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Abstract—In this work, we apply machine learning to inves-
tigate the effectiveness of an Impulse Radio Ultra-Wide Band
(IR-UWB) radar panel, in an under-the-mattress configuration,
for detecting apnea events in subjects known to have obstructive
sleep apnea (OSA). We consider a collection of features, some
novel and some inspired by features that worked well for sleep
apnea detection using other types of sensors (i.e., not IR-UWB).
To extract the features, we collected a total of 25 hours of data
from four subjects as they slept through the night. The data
included digitized samples of the IR-UWB radar return signal
and the scored polysomnograph (PSG), which is the gold standard
and measures a large number of physiological parameters in a
well-equipped sleep laboratory. Normal and apnea epochs were
extracted from the IR-UWB data corresponding to normal and
apnea epochs in the PSG data. Statistical features were derived
from these extracted epochs and a Linear Discriminant classifier
was trained. Using cross-validation, we found that the classifier
had an accuracy of around 70% in detection of apnea and normal
epochs. The novel aspect of this project involves processing and
investigation of different methods for feature extraction on data
obtained from real apnea subjects and suggests that the radar,
when paired with other under-the-mattress sensors might provide
an effective screening device in a convenient form factor.

I. INTRODUCTION

Sleep apnea is a disorder that involves involuntary cessation
of breathing during sleep for 10 or more seconds [1]. Sleep
apneas are categorized into two main types: obstructive sleep
apnea (OSA) and central sleep apnea (CSA) [1]. OSA occurs
when the muscles such as soft palate and tongue temporar-
ily obstruct the upper airway causing a temporary pause in
breathing. A 90% or greater decrease in nasal pressure or
breathing amplitude is termed as “Obstructive Apnea” (OA)
while a 30% or greater drop in breathing amplitude is termed
as “Obstructive Hypopnea” (OH) [1]. In CSA, the brain fails to
send signals to the breathing muscles and a pause in breathing
takes place without any narrowing of the upper airway. OA and
OH are the most common presentations of sleep disordered
breathing (SDB) in adults, with an estimated prevalence of 5-
15% [2]. Sleep apnea is associated with growing number of
health problems which include high blood pressure, stroke,
irregular heart rate and depression [3], [4]. The metrics to
quantify severity of the disorder include Apnea-Hypopnea
Index (AHI), which is the number of apnea and hypopnea
events in one hour [1]. The standard approach for diagnosis of
sleep apnea is polysomnography (PSG), which monitors sleep
and respiration by measuring various physiological parameters,

including Electrocardiogram (ECG), blood oxygen saturation
(SpO2), respiratory effort (thoracic and abdominal) and nasal
airflow [1]. However, PSG is an expensive procedure and
requires patients to sleep in technician-attended and well-
equipped labs. Moreover, large number of sensors are attached
to the patient at various points on the body for monitoring of
these many physiological parameters and may cause discom-
fort and also vary the sleeping behavior of the patient.

This paper investigates the feasibility of applying machine
learning algorithms to the signal from an extremely low-power
IR-UWB radar to detect episodes of OA and OH in adults. An
IR-UWB radar transmits small duration pulses and if focused
on human torso, the reflected pulses contain information about
breathing and cardiac rate [5]. The IR-UWB radar signal in this
study has been severely analog filtered to just the respiration
band (cut-off: 0.7 Hz), to reduce panel cost, so the times
of pulse arrivals are not measured, but rather the Fourier
components of rhythmic motions associated with breathing are
captured in this band. As such, an apnea event manifests itself
in the received signal. Its extremely low-interference, non-
ionizing nature and convenient form factor of a panel placed
under a mattress makes IR-UWB radar a promising component
of a home screening tool for OSA [6], [7], which is the
motivation for this research. This paper explores 14 moment-
based features and time-domain principal components-based
feature that exploits the start and stop times of apnea periods
as indicated by the scoring of the PSG.

