsed electric field 
treatments, utilizing estimated tissue properties (bulk and dynamic 
conductivity), known geometric properties (probe spacing and expo-
sure), and measurable treatment parameters (applied voltage, current, 
and pulse number). We train the NN on realistic COMSOL™ Multi-
physics simulations with conditions encompassing most clinically rele-
vant electroporation applications and show that it converges to an 
accurate solution (<1 ◦C) in the training, validation, and test datasets. 
Using feature contribution analysis, we found that temperature predic-
tion is mostly dependent on current and pulse number and show that the 
model still predicts accurately even when incorrectly estimated tissue 
properties are intentionally used as input parameters. Lastly, we show 
that the model can accurately predict temperature rise within ex vivo 
perfused porcine livers, with error <0.5 ◦C between the predicted 
temperature and the recorded temperature. This model, using easily 
acquired parameters, is shown to predict accurate temperature rise in 
over 1000 conditions with no observable outliers and can be extrapo-
lated to conditions it has not seen through pattern recognition. The use 
of NNs can overcome the limitations of finite element models, since they 
can predict the temperature rise as current is being read during treat-
ment. Further, the use of simple and readily available input parameters 
would allow this model to be easily incorporated in many already 
available electroporation systems. 

2. Materials and methods 

2.1. Creating a finite element model (FEM) for temperature and current 
simulations 

The goal of the finite element model (FEM) was to generate the 
dataset for supervised learning of a deep NN. The two values obtained 
from the FEM were the (1) applied current and (2) temperature rise 
within the domain over 200 pulses (Fig. 1A). Parameters that are known 
prior to treatment are electrode exposure, electrode spacing, voltage, 
and tissue property estimations; the applied current and temperature 
rise are unknown (Fig. 1B). We swept through 960 unique tissue, volt-
ages, and geometric conditions, then calculated the resulting applied 
current and temperature distribution at every pulse number (Fig. 1C). 
The simulated current, pulse number, voltage, tissue parameters, and 
geometric conditions were used as the input for a 2-layer NN and trained 
using supervised learning against the simulated temperature. The output 
of the neural network is predicted spatiotemporal temperature rise at 20 
locations between and around the electrodes (Fig. 1D). 

To generate the dataset which the AI model is trained on, a two- 
dimensional FEM was employed in COMSOL™ Multiphysics 6.0 
(COMSOL, Stockholm, Sweden) to simulate realistic tissue heating 
during electroporation treatments. 

The tissue was modeled as an ellipse of dimensions 10 cm × 5 cm, 
with an out of plane thickness of 1 m. Two stainless steel electrodes were 
modeled as circles with radius, re. Both the center-to-center distance, D, 
and applied electric potential, Φ, between the electrodes were varied to 
develop 960 unique simulations to train the AI on. The electric potential 
at the end of an IRE pulse was calculated with a modified Laplace 
equation under the electro-quasistatic approximation: 
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where the electrical conductivity, σ, is a function of both temperature, T, 
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contact with the tissue was set to Φ = V and Φ = 0, for the source and 
sink, respectively. The outer boundary of the tissue was treated as 
electrically insulated. The resulting electric field was calculated as: 

E→= − ∇Φ (2) 

Prior studies have shown that the tissue conductivity is a function of 
the applied electric field magnitude. As the tissue transitions from an 
non-electroporated state to a fully electroporated state, the tissue con-
ductivity tends to increase and plateau [38]. This dynamic conductivity 
is solved in the steady state solution and can be modeled as: 
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where σo is the baseline tissue conductivity and M is the increase in 
conductivity due to electroporation. Both of these values were varied 

within the COMSOL model. 
⃒
⃒
⃒ E→

⃒
⃒
⃒ is the magnitude of the electric field, A 

= 580 V/cm, B = 120 V/cm, and D = 10 are empirically determined 
sigmoidal function parameters; further, we chose to only vary σo and M, 
because they have the most impact on heating and resulting current 
[27]. 

Tissue temperature was computed using the Pennes’ bioheat equa-
tion with the addition of Joule heating from the applied electric field (eq 
(4), middle term): 

cp,tρt
∂T
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•
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τ + cp,bρbωt(T0 − T) (4)  

where cp,t is the tissue specific heat, ρt is the tissue density, kt is the tissue 
thermal conductivity, and σt is the tissue electrical conductivity. pw is 
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the pulse width for the IRE pulse and τ is the period of the pulse. For this 
study we chose to model a pulse width of 100 μs and a period of 1 s, 
because that is what is commonly used for cancer ablation applications. 
The ratio of the two is the duty cycle, which is proportional to the heat 
generated within the tissue. Temperature is also removed from the tissue 
through blood perfusion, where cp,b is the specific heat of blood, ρb is the 
density of blood, ωt is the tissue perfusion rate, and T0 is the temperature 
of perfused blood, 37 ◦C [39]. The values used within the FEM models 
and their references are given in Table 1. 

The conductivity of tissue also changes with temperature. To accu-
rately predict the electric field within the tissue, we update the solution 
for the steady state conductivity: 

σt(T)= σ • (1+ α • (T − T0)) (5)  

where α is the thermal coefficient of conductivity; as the temperature 
increases, the conductivity will also increase [40,41]. The 2D COMSOL 
model was run using an extra fine mesh size (the highest mesh) with 10, 
702 domain elements and 216 boundary elements. The default solver 
configurations in COMSOL were used for the stationary and 
time-dependent solver. Three edits were made to the stationary solver: 
(1) The relative tolerance was changed from 0.001 to 0.0001, (2) solving 
method was switched from automatic to automatic highly nonlinear, 
and (3) the maximum number of iterations was increased from 25 to 
250. In the time-dependent solver, the time stepping was switched from 
free to intermediate. All these changes were done to increase the accu-
racy and reproducibility of the COMSOL model. 

