Welcome to the Fernández Lab

  • News
  • Professor Fernández
  • Group Members
    • Alumni
  • Research
    • Metabolomics
      • Ovarian Cancer
      • Double Knockout Lipidomics
      • MSC Senescence
      • Inter-laboratory Metabolomics
    • Ion Mobility-Mass Spectrometry
      • Unknown Metabolite Identification
    • Ambient Sampling/Ionization & Imaging MS
      • Triboelectric Nanogenerator (TENG)
      • Imaging Ovarian Cancer
      • Traumatic Brain Injury
      • Cell-Based Therapeutics
    • Chemical Evolution
  • Instrumentation
  • Publications
    • Media

Check out our newest publication!

May 22, 2023 by dvallejo6

This work lead by Olatomiwa Bifarin, Samyukta Sah, David Gaul, and Samuel Moore entitled “Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer” published in Journal of Proteome Research tracks the alterations in the metabolome of mice models using machine learning and demonstrates how differences in metabolite flux between ovarian cancer severity/outcome can be leveraged to develop more accurate early detection methodologies. Check it out using the link below:

https://doi.org/10.3390/cancers14092262

Filed Under: Uncategorized

Meta

  • Log in
  • Entries RSS
  • Comments RSS
  • Sites@GeorgiaTech

CONTACT

Fernández group
Georgia Institute of Technology
School of Chemistry and Biochemistry
ES&T L1244
901 Atlantic Drive Atlanta, GA 30332

Phone: (404) 385-4432
Fax: (404) 894-7452

Archives

  • September 2023 (2)
  • August 2023 (2)
  • July 2023 (1)
  • June 2023 (2)
  • May 2023 (3)
  • April 2023 (1)
  • January 2023 (1)
  • December 2022 (1)
  • November 2022 (2)
  • September 2022 (1)
  • August 2022 (1)
  • July 2022 (1)
  • June 2022 (3)
  • May 2022 (2)
  • April 2022 (5)
  • March 2022 (2)
  • January 2022 (1)
  • November 2021 (1)
  • October 2021 (2)
  • September 2021 (1)
  • August 2021 (3)
  • June 2021 (1)
  • February 2021 (1)
  • August 2020 (2)
  • August 2019 (2)
  • October 2018 (1)

Copyright © 2023 · Agency Pro on Genesis Framework · WordPress · Log in