II. OTHER APNEA SENSING TECHNOLOGIES

Research on home based sleep apnea monitoring can be
divided into three main categories based on phsyiological
signals under consideration: (1) Heart rate variablility (HRV)
analysis and respiratory signal derived from ECG (2) Respi-
ratory signals, more commonly known as ‘Respiratory Effort’
signals, obtained via nasal sensors, chest straps (respiratory
plethysmography) or radars (3) Nocturnal sound analysis by
capturing snoring via microphones. The first two methods
(except radar) still require sensors being attached to the subject
and may pose challenges in hygene and skin irritation. The
third method sometimes utilizes a contact microphone to detect
snores while a non-contact microphone requires to be placed
at an optimal position to avoid loss in efficiency of the system
[8]. HRV, derived from ECG, is the most widely explored
physiological parameter and has been used in [9], [10] to detect
sleep apnea.
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Microwave radars (doppler and IR-UWB) have gained a lot
of popularity in measuring vital signs. The main differences
between the doppler and the UWB radars are the bandwidth,
power, and the band of operation. The IR-UWB radar signal
can be spread throughout the 3 to 10 gigahertz band [11],
which spans many other licensed and unlicensed bands. The
doppler radar must be used in either a licensed band or an ISM
(industrial, scientific and medical) band, and makes more inter-
ference on other devices because of its more narrow bandwidth
and also it is more vulnerable to the interference from these
other devices. Because of its extremely wide bandwidth, the
UWB radar can be operated at a much lower average power
than the doppler radar, for the same signal-to-noise ratio in
the radar receiver, and it has higher time resolution which
translates to more sensitivity to small periodic movements of
the reflecting surfaces. A doppler radar has been used in [12]
to detect different types of breathing disorders that include
apneas. Similarly two microwave radars are used in [13] to
detect sleep apneas. Doppler radar is used in [14], [15], in
a device placed on the bedside table named ‘Sleepminder’,
developed by Biancamed for detection of sleep and wake
patterns along with apnea events. The novelties in our work
include the sensor location under the mattress and some novel
features.

IR-UWB radar is known to correlate well with chest straps,
for measuring the changes in respiratory amplitude [16], since
they both measure chest displacement. However, since airflow
is important for distinguishing OA from OH [17], we are
investigating combining the radar with microphone data in our
on-going work. This paper reports our interim results based
only on the radar sensor.

III. METHODS

A. Measurement Setup

The data for the project was collected at a sleep research
laboratory (Neurotrials Research Inc.) [18] under a protocol
approved by the Georgia Institute of Technology (GT) In-
stitutional Review Board (IRB). The IR-UWB radar system
developed by Sensiotec Inc. [19] is placed under the mattress.
The radar transmitted pulses are 13 ns long, centered at
4.2 GHz. At the receiver, the reflected signal is time-gated and
down-converted to baseband and then hardware-filtered into
a respiration band (low pass, cut-off frequency 0.7 Hz) and
heart band (cut-off frequencies: 0.5 - 6 Hz), respectively. This
paper considers only the respiration band. Next, the outputs
of each filter band are sampled at 128 Hz and quantized
for subsequent digital signal processing. PSG data was also
collected simultaneously. The data from the IR-UWB radar
and the PSG data are both time stamped. A specialist from
Neurotrials scored the PSG and marked all the normal and
apnea epochs. Fig. 1 shows the block diagram of the set up
for data collection.

B. Signal Processing

1) Preprocessing of Respiration Signal: In order to facili-
tate the extraction of features, the quantization noise in time
domain respiratory signal is removed by filtering twice with
a 20 tap triangular filter. To avoid changing the amplitude
and shape of the signal, only the central tap is assigned a

Fig. 1. Block diagram of the set up. The IR-UWB radar was placed under
the mattress. The PSG and IR-UWB radar data was time-synchronized.

weight of two while the remaining taps have unity weights.
An example of the respiration signal produced by the IR-
UWB radar after the application of triangular filter is the
blue oscillating waveform shown in Fig. 2. The signal shows
changes in both amplitude and frequency during apnea.