A 2D model was chosen over a 3D model to minimize the 

computational burden needed to create the dataset. We verified that the 
two values calculated from the FEM, current and temperature distribu-
tion, were not significantly different between 2D and 3D. We recon-
structed a representative model of the liver using 3D Slicer v5.2 and 

Fig. 1. Creating the Model. A) i. COMSOL™ Multiphysics 6.0 was used to simulate temperature rise during IRE treatments within a 2D tissue domain. ii. Tem-
perature was sampled at 20 different points (x) between and outside of the two electrodes (E1 & E2). iii. Representative image of the temperature distribution within 
the simulation. B) The information known during electroporation treatments are the probe geometry, the pulsing parameters, and the estimated tissue properties. The 
current and pulse number are measurable parameters during treatment. Temperature distributions are unknown. C) A parametric sweep for multiple conditions of 
voltage, probe spacing, bulk tissue conductivity, and increase in tissue conductivity due to the electric field were simulated to generate 960 unique models. Current 
measurements were then calculated each pulse (p), and temperature values were measured every position (x) for each pulse. D) The temperature prediction model is 
a 2-layer fully-connected perceptron. Both hidden layers have a Rectified Linear Unit (ReLU) activation function, and the output layer has a linear activation function. 
The input layer has 6 nodes for each feature, both hidden layers have 128 nodes, and the output layer has 20 nodes for each temperature position (x). The loss 
function was defined as mean-squared error (MSE) and trained with ADAM to calculate the entropy between the 20 predicted temperature points and the 20 
simulated COMSOL temperatures. 

Table 1 
Parameters for the COMSOL™ multiphysics model.  

Parameters Symbol Value(s) Reference 

Bulk Tissue Conductivity σo [S•m− 1] 0.1, 0.2, 0.3, 
0.4, 0.5 

Varied 

Increase in Electroporated 
Tissue Conductivity 

M [S•m− 1] 0.1, 0.2, 0.3, 0.4 Varied 

Tissue Density ρt [kg•m− 3] 1050 [15] 
Tissue Heat Capacity cp,t [J•kg− 1 

K− 1] 
3886 [15] 

Tissue Thermal Conductivity kt [W•m− 1 K− 1] 0.50 [15] 
Temperature-Dependent 

Conductivity Change 
α [%•K− 1] 0.015 [16] 

Electrode Radius re [mm] 0.5 Measured 
Applied Voltage V [V] 1500-3000; 

100V interval 
Varied 

Pulse Width pw [μs] 100 Set Here 
Pulse Period τ [s] 1 Set Here 
Initial Temperature To [◦C] 37 Measured 
Center-to-center Probe 

Spacing 
D [cm] 1.5, 2, 2.5 Varied 

Tissue Blood Perfusion ωt [s− 1] 1.7 E− 3 [42] 
Blood Density ρb [kg•m− 3] 1050 [42] 
Blood Specific Heat cp,b 

[J•kg− 1•K− 1] 
3617 [42]  
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imported the 3D model into COMSOL (Fig. 2A). We found that the 
temperature distributions were not significantly different between the 
2D and 3D models (Fig. 2B). We measured the temperature at the 20 
locations used for the NN and found that the temperature was the same 
between the 2D and 3D model, with an R2 value of 0.9936 (Fig. 2C). 
Further, we measured the applied current for 3 electrode exposures (1.5, 
2, and 3 cm) at all the applied voltages (1500–3000 V; 100 V interval) 
used for the 2D model (Fig. 2D). The applied current in the 3D model is 
simply the applied current in the 2D model, scaled by the electrode 
exposure (Fig. 2E&F). This allows us to scale measured currents by the 
electrode exposure for use within the NN, without having to explicitly 
define electrode exposure in the FEM parameters or NN inputs. 

2.2. Creating an input and output dataset for a multi-layer perceptron 

We varied the geometric (center-to-center probe spacing, D), tissue 
parameters (bulk conductivity, σo, and increase in electroporated tissue 
conductivity, M), and treatment parameters (applied voltage, V) as 
specified in Table 1. These values were used as the input parameters for 
the finite element model (Fig. 1C). The time-dependent solution simu-
lated a treatment from pulse 1 to 200. The current was calculated by 
integrating the current density across the perimeter of the source elec-
trode, then multiplying by the probe exposure, which was assumed to be 

2 cm. We chose to measure the temperature at 5 locations between and 
15 locations outside the electrodes as shown in Fig. 1A. The temperature 
distribution is symmetric, where position 0 is at the midpoint between 
the two probes. Position 5 is located at the probe center and is not 
recorded for this reason. The physical locations of the 20 temperature 
points are different for each probe spacing. Therefore, we normalized 
the real locations for temperature reading in COMSOL by the known 
center-to-center probe spacing with: 

position= 10 ∗
location

probe spacing
(6)  

to get 20 nondimensional positions. The inverse of this equation can 
translate AI-predicted temperatures at the dimensionless positions to 
real locations. The physical locations are labeled 1–20. After normal-
izing, the positions are given by 0–20, skipping 5 at the electrode 
location. Normalized positions are used for all the analyses. 

Each specific condition and pulse number is treated as its own iso-
lated data point and is unique from any other row in the dataset. The 
current derived at that pulse number for that specific condition was 
added to the input for that condition to create the input dataset. The 
simulated temperature at all 20 locations was matched to the corre-
sponding row in the input dataset to the create the output dataset. These 
two datasets constitute the whole dataset. 5% of this was set aside as the 

