
Linear Algebra Lecture Notes
For MATH 1554 at the Georgia Institute of Technology

Greg Mayer
Edition 0.1

Preface

These lecture notes are intended for use in a Georgia Tech undergraduate level
linear algebra course, MATH 1554. In this first edition of the notes, the focus is
on some of the topics not already covered in the Interactive Linear Algebra text.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/..

ii

https://textbooks.math.gatech.edu/ila/

Contents

Preface ii

Contents iii

1 Applications of Matrix Algebra 1
1.1 Block Matrices . 1
1.2 The LU Factorization . 8
1.3 The Leontif Input-Output Model . 15
1.4 2D Computer Graphics . 21
1.5 3D Computer Graphics . 31

iii

Chapter 1

Applications of Matrix Algebra

1.1 Block Matrices
A block matrix is a matrix that is interpreted as having been broken into sections
called blocks, or submatrices. Intuitively, a block matrix can be interpreted as
the original matrix that is partitioned into a collection of smaller matrices. For
example, the matrix

A =


1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

0 0 2 2 2


can also be written as a 2× 2 partitioned (or block) matrix:

A =

(
A1,1 A1,2

A2,1 A2,2

)
where the entries of A are the blocks

A1,1 =

1 1

1 1

1 1

 , A1,2 =

1 0 0

0 1 0

0 0 1

 , A2,1 =
(
0 0

)
, A2,2 =

(
2 2 2

)
We partitioned our matrix into four blocks, each of which have different dimen-
sions. But the matrix could also, for example, be partitioned into five 4×1 blocks,
or four 1 × 5 blocks. Indeed, matrices can be partitioned into blocks in many
different ways, and depending on the application at hand, there can be a parti-
tioning that is useful or needed.

1

Section 1.1

For example, when solving a linear system A~x = ~b to determine ~x, we can con-
struct and row reduce an augmented matrix of the form

X =
(
A ~b

)
The augmented matrix X consists of two sub-matrices, A and ~b, meaning that it
can be viewed as a block matrix. Another application of a block matrix arises
when using the SVD, which is a popular tool used in data science. The SVD uses
a matrix, Σ, of the form

Σ =

(
D 0

0 0

)
Matrix D is a diagonal matrix, and each 0 is a zero matrix. Representing Σ in
terms of sub-matrices helps us see what the structure of Σ is. Another block
matrix arises when introducing a procedure for computing the inverse of an n×n
matrix. To compute the inverse of matrix A, we construct and row reduce the
matrix

X =
(
A I

)
This is an example of a block matrix used in an algorithm. In order to use block
matrices in other applications we need to define matrix addition and multiplica-
tion with partitioned matrices.

Block Matrix Addition

Ifm×nmatricesA andB are partitioned in exactly the same way, then the entries
of their sum is the sum of their blocks. For example, if A and B are the block
matrices

A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
then their sum is the matrix

A+B =

(
A1,1 +B1,1 A1,2 +B1,2

A2,1 +B2,1 A2,2 +B2,2

)
As long as A and B are partitioned in the same way the addition is calculated
block by block.

Page 2

Section 1.1

Block Matrix Multiplication

Recall the row column method for matrix multiplication.

Let A be m× n and B be n× p matrix. Then, the (i, j) entry of AB is

rowiA · colj B.

This is the Row Column Method for matrix multiplication.

Theorem

Partitioned matrices can be multiplied using this method, as if each block were
a scalar provided each block has appropriate dimensions so that products are
defined.

Example 1: Computing A2

Block matrices can be useful in cases where a matrix has a particular structure.
For example, suppose A is the n× n block matrix

A =

(
X 0

0 Y

)
where X and Y are p× p matrices, 0 is a p× p zero matrix, and 2p = n. Then

A2 = AA =

(
X 0

0 Y

)(
X 0

0 Y

)
=

(
X2 0

0 Y 2

)
Computation of A2 only requires computing X2 and Y 2. Taking advantage of the
block structure A leads to a more efficient computation than it otherwise would
have been with a naive row-column method that does not take advantage of the
structure of the matrix.

Page 3

Section 1.1

Example 2: Computing AB

A and B are the matrices

A =

(
1 0 1

0 1 1

)
=
(
A11 A12

)
B =

 2 −1

0 −1

0 1

 =

(
B11

B21

)
where

A11 =

(
1 0

0 1

)
, A12 =

(
1

1

)
, B11 =

(
2 −1

0 −1

)
, B21 =

(
0 1

)
If we compute the matrix product using the given partitioning we obtain

AB =
(
A11 A12

)(B11

B21

)
=
(
A11B11 + A12B21

)
where

A11B11 =

(
1 0

0 1

)(
2 −1

0 −1

)
=

(
2 −1

0 −1

)
A12B21 =

(
1

1

)(
0 1

)
=

(
0 1

0 1

)

Therefore

AB = A11B11 + A12B21 =

(
2 −1

0 −1

)
+

(
0 1

0 1

)
=

(
2 0

0 0

)
Computing AB with the row column method confirms our result.

AB =

(
1 0 1

0 1 1

)2 −1

0 −1

0 1

 =

(
2 + 0 + 0 −1 + 0 + 1

0 + 0 + 0 0− 1 + 1

)
=

(
2 0

0 0

)

Block Matrix Inversion

In some cases, matrix partitioning can be used to give us convenient expressions
for the inverse of a matrix. Recall that the inverse of n× n matrix A is a matrix B,
that has the same dimensions as A and satisfies

Page 4

Section 1.1

AB = BA = I

where I is the n × n identity matrix. As we will see in the next example, we can
use this equation to construct expressions for the inverse of a matrix.