2) Motion Detection & Removal: The radar signal is very
sensitive to motion and shows clipping to the ADC maximum
and minimum levels whenever the subject makes large muscle
movements. The part of the IR-UWB data that is motion
corrupted is detected and removed. All the maximas and
minimas in the input time domain signal are compared against
pre-defined thresholds. Let Maxi and Mini denote the i-th
maxima and minima, respectively. If a maxima Maxi is above
the upper threshold, then the portion of the signal that includes
Maxi, Maxi−1 and Maxi+1 is labeled as motion corrupted.
Similarly, if a minima Mini is below the lower threshold,
then the portion of the signal that includes Mini, Mini−1

and Mini+1 is labeled as motion corrupted. The reason for
including one previous and one next maxima or minima is to
make sure that the complete portion encompassing motion is
removed. The clean signal that falls between the two motion
corrupted parts is standardized by calculating the z-score
of each data point in that portion. The reason for separate
standardization of data that are separated by motion corrupted
regions is to avoid error in feature extraction stage as the radar
signal’s amplitude is different for different postures and varies
across population, especially across genders.

3) Extraction of Normal & Apnea Epochs: Epochs or
episodes of 60 second duration, that include the marked apnea
event, are extracted from the IR-UWB radar data. Let n denote
the number of samples in an epoch (n = 128× 60, since the
sampling rate is 128 Hz). More specifically, the 60 seconds in
each epoch are composed of ts − 20s to ts + 40s, where ts
represents the apnea start time which is obtained from the PSG.
Also the 60 second duration epochs corresponding to time
intervals of normal sleep are extracted by using information
from the PSG. All the epochs corresponding to both OA and
OH are combined into one class, labelled as Apnea, and the
normal epochs are assigned class label Normal, thus making
our task one of binary classification.
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Fig. 2. Time domain respiration signal from IR-UWB radar with an
obstructive apnea event. The upper and lower envelopes are shown in red.

C. Feature Extraction

The features are extracted from both the time and fre-
quency domains for each epoch. We define fk to be the k-
th feature (k = 1,2,...,15). The process of feature extraction
is divided into two phases. Phase I consists of first- and
second-order moments of various quantities extracted directly
from each episode. Phase II contains two more complicated
features which are extracted after the application of pricincipal
component analysis and signal processing algorithms.

1) Phase I: The features f1 through f13 are calculated to
capture the change in amplitude and frequency of respiratory
signal in apnea epochs [1], [9]. Variances are calculated using
the unbiased formula for sample variance.

• f1: The Mean Absolute Deviation (MAD) of respira-
tory signal. In [20], authors apply this feature to R-R
intervals extracted from ECG signals for apnea and
normal epochs classification.

• f2: The Mean Absolute Deviation of the maxima or
peak values of respiratory signal.

• f3: Number of times the signal crosses the mean.

• f4: The variance of the time duration (number of
samples) between the points where the signal crosses
the mean.

• f5: The variance of the number of samples between a
local maxima and the next local minima in an epoch.

• f6: The variance of the difference in amplitude of local
maxima and next local minima in an epoch.

• f7: The inter-quartile range, i.e., the difference be-
tween the 75th and the 25th percentiles of number of
samples between mean crossings in each epoch. This
feature is also extracted from R-R intervals of ECG
data in [20].

• f8: The sum of Power Spectral Density (PSD) values
in frequency range [0 - 0.5 Hz] for each episode.
The PSD values are obtained by taking the magnitude
squared of the Discrete Fourier Transform (DFT) over
the length of the epoch and then dividing by the length
of the epoch. The PSD values for the ECG-derived
respiration signal are used as features in [9].

In a normal breathing epoch, the signal properties such as
peak-to-peak difference, frequency etc. are expected to remain

constant throughout the length of the epoch. However, these
properties will show variation in an apnea epoch. In order
to capture this change, each 60s epoch is divided into small
portions of td duration (td = 10s is chosen in this paper,
as the minimum duration of an apnea event is 10s [1]). Let
these small portions be denoted by εi and the variance of the
respiration signal in each small portion be represented by σ2

εi ,
where i = 1, 2, ..., 6. Following three features are extracted
from these small epochs:

• f9: The variance of σ2
εi values across the small epochs

εi, i.e., var([σ2
ε1 , σ

2
ε2 , · · · , σ2

ε6 ]).