Fig. 2. Comparison between 3D reconstructed liver and 2D simplification. A) (i.) A human liver scan was reconstructed using 3D Slicer and imported into 
COMSOL with an inserted 2-needle probe geometry (1.5-cm spacing) matching geometry used with the 2D models. (ii.) Transparent side view and (iii.) top-down 
view shows the needle insertion within the liver. A cut plane was defined through the center of the electrode exposure. (iv.) Temperature distribution plotted on the 
2D cut plane. B) Zoomed in temperature distributions for the (i.) 3D reconstructed liver and (ii.) the simplified 2D ellipsoid show minimal variation in heating at 
pulse 100. C) Linear regression of the spatial temperature locations between the 3D reconstructed liver and the 2D approximation. D) COMSOL simulated currents for 
the 2D model (right axis) and three 3D models with different electrode exposures (left axis). Both models have the same tissue properties. E) Normalizing the 3D 
model currents by dividing by the exposure length (0.015, 0.02, and 0.025 m) F) Scaling factor for each electrode exposure is simply the electrode exposure. The 
current for each 3D model was divided by the current from the 2D model at each applied voltage. 
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test dataset and not used for training. We chose 5% since that corre-
sponds to ~2000 test datapoints. We calculated a minimum 345 samples 
needed using the 95% confidence interval on our results. This constitute 
~6x the required size; however, less than 5% of the total dataset was not 
used to reduce sampling bias. The validation dataset was defined during 
training using 10-fold cross validation and shuffled each training epoch. 

2.3. Creating and training a two-layer perceptron for spatial temperature 
prediction 

A deep neural network (NN) with two hidden layers was defined and 
trained within Google Colab (Alphabet) using the Keras python interface 
for the TensorFlow library (Fig. 1D). The first hidden layer was defined 
as a dense layer with 128 neurons and 6 inputs for each feature in the 
input dataset. The second layer was also defined with 128 neurons. Both 
hidden layers were defined to have the rectified linear activation func-
tion (ReLu). The output layer was defined as a dense layer with 20 
neurons and a linear activation function. The MLP was trained using the 
mean-squared error loss function and Adam optimizer over 50 epochs. A 
validation split was set at 10% and shuffled every epoch. Mean absolute 
error was set as a metric to be calculated for each epoch during training. 
The model was finalized to have 19,988 total trainable parameters. 

2.4. Ex vivo machine perfused porcine liver 

Clinically representative two-needle IRE treatments were performed 
in a validated perfused organ model [43] as previously described to 
generate experimental temperature and current data [31,33]. Briefly, 
porcine livers were excised at a local abattoir within 15 min of eutha-
nasia, fitted with Luer-lock connectors, and immediately flushed at 
constant pressure (~90 mmHg) with 4 L of modified phosphate buffered 
saline. Livers were transported via static cold storage for ~90 min prior 
to being briefly flushed and anastomosed to a machine perfused organ 
preservation system. Perfusate temperature was set to and maintained at 
30 ◦C throughout the experiment. 

IRE treatment consisted of a total of 90 pulses (1600 V) with 90 μs 
duration, delivered at a rate of 1.5 Hz with a custom generator (VoltMed 
Inc., Blacksburg, VA). After each set of 10 pulses, a 3.5 s delay was 
observed to simulate the pulse delivery strategy of the NanoKnife® 
system (the delay is used to recharge capacitors). NanoKnife® (Angio-
Dynamics, Inc., Latham, NY) electrodes (Ø = 1 mm) with 1.5-cm 
exposure were used for the experiments, and a custom holder was 
used to maintain 1 cm parallel spacing. Treatment voltage and current 
were monitored with a high-voltage probe (Enhancer 3000, Harvard 
Bioscience, Holliston, MA) and passive current probe (Pearson Elec-
tronics, Palo Alto, CA), respectively, each of which were connected to an 
oscilloscope (3024z, Teledyne LeCroy, Chestnut Ridge, NY). The oscil-
loscope was triggered on the rising edge of each IRE pulse, and the 
corresponding voltage and current waveforms were saved to individual 
files with ~10 ns resolution. For comparison to the MLP, voltage and 
current data were extracted by averaging the recorded values during the 
last 10 μs of each individual pulse. 

To record intraoperative temperature, two fiber optic temperature 
(FOT) sensors (Advanced Energy, Santa Clara, CA) were placed within 
the treatment zone. One FOT was affixed to the needle electrode surface 
at the midpoint of the exposure, while the other was inserted into the 
center of the tissue between the two electrodes. After calibration of the 
FOT probes, temperature was recorded at both sites at a rate of 2 Hz. 

2.5. Statistical analysis 

All data analysis and statistics were performed in Prism 9.0 
(GraphPad) with an α = 0.05. 

3. Results 

3.1. The model training and validation error converges to <1 ◦C error 

The deep neural network (NN) was trained for 50 epochs using the 
ADAM optimizer to minimize the mean-squared error (MSE) loss func-
tion. The model error quickly converged within 10 epochs and plateaued 
before the end of training at 50 epochs. The validation dataset and 
training dataset did not diverge, suggesting the model was not overfit 
(Fig. 3A). MSE values do not offer insight to how accurate the model is, 
so a metric of mean absolute error (MAE) was calculated after each 
epoch. The MAE on the output of this model is the mean of the absolute 
differences between AI predicted temperature and COMSOL simulated 
temperature. The MAE for predictions from the training and validation 
dataset were 0.91 ◦C and 0.94 ◦C, respectively (Fig. 3B). The 5% test 
data was run through the trained model and had a MAE of 0.89 ◦C. This 
suggests the model can translate the relationship found between the 
input and output data within the training set to input data it has never 
seen. 

To demonstrate that we can accurately predict the temperature dis-
tributions with a two-probe set up and that the solutions converged 
during training, we randomly initialized the AI model, trained it, and 
predicted the temperature distribution using the input conditions five 
times. We plot the change in temperature for all 20 positions using two 
randomly chosen conditions within the test dataset (Fig. 3C). The two 
conditions are summarized in Table 2. Since one of our input parameters 
is center-to-center probe separation and the MLP requires a constant 
number of outputs (20), we normalized the 20 real temperature loca-
tions by the probe separation to give 20 normalized positions (see 
methods), which can also be translated back into real locations. Fig. 3C 
shows that the model converges to an accurate solution every time it is 
trained, with a small standard deviation for the temperature prediction. 
Subsequently, there is not a significant difference between the AI pre-
dicted temperature rise and the COMSOL simulated temperature rise. 
The R-squared values for the linear regression between the AI predicted 
temperature rise and COMSOL simulated temperature rise are 0.95 and 
0.997 for conditions 1 and 2, respectively. 

