Tokamak Electromagnetics

Pieter-Bas Bentinck John Minderman NRE 4610

Basic Tokamak Magnet Systems

Superconductor Information

- Niobium Tin (Nb₃Sn)
- Characteristics:
 - High performance(better than NbTi)
 - Very brittle and hard to manufacture
 - High costs
 - Used in TFC's and CS

Superconductor Information

- Niobium Titanium (NbTi)
 - Used in PFC and CC
 - Compared to Nb₃Sn [5]
 - Stronger and easier to manufacture
 - Lower critical temperature and current capacity
 - 50-200 €/kg vs 500-1000
 €/kg for Nb₃SN

Basic Tokamak Magnet Systems

Torodial Field Coils (TFCs)

- The principal function of the toroidal field coils is to provide a toroidal magnetic field that stabilizes the plasma [book]
- Assumptions
 - Made of Nb₃Sn superconductors with I = 68 kA [1]
 - Operating temperature is 4 K
 - $-B_{\phi,0}$ is 6 T, leading to high stability

Torodial Field Coils (TFCs)

•
$$I_{TF} = \frac{B_{\phi,0} * 2 * \pi * R_0}{N_{TF} * \mu_0} = 10.5 \text{ MA}$$

•
$$N_{Cond} = \frac{I_{TF}}{I_{Cond}} = 152$$

- $B_{\varphi,0}: 6 T \rightarrow 5.5 T$
- $N_{TF} = 16$

•
$$I_{Cond} = 68 \ kA$$

$$A_{Cond} = 1.48 * 10^{-3} m^2$$

•
$$A_{cond,tot} = N_{cond} * A_{cond} = 0.225 m^2$$
 •

•
$$A_{tot} = A_{case} + A_{cond}$$

• $\Delta_{TF} = 0.75$ m, assuming square coils

Torodial Field Coils (TFCs)

•
$$F_R = 1.53 * \frac{\mu_0 * N_{TF} * I_{TF}^2}{2} * \left(1 - \frac{1}{\sqrt{(1 - \varepsilon_P)^2}}\right) = -484 \text{ MN} [2]$$

•
$$F_T = 1.65 * \frac{\mu_0 * N_{TF} * I_{TF}^2}{8 * \pi} * \ln\left(\frac{1 + \varepsilon_P}{1 - \varepsilon_P}\right) = 195$$
 MN [2]

- $\sigma_T + \sigma_{bend} \leq 1.5 * S_m$, with S_m = 467 MPa
- σ_{bend} from Iter = 0.224 * σ_T [1]
- $A_{case} = \frac{F_{T,max}}{1.5*S_m} = 0.34 \ m^2$

Torodial Field Coils - Forces

- Critical location of the toroidal field coils [1]
 - Highest out-of-plane loads
 - Limited space available
- Measures against centering force:
 - Pre-compression rings
 - Shear keys
 - Wedges

Torodial Field Coils – Pre-compression rings

- Composite precompression rings [3]
 - Make sure keys do not become loose
 - Put the TF-coils into toroidal compression
- Outer diameter is about
 5.5 meters

Torodial Field Coils – Shear keys and wedges

- Shear keys:
 - Prevent development of torsion in the TF cases
- Wedges:
 - Are applied along the full radial thickness
 - Space between coils is about 11.5 cm on the inboard leg

Torodial Field Coils – Conductor Length

- Approximation: Triangular coils with dimensions scaled from ITER [4]
- Estimate the length of a coil:
 L_{coil} = 31.9 m
- $L_{conductor} = N_{cond} * L_{coil} * N_{TF} = 78 \text{ km}$

Torodial Field Coils (TFCs) – Weight estimation

- $m_{coil} = L_{coil} * (\rho_{cond} A_{cond} + \rho_{case} A_{case})$ [5]
- Correction factor from ITER scaling: 3.63 [1]
- M_{coil} = 319 tn
- M_{TF} = 5106 tn

- $\rho_{Cu} = 8940 \ kg/m^3 \ [6]$
- $\rho_{Nb3Sn} = 5700 \ kg/m^3 \ [7]$
- $\rho_{SS316} = 8070 \ kg/m^3 \ [8]$

Basic Tokamak Magnet Systems

Central Solenoid (CS)

 The Central Solenoid of a Tokamak is responsible for creating magnetic pulses to get the plasma current high enough to sustain operation.

- Assumptions
 - Made with Nb_3Sn
 - $-B_{OH,max} = 13 \text{ T}$
 - $-I_{OH,max} = 46 \text{ kA}$

Central Solenoid (CS)

- Project Values
 - $-R_v = 2.00 \text{ m}$
 - ΔOH = 0.18 m
 - Stored Magnetic Energy = 6.4 GJ
 - Conductor Length = 35.6 km

CS - Calculations

• Solenoid Sizing

$$R_{v} = \mathbf{1.08} * \sqrt{\frac{2 * R_{0} * \left(\ln\left(8 * \frac{R_{0}}{a}\right) - 1.75\right) * I_{p}}{2 * \pi * B_{OH}}}$$

$$\Delta OH = \mathbf{0.36} * \frac{R_0}{(\frac{2 * S_{ss} * \mu_0}{B_{OH}^2} - \frac{1}{3})}$$

Project *vs.* ITER
 – 2.18 m *vs.* 2.20 m

CS – Stress Management

- Buckling Cylinder
 - Steel support cylinder around the solenoid protect it from the centering forces on the TFC.

$$F_{R} = \mathbf{1}.\,\mathbf{15} * \frac{\mu_{0} * N_{TFC} * {I_{TF}}^{2}}{2} * \left(1 - \frac{1}{\sqrt{1 - \varepsilon_{p}^{2}}}\right)$$

- Found to be 461 MN
- ITER has 403 MN

Basic Tokamak Magnet Systems

Polodial Field Coils (PFCs)

- The PFCs of a Tokamak are responsible for stabilizing the plasma and keeping it away from the outer first wall.
- Project Values
 - Made out of NbTi
 - $-B_{PFC,max} = 6 T$
 - $-N_{PFC} = 6$
 - $-I_{PFC,max} = 52 \text{ kA}$
 - Conductor Length: 61.4 km

Basic Tokamak Magnet Systems

Correction Coils (CCs)

 The Correction Coils in a Tokamak are responsible for addressing different instability modes.