• f10: The variance of absolute difference of σ2
ε1 across

εi, i.e., var([|σ2
ε1 −σ2

ε2 |, |σ2
ε2 −σ2

ε3 |, · · · , |σ2
ε5 −σ2

ε6 |]).
• f11: The DFT is calculated for the small epochs and

the frequency fεi corresponding to highest peak is
detected in the spectrum of each small epoch εi.
The variance σ2

f of the frequency associated with the
highest peak across these small epochs is used as a
feature, i.e., σ2

f = var([fε1 , fε2 , · · · , fε6 ]).
The upper envelope EU of the time domain respiratory signal
in each epoch is estimated by joining the maximas using cubic
interpolation and the lower envelope EL is obtained by cubic
interpolation of minimas as shown in Fig. 2. The envelope
difference, ED = EU − EL, is divided into small epochs εi
of duration td (td = 10s). The variance σ2

εi is calculated for
each small epoch and the following features are derived:

• f12: The variance of σ2
εi across the small epochs εi,

i.e., var([σ2
ε1 , σ

2
ε2 , · · · , σ2

ε6 ]).

• f13: The variance of absolute difference of σ2
εi across

the small epochs εi, i.e., var([|σ2
ε1 − σ2

ε2 |, |σ2
ε2 −

σ2
ε3 |, · · · , |σ2

ε5 − σ2
ε6 |]).

2) Phase II: Two more features (f14, f15) are extracted by
processing the envelope difference, ED, for each epoch. The
last feature, f15, is designed to capture the step-like changes
in the envelope at the beginnings and ends of apnea periods.
Let N1 and N2 be the number of epochs in apnea and normal
sets available for training. Let the ED signals for apnea and

normal epochs be represented by the rows of matrices Ã and B̃
(Ã ∈ R

N1×n, B̃ ∈ R
N2×n). We create a matrix X̃ by stacking

Ã on top of B̃ i.e., X̃T = [ÃT B̃T ]T (X̃ ∈ R
(N1+N2)×n). Each

epoch or row in X̃ is denoted by X̃i. We define the average
energy EN of all normal epochs as

EN =
1

N2

N2∑
i=1

(
n∑

d=1

((B̃i[d])
2), (1)

where d denotes the sample index. The matrices Ã, B̃ and X̃
are normalized by EN to obtain A = Ã/EN , B = B̃/EN

and X = X̃/EN . As apnea epochs are accompanied with
a reduction in the energy of respiratory signal, EN is only
derived from normal epochs to enhance the difference between
apnea and normal epochs. The value of EN is obtained from
training set and applied to validation and test sets. All the rows
Bi in B are averaged to obtain an average envelope difference
row vector Bavg . The feature f14 extracted in this phase is
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Fig. 3. Loading vectors (v1s and v1e ) obtained after application of Algorithm
1. The grey back ground indicates the loading vectors (selected in iterations
of CV) superimposed on each other. The solid line (blue) represents the mean
of all v1s while the solid line (red) represents the mean of all v1e .

• f14: For each epoch Xi in matrix X, sum the squared
distance between Xi and Bavg.

For the extraction of f15, two matrices are generated from A
using the apnea start time ts and apnea end time te for each
apnea event from PSG. The following steps are carried out:

• The ED signals in A are aligned by apnea start time
ts and a 10-second portion from ts−5sec to ts+5sec is
extracted for each signal. Let these extracted signals be
represented by the rows of a matrix ST (ST ∈ R

N1×m,
where m is the number of samples in the 10-second
portion (m < n)).

• The ED signals in A are aligned by apnea end time
te and 10-second portion from te−5sec to te+5sec is
extracted for each signal and stored as rows of a matrix
ET (ET ∈ R

N1×m).

• Principal component analysis (PCA) is performed on
both ST and ET matrices separately. Let Vs be the
matrix whose columns vas [j] represent the principal
component loading vectors (i.e., the right singular
vectors) for ST and Ve be the matrix whose columns
vbe[j] represent the loading vectors for ET obtained
after PCA, where a and b indicate the column number
and j denotes the sample index. The columns in
matrices Vs and Ve are arranged in descending order
by the amount of variation they capture in the data set
and are statistically orthgonal to each other [21].

The first principal component loading vector, shown in Fig.

Fig. 4. Formation of peak pairs ζu from correlation results γs and γe. The
peaks with a dotted red circle do not fulfil the criteria for pair formation.