3.2. The trained model can accurately predict temperature distributions 
on the test data 

The results for the test dataset error between the AI predicted tem-
perature rise and the COMSOL simulated temperature rise are given in 
Fig. 4. The test dataset is 5% of the total dataset that was set aside prior 
to training and consists of 1968 unique conditions. None of the condi-
tions within the test dataset were present in the training set, so the AI has 
never seen these unique parameters. From the linear regression through 
the AI simulated temperature versus the COMSOL simulated tempera-
ture (Fig. 4A), we show that the predictions and simulations are strongly 
correlated. Further, there are no noticeable outliers from the regression. 
Every regression is strongly correlated with R-squared values above 0.9 
at each position. Positions 0–10 had the highest R-squared values above 
0.99, and subsequently were the positions with the greatest temperature 
rise due to their proximity to the electrodes. This also explains why these 
locations had the most relative error (Fig. 4B) and absolute error 
(Fig. 4C). From position 10 to position 20, there is a sharp decrease in 
overall temperature rise with a corresponding decrease in R-squared 
values. Both the average error and average absolute error were under 
2 ◦C for every position, with the most error being between positions 
0 and 7. Further, the 95% confidence interval for the error encompassed 
0 for every temperature position (Fig. 4B), suggesting there is not a 
significant difference between the AI predicted temperature and the 
COMSOL predicted temperature. 

E.J. Jacobs IV et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 161 (2023) 107019

6

3.3. Current measurements have the most influence on temperature 
distribution 

To understand which input parameters have the most influence on 
the change in temperature, we performed feature contribution analysis 
with the SHapley Additive exPlanations (SHAP) library within Python. 
SHAP functions through cooperative game theory to find the importance 
of an input feature on the output metric [44–46]. SHAP values were 
calculated for each input parameter to the MLP (Fig. 5A). Current had 
the most influence on the output of the model, followed by pulse number 
and bulk conductivity. The change in conductivity due to electropora-
tion had the lowest influence on the temperature output. The SHAP 
values for the neural network suggest that the tissue properties do not 
have a substantial contribution in predicting the rise in temperature. 

Therefore, we wanted to know if measurable quantities (i.e, current) 
could compensate for incorrect estimates of tissue properties (i.e., con-
ductivity). COMSOL models were run with three real parameters 
(Fig. 5B–E), and the current and spatial temperature values were found 
at pulse 100. This constitutes the real simulated physics of the tissue. 
The inputs to the trained AI, however, were edited, so that the tissue 
property inputs were incorrect, but the correct physical parameters 
(voltage, probe spacing, pulse number, and current) were used. The 
tissue properties (bulk conductivity or final conductivity) were either 
overestimated, underestimated, or correctly estimated. We show that 
despite having appreciably different estimations of both tissue proper-
ties, the predicted AI temperature was not significantly different from 
the COMSOL simulated temperatures (Fig. 5C&E). 

3.4. The trained neural network can accurately predict temperature rise in 
an ex vivo organ model 

To validate that our model can accurately predict temperature rise 
within real tissue, we used a perfused ex vivo porcine liver. Two probes 
with a 1.5 cm exposure were positioned 1 cm apart (a probe spacing the 
neural network was not explicitly trained on). A potential of 1600 V was 

applied in a train of 90 pulses at 1.5 Hz with 3.5 s delays after every 10 
pulses. Applied voltage and current were monitored and recorded over 
the 90 pulses. Further, we recorded the temperature at two key points 
using a fiber optic temperature probe: the center between the two 
electrodes and at the electrode surface. The AI was trained with data 
from 2D COMSOL simulations, where the probe exposure is not explic-
itly defined. In training the AI, we multiplied the derived current by a 
scaling factor of 0.02 to represent a 2 cm exposure. We calculated scaling 
factors for different exposures (Fig. 2D) and see that we can multiply by 
the exposure length to scale the current from 2D to 3D. Subsequently, 
since the current is linearly dependent on the exposure, we multiplied 
the recorded currents by 0.75 to translate the current recorded with a 2 
cm exposure to a 1.5 cm exposure to get the input to the model. The 
estimated tissue properties for the liver were 0.12 S/m for bulk con-
ductivity and 0.3 S/m for the conductivity change due to electroporation 
effects, based on previous findings [31]. 

We see the neural network can accurately predict the real tempera-
ture rise in both 3D perfused livers (Fig. 6A and B). A linear regression of 
the AI predicted change in temperature versus the real recorded change 
in temperature shows a good fit with R-squared values above 0.98 for 
both livers and both temperature locations (Fig. 6C and D). The slope for 
the temperatures recorded at the probe were 1.04 and 1.03 showing that 
the AI did not over or under predict the temperatures. However, the 
slopes of the linear regressions for the temperatures at the center point 
were 0.82 and 0.88 for liver 1 and liver 2, respectively. This suggests 
that the AI slightly underpredicted the real temperature. Fig. 6E shows 
the error between the predicted change in temperature and the real 
change in temperature. We see for liver 1, the AI underpredicts the 
temperature rises by < 0.5 ◦C at both recorded positions. The 95% 
confidence interval for the error is given for each condition, and each 
confidence interval encompasses 0. This suggests that there is not a 
statistically significant error between the AI predicted temperature rise 
and the real recorded temperature rise. Further, the average of the ab-
solute difference between the predicted and real temperatures are 
<0.6 ◦C for both positions in both livers (Fig. 6F). 

