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Basic Tokamak Magnet Systems 
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Superconductor Information 

• Niobium Tin (Nb3Sn) 

• Characteristics: 

– High performance 
(better than NbTi) 

– Very brittle and hard to 
manufacture 

– High costs 

– Used in TFC’s and CS 
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Superconductor Information 

• Niobium Titanium (NbTi) 

– Used in PFC and CC 

– Compared to Nb3Sn [5] 

• Stronger and easier to 
manufacture 

• Lower critical temperature 
and current capacity 

• 50-200 €/kg vs 500-1000 
€/kg  for Nb3SN  
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Torodial Field Coils (TFCs) 

• The principal function of the toroidal field 
coils is to provide a toroidal magnetic field 
that stabilizes the plasma [book] 

• Assumptions 

– Made of Nb3Sn superconductors with I = 68 kA [1] 

– Operating temperature is 4 K 

– Bφ,0 is 6 T, leading to high stability 
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Torodial Field Coils (TFCs) 
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Torodial Field Coils (TFCs) 
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Torodial Field Coils - Forces 

• Critical location of the 
toroidal field coils [1] 

– Highest out-of-plane loads 

– Limited space available 

• Measures against 
centering force: 

– Pre-compression rings 

– Shear keys 

– Wedges 
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Torodial Field Coils – Pre-compression 
rings 
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• Composite pre-
compression rings [3] 

– Make sure keys do not 
become loose 

– Put the TF-coils into 
toroidal compression 

• Outer diameter is about 
5.5 meters 



Torodial Field Coils – Shear keys and 
wedges 

• Shear keys: 

– Prevent development of 
torsion in the TF cases 

• Wedges: 

– Are applied along the full 
radial thickness 

– Space between coils is 
about 11.5 cm on the 
inboard leg 
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Torodial Field Coils – Conductor Length 
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• Approximation: Triangular 
coils with dimensions scaled 
from ITER [4] 

• Estimate the length of a coil: 

   Lcoil = 31.9 m 

•  Lconductor = Ncond*Lcoil * NTF = 
78 km 



Torodial Field Coils (TFCs) – Weight 
estimation 
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Central Solenoid (CS) 

• The Central Solenoid of a Tokamak is 
responsible for creating magnetic pulses to 
get the plasma current high enough to sustain 
operation. 

 

• Assumptions 

– Made with Nb3Sn 

– BOH,max = 13 T 

– IOH,max = 46 kA 
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Central Solenoid (CS) 

• Project Values 

– Rv = 2.00 m 

– ΔOH = 0.18 m 

– Stored Magnetic Energy = 6.4 GJ 

– Conductor Length = 35.6 km 
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CS - Calculations 

• Solenoid Sizing 

 

 

 

 

 

• Project vs. ITER 

– 2.18 m vs. 2.20 m 
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CS – Stress Management 

• Buckling Cylinder 

– Steel support cylinder around the solenoid protect 
it from the centering forces on the TFC. 

 

 

– Found to be 461 MN 

– ITER has 403 MN 
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Polodial Field Coils (PFCs) 

• The PFCs of a Tokamak are responsible for 
stabilizing the plasma and keeping it away 
from the outer first wall. 

• Project Values 

– Made out of NbTi 

– BPFC,max = 6 T 

– NPFC = 6 

– IPFC,max = 52 kA 

– Conductor Length: 61.4 km 
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Correction Coils (CCs) 
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Correction Coils (CCs) 

• The Correction Coils in a Tokamak are 
responsible for addressing different instability 
modes. 

 

• Project Values 

– Made of NbTi 

– Conductor Length = 8.2 km 

– ICC = 7.5 kA 

 
23 



Magnet Cooling Systems 

• Liquid Helium is used to cool the 
superconductors  

• Cooling System has dedicated pumps for the 
CS, TFCs, PFCs, CCs 

• Supercritical helium stored in various 
reservoirs which pumps the helium through a 
heat exchanger 
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Magnet Cooling Systems 

• Scaling from ITER’s cooling power 
requirements according to conductor length: 

– CS: 12.3 kW 

– TFC: 27.7 kW 

– PFC: 21.3 kW 

– CC: 2.8 kW 
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Major Challenges 

• Cool-down time 

– Due to superconductor sensitivity, cooling the 
magnets from 300 K to 4.5 K takes about 2-3 days 

 

• Superconductor Compression 

– Nb3Sn superconductors are susceptible to 
crushing into each other which compromises their 
function 
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Major Challenges 

• Manufacturing 

– Due to the sizes it is necessary to consider location 
of construction (on site or shipping).  

 

• Assembly and operation 

– Since ITER will be the first project of this scale, a 
lot needs to be learned from this assembly. 
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Magnetic 
System 

# Coils 
Structural 
Material 

Conductor 
Conductor 

Length 

CS N/A 316 SS Nb3Sn 35.6 km 

TFC 16 316 SS Nb3Sn 78.0 km 

PFC 6 316 SS NbTi 61.4 km 

CC N/A N/A NbTi 8.2 km 

Magnetic 
System 

Maximum 
Field 

Operating 
Current 

Cooling 
Power 

Stored 
Energy 

System 
Weight 

CS 13 T 46 kA 12.3 kW 6.4 GJ ~1000 
tonnes 

TFC 11.5 T 68 kA 27.7 kW 41 GJ ~5160 
tonnes 

PFC 6 T 52 kA 21.3 kW N/A ~2000 
tonnes 

CC N/A 7.5 kA 2.8 kW N/A ~80 tonnes 
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