Algorithm 1
Inputs: v1s , v1e and X.
Outputs: The values for feature f15.

1: for i = 1→ (N1 +N2) do
2: for τ = −∞→∞ do
3: γs[τ ] =

m∑
j=1

Xi[j − τ ]V a
s [j]

4: γe[τ ] =
m∑
j=1

Xi[j − τ ]V b
e [j]

end for
5: Find peaks from γs and γe
6: Make peak pairs ζu from γs and γe peaks
7: f15[i] = Sum of peak values of the best pair

end for
8: return f15

3, is selected each from Vs and Ve as it captured maximum
variation in the data sets ST and ET . Cross-correlation is
performed between v1s and the i-th signal Xi in X and the
result is denoted by γs. Similarly, cross-correlation γe is
performed between v1e and the i-th signal Xi. In general, the
cross-correlation γ of any discrete signal x with a discrete
signal y is given by

γ[τ ] =

∞∑
j=−∞

x[j − τ ]y[j], (2)

where τ represents the correlation lag. Once the cross-
correlation results γs and γe are obtained for the i-th signal
Xi, peaks are detected in each of these results. Each peak,
pw(ηw, τw), is characterized by peak number w, amplitude
value η and a position or lag value in terms of τ . Peak pairs are
then formed by choosing one peak from γs and one peak from
γe as shown in Fig. 4. For a g-th peak pg(ηg, τg) selected from
γs, a peak ph(ηh, τh) is selected from γe to form a pair such
that ph is the first peak in γe which is located immediately
after pg and before pg+1 in terms of position. If this condition
is satisfied, then a peak pair ζu is formed. If no ph from γe
satisfies the above criteria, then pg is dropped and pg+1 is
considered for pair formation. The peaks which are used once
in pair formation do not participate in any other pair while the
peaks which do not take part in pair formation are ignored.
Once all possible peak pairs are formed, the pair that has
maximum separation between the constituent peaks is selected
and the sum of peak values is stored as feature f15, i.e.,

• f15 = {ηg + ηh : ηg ∈ ζg, ηh ∈ ζh,max|τg − τh|}.
The above process is repeated for remaining signals in X

and is described in Algorithm 1. The vectors v1s and v1e are
obtained from training data and are applied to validation and
test data for extraction of f15. The above features f1 − f15,
extracted from normal and apnea epochs, are standardized by
subtracting mean and dividing by standard deviation before
being used with a classifier.

D. Classification

1) Classification Algorithm.: The Linear Discriminant
(LD) classifier [22] is considered for the classification task in
this study. The LD classifier assumes that the class conditional
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densities follow multivariate Gaussian distributions and the
covariance matrix (Σ) is the same for each class. Let the
p-th feature vector belonging to class c (c = 1, 2 in binary
classification) be denoted by xp,c. If there are Nc number of
observations present for each class and N is the total number
of observations for all classes, then the prior probability πc for
each class will be πc =

Nc

N and the conditional mean vector μc

for each class will be μc = (
∑Nc

p=1 xp,c)/Nc. The covariance
matrix is given by

Σ =
1

N − C

C∑
c=1

Nc∑
p=1

(xp,c − μc)(xp,c − μc)
T . (3)

For a given object with feature vector v in the validation
or test set, the class label is determined by calculating the
discriminant value δc for each class. The class with the
highest discriminant value is then assigned to the object. The
discriminant value for the LD classifier is given by

δc = log(πc) + vTΣ−1μc − 1

2
μT
c Σ

−1μc. (4)

2) Training & Testing: The total number of apnea epochs
(N1) in this paper, both OA and OH, were more than twice
the number of normal epochs (N2) as data was collected
from subjects with very high AHI in this initial study. So
the following steps involving cross-validation [23], as shown
in Fig. 5, are carried out for data division to make sure that
approximately equal number of apnea and normal epochs are
available for training:

• Step 1: Let the total number of normal, OA and OH
epochs be represented by r, s and t respectively (s+
t = N1 and r = N2). The sets of both OA and OH
epochs are each randomly partitioned into two subsets.
Let s1 and s2 be the number of epochs in the two
subsets obtained from OA set and let t1 and t2 be the
number of epochs in the two subsets obtained from
OH set such that s1 + t1 ≈ r, i.e., s1 ≈ t1 ≈ r

2 ,
s2 = s− s1 and t2 = t− t1.