4. Discussion 

In this study, we have shown that an accurate and robust tempera-
ture prediction model can be developed using easily obtainable and 
available information: estimated tissue properties (bulk and dynamic 
conductivity), known geometric properties (probe spacing and 

Fig. 3. Training Results. A) The training and valida-
tion error over 50 epochs show convergence of the 
loss function. B) The mean absolute error was calcu-
lated as a metric at the end of each epoch for the 
training and validation dataset. C) AI predicted and 
COMSOL simulated temperatures from 2 randomly 
selected conditions in the test data set. The AI was 
cleared, randomly initialized, and trained 5 times; 
each data point is the mean and std. of the predictions 
across the different trainings. Linear regressions for 
the COMSOL simulated increase in temperature 
versus the AI predicted increase in temperature show 
a good prediction of the AI on data it has not been 
explicitly trained on.   

Table 2 
Random conditions used for comparison.  

Condition D [cm] V [V] σ0 [S/m] M [S/m] Pulse [n] Current 

1 2 2100 0.5 0.3 145 24.566 
2 2.5 2500 0.4 0.2 10 27.815  
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exposure), and easily measurable treatment parameters (applied 
voltage, current, and pulse number). We show that the predictions 
converge to an accurate solution (<1 ◦C) in the training, validation, and 
test datasets, and further demonstrate that the trained model can 
accurately predict temperature rise at two locations in two ex vivo 
perfused porcine livers treated with IRE. 

To minimize the time to run the COMSOL simulations, we chose to 
train the AI on data derived from a 2-dimensional COMSOL model. 
However, we show that the AI can still accurately predict the temper-
ature rise in an ex vivo perfused organ model, with <0.5 ◦C error for 
both livers at both positions. While a 3D model would allow for the 
addition of electrode exposure as an input, we have verified that by 
scaling the current by the electrode exposure, we still achieve accurate 

current outputs comparable to those reported in 3D simulations. 
In this model we chose to predict temperature at 20 locations such 

that there would be five locations between the electrodes, five in the 
transition region outside the electrodes, and ten tapering off to minimal 
temperature rise. Both the number and spacing of these locations can be 
changed when generating new datasets in COMSOL. Fig. 4 shows that 
both the error and temperature are near to zero by position 20, with 
mean simulated temperature rise <0.05 ◦C. This encompasses any points 
of interest for investigating temperature rise. Further, we chose not to 
normalize the temperature outputs during training, so the positions with 
the most temperature rise would also have the most error. Thus, the 
training optimization was forced to focus on these points. This is seen 
with the higher temperature positions having larger R-squared values 

Fig. 4. Error between the AI predicted temperatures and the COMSOL simulated temperatures in the test data set. A) COMSOL simulated temperatures versus AI 
simulated temperature. Each subplot consists of 1968 conditions for that respective point from the test set. For positions 11–20, the axes were scaled because of the 
significant decrease in overall temperature rise away from the electrodes. B) Calculated error for each position is presented as a box plot with the 50% (box) and 99% 
(whisker) data ranges. C) Absolute error for each position is given as mean ± std. 
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than the lower temperature positions. Fig. 5 also shows that the SHAP 
values were largest for positions 0–10, because they were the outputs 
that contributed the most towards the model error. 

By using SHAP for feature selection, we saw that current reading and 
pulse number were the two most important parameters for this model. 
Computational models for temperature rise are deterministic and use 
estimated tissue properties, pulsing parameters, and probe geometries to 
simulate temperature rise. Subsequently, current is calculated as an 
output of these simulations, but during actual treatment, the simulated 
current and actual current recorded are often significantly different. This 
discrepancy can occur through incorrect tissue estimations, which 
means that the prospective temperature estimations are also incorrect. 
Further, if the treatment differs from the one simulated (through cardiac 
sync or stops), the simulation of temperature rise is no longer useful. 

The NN developed in this work suggests that the measured current 
during treatment is a more powerful predictor for temperature rise than 
all the other parameters chosen. Conveniently, applied current can be 
measured in real time, and the only parameters that may not be known 
with a degree of certainty are tissue properties. Since this model can 
accurately predict temperature rise with known parameters as inputs, 
even with incorrect tissue properties, we reduce the need for accurate 
tissue properties. Current is largely dependent on the electrical tissue 
properties, which allows for the the recorded parameters that we know 
with certainty to compensate for the estimated ones. Small errors in 
chosen tissue conductivity (±0.01–0.03 S/m) are within the standard 

deviation of characterized tissue properties [40,42] and can cause sig-
nificant changes in both temperature distributions and applied current 
(Supplement S1). This effect is exaggerated further for the tumor 
treatments, where estimated parameters differ even more from truth. 
The ability of our NN to predict temperature accurately, even with 
incorrect a priori knowledge about the tissue, is important as a 
non-invasive monitoring method. 

Some clinicians use current as an endpoint for treatment, but in 
many cases current does not change significantly after the first few 
pulses. Likewise, in liver 2, we saw the current did not increase between 
pulse 10 and pulse 90 (Fig. 6B). If we only used current or a change in 
current for temperature rise predictions without including pulse num-
ber, then the predicted temperature would not increase. Even though 
current is the most influential parameter, pulse number now seems to 
compensate for current and accurately predict the temperature rise. 
Pulse number is then also an important property that future iterations of 
this/other models should consider using, and models that solely use 
changes in tissue impedance might not be able to fully capture tem-
perature rise. 