- Project Values
 - Made of NbTi
 - Conductor Length = 8.2 km
 - ICC = 7.5 kA

Magnet Cooling Systems

- Liquid Helium is used to cool the superconductors
- Cooling System has dedicated pumps for the CS, TFCs, PFCs, CCs
- Supercritical helium stored in various reservoirs which pumps the helium through a heat exchanger

Magnet Cooling Systems

- Scaling from ITER's cooling power requirements according to conductor length:
 - CS: 12.3 kW
 - TFC: 27.7 kW
 - PFC: 21.3 kW

– CC: 2.8 kW

Major Challenges

- Cool-down time
 - Due to superconductor sensitivity, cooling the magnets from 300 K to 4.5 K takes about 2-3 days
- Superconductor Compression
 - Nb₃Sn superconductors are susceptible to crushing into each other which compromises their function

Major Challenges

- Manufacturing
 - Due to the sizes it is necessary to consider location of construction (on site or shipping).
- Assembly and operation
 - Since ITER will be the first project of this scale, a lot needs to be learned from this assembly.

Magnetic System	# Coils	Structural Material	Conductor	Conductor Length
CS	N/A	316 SS	Nb ₃ Sn	35.6 km
TFC	16	316 SS	Nb ₃ Sn	78.0 km
PFC	6	316 SS	NbTi	61.4 km
СС	N/A	N/A	NbTi	8.2 km

Magnetic System	Maximum Field	Operating Current	Cooling Power	Stored Energy	System Weight
CS	13 T	46 kA	12.3 kW	6.4 GJ	~1000 tonnes
TFC	11.5 T	68 kA	27.7 kW	41 GJ	~5160 tonnes
PFC	6 Т	52 kA	21.3 kW	N/A	~2000 tonnes
CC	N/A	7.5 kA	2.8 kW	N/A	~80 tonnes

References

- [1] ITER Design Team, "ITER Technical Basis," ITER EDA Documentation Series 24, ITER, 2002.
- [2] M. Huguet, I. Team and I. Teams, 'Key engineering features of the ITER-FEAT magnet system and implications for the R&D programme', *Nucl. Fusion*, vol. 41, no. 10, pp. 1503-1513, 2001.
- [3] H. Rajainmaki, A. Foussat, J. Rodriguez, D. Evans, J. Fanthome, M. Losasso, V. Diaz, "The ITER pre-compression rings A first in cryogenic composite technology," in AIP Conference Proceedings, AIP Publishing, 2014.
- [4] Mitchell, Neil, Pierre Bauer, Denis Bessette, Arnaud Devred, Remy Gallix, C. Jong, J. Knaster et al. "Status of the ITER magnets." *Fusion Engineering and Design* 84, no. 2 (2009): 113-121.
- [5] W. M. Stacey, Fusion An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Wiley-VCH, 2011.
- [6] American Elements, "Niobium Tin Alloy." American Elements, website, 2015. Retrieved from: https://www.americanelements.com/niobium-tin-alloy-12035-04-0.
- [7] Engineering ToolBox, "Metals and Alloys Densities." Engineering ToolBox, website, 2015. Retrieved from: http://www.engineeringtoolbox.com/metal-alloys-densitiesd50.html.

References

- [7] AzO Materials, "Stainless Steel Grade 316 (UNS S31600)." AzO Materials, website, 2015. Retrieved from: <u>http://www.azom.com/properties.aspx?ArticleID=863</u>.
- [8] A. Foussat, P. Libeyre, N. Mitchell, Y. Gribov, C. Jong, D. Bessette, R. Gallix, P. Bauer and A. Sahu, 'Overview of the ITER Correction Coils Design', *IEEE Trans. Appl. Supercond.*, vol. 20, no. 3, pp. 402-406, 2010.
- [9] Mitchell, Neil, Pierre Bauer, Denis Bessette, Arnaud Devred, Remy Gallix, C. Jong, J. Knaster et al. "Status of the ITER magnets." *Fusion Engineering and Design* 84, no. 2 (2009): 113-121.
- [10] Hyperphysics.phy-astr.gsu.edu, 'Superconducting Magnets', 2015.
 [Online]. Available: http://hyperphysics.phyastr.gsu.edu/hbase/solids/scmag.html#c2. [Accessed: 07- Dec- 2015].
- [11] ITER Technical Basis, ITER EDA Documentation Series No. 24, IAEA Vienna, 2002.
- [12] M. Holm and L. Pori Oy, 'Industrial Manufacturing of Low Temperature Superconducting (LTS) wires', European Summer School on Superconductivity 2011, 2015.

Division of Work

- Pieter-Bas Bentinck
 - Slides: 3, 5-13, 27
 - Material Responsible for:
 - TFC
 - Stresses
- John Minderman
 - Slides: 4, 14-26
 - Material Responsible for:
 - CS, PFC, CC
 - Cooling