• Step 2: In this step, 5-fold cross-validation (CV) is
used to train and test the classifier using the normal
epochs (r) and apnea epochs (s1 + t1). In 5-fold CV,
the apnea epochs and normal epochs are each divided
into 5 folds. Four folds from each class are used in
training the classifier and the remaining fold from each
class is used as validation set until each fold from
both classes is used once for validation. The feature
subset selection [24] is also done in this step. The
performance of the classifier with all possible feature
subsets is also analyzed on the validation fold [25].
The feature subset with least number of features giving
the maximum accuracy for the validation fold is then
selected from all possible subsets. Since 5-fold CV
is employed, the feature subset selection will yield 5
subsets for each of the 5 iterations of CV. The subset
that provides best value for accuracy is chosen from
these 5 subsets. The values of sensitivity, specificity
and accuracy [26] obtained with the complete set of
features and with feature subsets are averaged across
the 5 iterations of 5-fold CV.

Fig. 5. Flow chart for division of data. s1 ≈ t1 ≈ r
2

and s1 + t1 ≈ r.

• Step 3: The classifier is trained on the complete data
set available in Step 2 with the complete bag of
features and also with the best feature subset selected
from the 5 subsets obtained in 5-fold CV.

• Step 4: The classifier is used on the remaining OA
and OH epochs, s2 + t2. Only the value of sensitivity
for detecting apnea epochs is calculated.

The above steps, Step 1 through Step 4, are repeated 10
times making the whole process as 10×5-fold CV. The values
of sensitivity, specificity and accuracy obtained in 5-fold CV
process of Step 2 and sensitivity values in test phase of Step
4 are averaged over 10 iterations (outer loop in Fig. 5).

IV. RESULTS & DISCUSSION

Data was collected from 4 subjects (3 male and 1 female,
48 ± 6.9 years, 210 ± 20.5 lbs and AHI 49 ± 29) who were
previously diagnosed with sleep apnea. Full night recordings
(6 to 7 hours) were obtained and after pre-processing, motion
detection and removal, 476 OA, 392 OH and 361 normal
epochs were extracted from the recordings. The data was
partitioned according to Fig. 5. The results of classification
between Apnea and Normal classes are summarized in Table
I. The classification results with all features is indicated by
“All” in Table I. The selected feature subsets have different
number of features in each iteration. The average number of
features rounded to nearest integer in the selected subsets is
shown in Table I. The values for sensitivity, specificity and
accuracy in the table are for the data in validation folds of
cross-validation phase and averaged through the iterations of
10×5-fold CV. Similarly the sensitivity for epochs in Step 4
(listed in the last column of Table I) is averaged by the number
of iterations in the outer loop.

The results indicate that the classfier when used with
complete bag of features has an overall sensitivity of 64.6%
and specificity of 64% during the cross-validation steps and a
sensitivity of 66% for the epochs in the test folds of Step 4
in Fig. 5. There is an increase in overall sensitivity, specificity
and accuracy when the LD classifier is used after feature subset
selection. The number of features selected is almost half the
total number of features as the feature subset with lowest
number of features is selected during feature selection.
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TABLE I. CLASSIFICATION RESULTS FOR APNEA (OA & OH) AND

NORMAL EPOCHS

No. Avg. results cross-validation (validation folds) Test data
of Sensitivity Specificity Accuracy Sensitivity
fk (%) (%) (%) (%)

All 64.6 64 65.6 66
7 71.2 70.8 73.1 67

V. CONCLUSION

This paper explored the effectiveness of an under-the-
mattress IR-UWB radar for detection of sleep apnea events us-
ing a machine learning approach. 15 features were considered,
including several novel ones, and an LD classifier was trained
and tested with 5-fold cross-validation on over 1,200 60-
second epochs collected from 4 subjects. The system showed
a classification accuracy of 73% which is not considered good
enough for a radar-only device.

The on-going work is focused on addition of other under-
the-mattress sensors (microphones) to the IR-UWB radar sys-
tem, to give more information relating to airflow, which is
expected to improve accuracy.
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