While this model was able to predict well against the NanoKnife® 
which only had a 3 s delay every 10 pulses, all clinical applications of 
IRE synchronize pulsing with the cardiac cycle, which can change the 
rate that pulses are applied. Large changes in the duty cycle can influ-
ence thermal heating greatly. Additional parameters may be needed to 
incorporate changes in pulsing frequency, delays for cardiac 

Fig. 5. Current can compensate for incorrect tissue 
properties. A) SHapley Additive exPlanations (SHAP) 
plot for explaining the local influence model inputs 
have on the output. B) Incorrect input measurements 
for the change in conductivity due to electroporation 
effects have no effect on model error. C) Linear 
regression for the simulated COMSOL change in 
temperatures versus the AI predicted change in tem-
perature for the under, correct, and over estimations 
of final conductivity. D) Incorrect input measure-
ments for the bulk conductivity have no effect on 
model error. E) Linear regression for the simulated 
COMSOL change in temperatures versus the AI pre-
dicted change in temperature for the under, correct, 
and over estimation of initial bulk conductivity.   
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synchronization, or programmed delays between trains of pulses. For 
these models, perfusion rate of the organ becomes more significant, as 
there is more time for heat dissipation between gaps in pulsing. We 
chose one perfusion rate to limit the complexity of this study since we 
modeled a steady, uninterrupted 1 Hz pulse, but a parametric sweep 
incorporating other pulsing frequencies and perfusion rates could make 
the model more complete. Also, more complex time-dependent models 
could integrate rolling current, time, and pulse number over the entire 
treatment to predict the temperature distribution at the current pulse, 
instead of treating each pulse as a separate, isolated condition. These 
models may also be more robust against short term fluctuations in 
recorded current. 

We chose to model the temperature distribution for a 2-needle set up 
since that is what is commonly used in clinic for IRE cancer treatments 
[47–49]. However, research and interests are increasing in using single 
insertion probes for laparoscopic IRE treatments. To develop similar 
temperature prediction algorithms for other geometries, a new COMSOL 
model would need to be generated using that specific probe geometry. 
The 2-needle geometry is flexible in that probe spacing and electrode 
exposure is incorporated in the model. For bipolar probes, there is 
insulation separating two electrodes on the same probe. The probe 
insulation length and electrode exposure would now need to be explic-
itly modeled and used as an input to the AI model. For a single needle 
with a distant grounding pad, the current must pass through many 
heterogenous tissues, making current readings more difficult to inter-
pret. This might pose a problem for non-invasive temperature prediction 
methods where impedance is an important variable. 

Further, for the purposes of this study, we used an on-time (pw) of 
100 μs and a pulse period (τ) of 1 s, because they are the most common in 
cancer treatment protocols. The duty cycle (pw/τ) has a direct influence 
on Joule heating within the tissue (eq. (4)). To incorporate a different 
duty cycle, the AI model must either be retrained on a new dataset or 
incorporate the duty cycle as an input parameter. The phase of the 
waveform alone does not affect the Joule heating; the conductivity of 
the tissue is affected by frequency of the waveform, and biphasic 
waveforms are often higher frequencies than monophasic waveforms. 
With an increase in frequency, there will be a slight increase in bulk 

conductivity as the capacitance of the tissue is attenuated [29,50,51]. 
The increase in tissue conductance will be realized with an increase in 
applied current and, subsequently, an increase in Joule heating. The 
contributions due the waveform are considered with the tissue property 
selection and current readings. 

While the only biophysical tissue property explicitly defined in the AI 
model is the dynamic conductivity, other tissue properties such as 
density, heat capacity, and thermal conductivity are present within the 
heat equation (eq. (4)) and influence temperature rise. However, for 
applications of electroporation these values do not vary significantly 
between prostate, pancreas, liver, brain, or kidneys (Supplemental 
Table S1). We chose a singular value for density, heat capacity, and 
thermal conductivity for all our finite element models to simplify 
creating the dataset. Keeping the dynamic conductivity curve constant 
for equal comparison, the difference from the highest temperature rise 
(pancreas) and lowest (brain) is <2% (average < 0.8% difference) at the 
highest temperature spot. Further, the linear regression between one 
organ and any other all have R2 > 0.998 (p-value <0.00001) (Supple-
ment S2). This suggests that we do not need to explicitly define density, 
heat capacity, or thermal conductivity within our AI model, significantly 
reducing the computational burden to produce the dataset. While it 
would be more accurate to incorporate every independent tissue 
parameter, limitations forced us to choose the most important parame-
ters. Future iterations could include more specific tissue parameters for 
the organ of interest. Further, terms like density and heat capacity can be 
combined into single terms to reduce the parametric sweep size and 
improve model creation times. 

This AI may also be incorporated for use with a 4-probe set up. If we 
consider a 4-probe set up as 4 independent pairs of 2-needle electrodes, 
then the AI would need to be fed values from each pair. A problem in 
temperature prediction could arise with temperature convection from 
the other 2-needle pairs dissipating into the area being predicted. The 
MLP predicts a change in temperature instead of absolute temperature, 
and heat generation is not greatly affected by slight changes in initial 
tissue temperature. Therefore, if the contributions to temperature rise 
between the two electrodes is mostly due to Joule heating and not from 
convection from other electrode pairs, then we expect temperature rise 

Fig. 6. Ex Vivo Perfused Liver Model. Temperature was recorded with fiber optic temperature probes at the midpoint between the two probes and at the electrode 
surface. A & B) AI predicted temperature rises and real recorded temperature rises over the course of electroporation treatment in two perfused porcine livers. C & D) 
The linear fit between the real recorded temperature and AI predicted temperatures. E) The error between the AI predicted temperatures and the real recorded 
temperature. The means and 95% confidence intervals are shown. F) The absolute error between the AI predicted temperature and real recorded temperature. The 
means and standard deviations are shown. 
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predictions will still be accurate. Another problem could arise from the 
lower pulse rate, which this AI was not explicitly trained on. A future 
study incorporating tissue perfusion and average pulse frequency could 
be used to validate this 2-needle AI for a prediction with any number of 
2-needle electrode pairs. 

While these methods can be translated to other probe geometries, 
special consideration must be given to cardiac ablation, due to the 
method of electric field delivery and the complex geometry. Cardiac 
ablation typically employs electrodes guided into the left atrium, and 
these electrodes contact the atrial wall to deliver electric fields through 
the endocardium without penetration into the tissue itself [22,52]. 
Various factors that are not present for cancer ablation applications are 
present in cardiac ablation: uncertain atrial wall thicknesses, probe 
contact with the endocardium, contact angle, and proprietary/unknown 
pulsing parameters. Even with inconsistent contact with the atrial wall, 
the blood can still carry the electric field to the tissue; however, this 
leads to erratic and unreliable current readings. We found that current 
was the most important parameter for temperature prediction, so un-
certain contact may lead to unreliable temperature predictions. 

5. Conclusion 

In this study, we have shown that an accurate and robust tempera-
ture prediction model can be developed using estimated tissue proper-
ties (bulk and dynamic conductivity), known geometric properties 
(probe spacing), and easily measurable treatment parameters (applied 
voltage, current, and pulse number). We developed the dataset on 
realistic 2-D COMSOL™ Multiphysics simulations with conditions 
encompassing most electroporation applications. Using feature contri-
bution analysis, we found that temperature prediction is mostly 
dependent on current and pulse number and found that the model still 
predicts accurately, even when incorrectly estimated tissue properties 
are intentionally used for the model input parameters. Lastly, we show 
that the model can accurately predict temperature rise within an ex vivo 
perfused porcine liver, with error <0.5 ◦C between the predicted tem-
perature and the real recorded temperature. This model, using easily 
acquired parameters, was able to predict accurate temperature rise in 
1968 unique conditions with no observable outliers and can be extrap-
olated to conditions it has not seen through pattern recognition. Further, 
we believe the simple, readily available input parameters would allow 
this model to be easily incorporated in many already available electro-
poration systems. 
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Summary 

Irreversible electroporation (IRE) is a nonthermal focal ablation 
modality that employs high-magnitude (1–3 kV), short (70–100 μs) 
electric pulses applied directly into tissue. The applied electric field 
generates a transmembrane potential on cells to overcome the forces 
holding the phospholipid bilayer together causing irreversible necrosis 
and apoptosis of cells within the tissue. IRE can generate clinically 
relevant ablation sizes without the need for chemotherapeutics and 
without significant thermal heating. The nonthermal mechanism for 
irreversible electroporation has been paramount for treating tumors and 

cardiac tissue in anatomically sensitive areas, where there is concern 
about damage to nearby bowels, ducts, blood vessels, or nerves. How-
ever, Joule heating still occurs as a secondary effect of applying an 
electric field through a resistive tissue and must be minimized to 
maintain these benefits at high voltages. Numerous thermal mitigation 
protocols have been proposed to minimize temperature rise, but intra-
operative temperature monitoring is still needed. Further, finite element 
modeling requires knowledge about the system that may vary signifi-
cantly from reality; the resulting current from an applied potential may 
be different during treatment than is simulated, making the prospective 
simulations imprecise. Therefore, algorithms that can relate current 
read during IRE treatments to temperature generation and monitoring is 
greatly needed. 

We show that an accurate and robust temperature prediction model 
can be developed using a simple multi-layer perceptron. The inputs to 
the model are estimated tissue properties (bulk and dynamic conduc-
tivity), known geometric properties (probe spacing), and easily 
measurable treatment parameters (applied voltage, current, and pulse 
number). We develop the AI on realistic 2-D finite element model sim-
ulations with conditions encompassing most electroporation applica-
tions. Calculating feature contributions, we found that temperature 
prediction is mostly dependent on current and pulse number and show 
that the model remains accurate when incorrect tissue properties are 
intentionally used for the model input parameters. Lastly, we show that 
the model can accurately predict temperature rise within an ex vivo 
perfused porcine liver, with error <0.5 ◦C between the predicted and 
measured temperatures. In cases where current does not significantly 
change over treatment, we show that pulse number can compensate for 
the current, to aide in temperature prediction. 

This model, using easily acquired parameters, is shown to predict 
temperature rise in over 1000 unique test conditions with <1 ◦C error 
and no observable outliers. The use of neural networks can overcome the 
limitations of finite element models, since they can predict the tem-
perature rise as current is being read during treatment and is not as 
dependent on knowing the exact tissue properties. Further, the use of 
simple and readily available input parameters would allow this model to 
be easily incorporated in many already available electroporation sys-
tems and treatment planning protocols. 
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[9] G. Serša, B. Stabuc, D. Miklavcic, Z. Rudolf, Electrochemotherapy with cisplatin: 
clinical experience in malignant melanoma patients, Clin. Cancer Res. 6 (2000) 
863–867 [Online]. Available: http://aacrjournals.org/clincancerres/article-pdf/6/ 
3/863/2076012/df030000863.pdf. 

[10] E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, Gene transfer into 
mouse lyoma cells by electroporation in high electric fields, EMBO J. 1 (7) (1982) 
841–845, https://doi.org/10.1002/j.1460-2075.1982.tb01257.x. 

[11] G. Chu, H. Hayakawa, P. Berg, Electroporation for the efficient transfecdon of 
mammalian cells with DNA, Nucleic Acids Res. 15 (1987) [Online]. Available: 
https://academic.oup.com/nar/article/15/3/1311/1166855. (Accessed 6 
December 2022). 

[12] J.F. Edd, L. Horowitz, R.v. Davalos, L.M. Mir, B. Rubinsky, In vivo results of a new 
focal tissue ablation technique: irreversible electroporation, IEEE Trans. Biomed. 
Eng. 53 (7) (Jul. 2006) 1409–1415, https://doi.org/10.1109/TBME.2006.873745. 

[13] R. v Davalos, L.M. Mir, B. Rubinsky, Tissue ablation with irreversible 
electroporation, Ann. Biomed. Eng. 33 (2) (2005) 223–231, https://doi.org/ 
10.1007/s10439-005-8981-8. 

[14] B. Al-Sakere, et al., Tumor ablation with irreversible electroporation, PLoS One 2 
(11) (Nov. 2007), https://doi.org/10.1371/JOURNAL.PONE.0001135. 

[15] D. Stillström, M. Beermann, J. Engstrand, J. Freedman, H. Nilsson, Initial 
experience with irreversible electroporation of liver tumours, Eur. J. Radiol. Open 
6 (Jan. 2019) 62–67, https://doi.org/10.1016/J.EJRO.2019.01.004. 

[16] N. Kalra, et al., Irreversible electroporation for unresectable hepatocellular 
carcinoma: initial experience, Cardiovasc. Intervent. Radiol. 42 (2019), https:// 
doi.org/10.1007/s00270-019-02164-2. 

[17] W. Cheung, H. Kavnoudias, S. Roberts, B. Szkandera, W. Kemp, K.R. Thomson, 
Irreversible electroporation for unresectable hepatocellular carcinoma: initial 
experience and review of safety and outcomes, Technol. Cancer Res. Treat. 12 (3) 
(2013) 233–241, https://doi.org/10.7785/tcrt.2012.500317. 

[18] B.M. Benway, Irreversible electroporation of renal cell carcinoma: a first-in-man 
phase I clinical study, Year Bk. Urol. 2011 (Jan. 2011) 36–37, https://doi.org/ 
10.1016/j.yuro.2011.06.061. 

[19] E. Guenther, et al., Prostate cancer treatment with Irreversible Electroporation 
(IRE): safety, efficacy and clinical experience in 471 treatments, PLoS One 14 (4) 
(Apr. 2019), https://doi.org/10.1371/journal.pone.0215093. 

[20] F. Collettini, et al., Image-guided irreversible electroporation of localized prostate 
cancer: functional and oncologic outcomes, Radiology 292 (1) (2019) 250–257, 
https://doi.org/10.1148/radiol.2019181987. 

[21] R. Martin II, K. Mcfarland, S. Ellis, V. Velanovich, Irreversible electroporation in 
locally advanced pancreatic cancer: potential improved overall survival, Ann. Surg 
Oncol. 20 (2013), https://doi.org/10.1245/s10434-012-2736-1. 

[22] A. Sugrue, et al., Irreversible electroporation for the treatment of cardiac 
arrhythmias, 5, in: Expert Review of Cardiovascular Therapy, vol. 16Taylor and 
Francis Ltd, 2018, pp. 349–360, https://doi.org/10.1080/ 
14779072.2018.1459185. May 04. 

[23] I. Sorokin, N. Canvasser, B. Johnson, E. Lucas, J.A. Cadeddu, Irreversible 
electroporation for renal ablation does not cause significant injury to adjacent 
ureter or bowel in a porcine model, J. Endourol. 35 (6) (Jun. 2021) 873–877, 
https://doi.org/10.1089/END.2020.0856/ASSET/IMAGES/LARGE/ 
END.2020.0856_FIGURE6.JPEG. 

[24] E. Ueshima, et al., Transmural ablation of the normal porcine common bile duct 
with catheter-directed irreversible electroporation is feasible and does not impact 
duct patency, Gastrointest. Endosc. 87 (1) (2018), https://doi.org/10.1016/j. 
gie.2017.05.004. 

[25] E. Maor, A. Ivorra, J. Leor, B. Rubinsky, The effect of irreversible electroporation 
on blood vessels, Technol. Cancer Res. Treat. 6 (4) (2007) 307–312 [Online]. 
Available: www.tcrt.org [Online]. Available:. 

[26] W. Li, Q. Fan, Z. Ji, X. Qiu, Z. Li, The effects of irreversible electroporation (IRE) on 
nerves, PLoS One 6 (4) (2011), https://doi.org/10.1371/journal.pone.0018831. 

[27] P. Philips, D. Hays, R.C.G. Martin, Irreversible Electroporation Ablation (IRE) of 
Unresectable Soft Tissue Tumors: Learning Curve Evaluation in the First 150 
Patients Treated, 2013, https://doi.org/10.1371/journal.pone.0076260. 

[28] J. Rudno-Rudzí Nska, W. Kielan, M. Guzí Nski, M. Płochocki, and J. Kulbacka, “The 
First Study of Irreversible Electroporation with Calcium Ions and Chemotherapy in 
Patients with Locally Advanced Pancreatic Adenocarcinoma”, doi: 10.3390/ 
app10155163. 

[29] P. Agnass, et al., Mathematical modeling of the thermal effects of irreversible 
electroporation for in vitro, in vivo, and clinical use: a systematic review, Int. J. 

Hyperther. 37 (1) (2020) 486–505, https://doi.org/10.1080/ 
02656736.2020.1753828. 

[30] P.A. Garcia, J.H. Rossmeisl Jr., R.E. Neal II, T.L. Ellis, R. V Davalos, A Parametric 
Study Delineating Irreversible Electroporation from Thermal Damage Based on a 
Minimally Invasive Intracranial Procedure, 2011, https://doi.org/10.1186/1475- 
925X-10-34. 

[31] T.J. O’Brien, et al., Effects of Internal Electrode Cooling on Irreversible 
Electroporation Using a Perfused Organ Model, vol. 35, Jan. 2018, pp. 44–55, 
https://doi.org/10.1080/02656736.2018.1473893, 1. 

[32] C.B. Arena, R.L. Mahajan, M. Nichole Rylander, R.v. Davalos, An experimental and 
numerical investigation of phase change electrodes for therapeutic irreversible 
electroporation, J. Biomech. Eng. 135 (11) (Nov. 2013), https://doi.org/10.1115/ 
1.4025334/370890. 

[33] T.J. O’Brien, et al., Cycled pulsing to mitigate thermal damage for multi-electrode 
irreversible electroporation therapy, Int. J. Hyperther. 36 (1) (Jan. 2019) 953–963, 
https://doi.org/10.1080/02656736.2019.1657187. 

[34] P. Agnass, et al., Mathematical modeling of the thermal effects of irreversible 
electroporation for in vitro, in vivo, and clinical use: a systematic review, Int. J. 
Hyperther. 37 (1) (Jan. 2020) 486–505, https://doi.org/10.1080/ 
02656736.2020.1753828. 
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