Example 3: Expression for Inverse of a Block Matrix

Recall, using our formula for a 2× 2 matrix,(
a b

0 c

)−1

=
1

ac

(
c −b
0 a

)
=

(
1/a −b/(ac)
0 1/c

)
(1.1)

provided that ac 6= 0. Suppose A, B, and C are invertible n×n matrices. Suppose
we wish to construct an expression for the inverse of the matrix

P =

(
A B

0 C

)
To construct the inverse of P , we can write

PP−1 = P−1P = In

where P−1 is the matrix we seek. If we let P−1 be the block matrix

P−1 =

(
W X

Y Z

)
we can determine P−1 by solving PP−1 = I or P−1P = I . Solving PP−1 = I

gives us:

In = PP−1(
I 0

0 I

)
=

(
A B

0 C

)(
W X

Y Z

)
(
I 0

0 I

)
=

(
AW +BY AX +BZ

CY CZ

)
The above matrix equation gives us a set of four equations that can be solved to
determineW , X , Y , and Z. The block in the second row and first column gives us

Page 5

Section 1.1

CY = 0. It was given that C is an invertible matrix, so Y is a zero matrix because

CY = 0

C−1CY = C−10

IY = 0

Y = 0

Likewise the block in the second row and second column yields CZ = I , so

CZ = I

C−1CZ = C−1I

Z = C−1

Now that we have expressions for Y and Z we can solve the remaining two equa-
tions for W and X . Solving for X gives us the following expression.

AX +BZ = 0

AX +BC−1 = 0

AX = −BC−1

A−1AX = −A−1BC−1

X = −A−1BC−1

Solving for W :

AW +BY = I

AW +B0 = I

A−1AW = A−1I

W = A−1

We now have our expression for P−1:

P−1 =

(
W X

Y Z

)
=

(
A−1 −A−1BC−1

0 C−1

)
Note that in the special case where n = 2 that each of the blocks are scalars and
our expression is equivalent to Equation (1.1).

Page 6

Section 1.1

Summary

In this section we used partitioned matrices to solve problems regarding matrix
invertibility and matrix multiplication. Partitioned matrices can be multiplied
using this method, as if each block were a scalar provided each block has appro-
priate dimensions so that products are defined. They can be used for example
when dealing with large matrices that have a known structure where it is more
convenient to describe the structure of a matrix in terms of its blocks. Although
not part of this text, matrix partitioning can be used to help derive new algorithms
because they give a more concise representation of a matrix and of operations on
matrices.

Exercises

1. Suppose A =
(
Y X

)(X 0

Y Z

)(
X

Y

)
. Which of the following could A be

equal to?

a) A = Y X2 +XYX +XZY

b) A = 2X +XZY

c) A = Y X2 +X + Z

2. A, B, and C are n× n invertible matrices. Construct expressions for X and
Y in terms of A, B, and C.

(
0 X 0

A 0 Y

)B 0

0 A

A 0

 =

(
0 B

A 0

)

3. Suppose A,B and C are invertible n× n matrices, and

P =

(
A 0

B C

)
Give an expression for P−1 in terms of A, B, and C.

Page 7

Section 1.2

1.2 The LU Factorization
To solve a linear system of the form A~x = ~b we could use row reduction or, in
theory, calculate A−1 and use it to determine ~x with the equation

~x = A−1~b

But computing A−1 requires the computation of the inverse of an n × n matrix,
which is especially difficult for large n. It is more practical to solve A~x = ~b with
row reductions (i.e. - Gaussian Elimination). But it turns out that there are more
efficient methods, especially when n is large.

One method for solving linear systems that relies on what is referred to as a ma-
trix factorizations. A matrix factorization, or matrix decomposition is a factor-
ization of a matrix into a product of matrices. Factorizations can be useful for
solving A~x = ~b, or for understanding the properties of a matrix.

In this section, we factor a matrix into lower and into upper triangular matrices
to construct what is known as the LU factorization that is used to solve linear
systems in a systematic and efficient method. Before we introduce the LU factor-
ization, we will first need to introduce lower and upper triangular matrices.

Triangular Matrices

Before we introduce the LU factorization, we need to first define upper and lower
triangular matrices.

Suppose that the entries of m × n matrix A are ai,j . Then A is upper
triangular if ai,j = 0 for i > j. Matrix A is lower triangular if ai,j = 0 for
i < j.

Upper and Lower Triangular Matrices

As an example, all of the matrices below are in upper triangular form.

Page 8

Section 1.2

(
1 5 0

0 2 4

)
,


1 0 0 1

0 2 1 0

0 0 0 0

0 0 0 1

 ,


2 1

0 1

0 0

0 0

 ,

(
0 0 0

0 0 0

)

Notice how all of the entries below the main diagonal are zero, and the entries
on and above the main diagonal can be anything. Likewise, examples of lower
triangular matrices are below.

(
1 0 0

3 2 0

)
,


3 0 0 0

1 1 0 0

0 0 0 0

0 2 0 1

 ,


1 0

1 4

0 1

2 0

 ,

(
0 0 0

0 0 0

)

Again, note that our definition for an upper triangular matrix does not specify
what the entries on or above the main diagonal need to be. Some or all of the
entries above the main diagonal can, for example, be zero. Likewise the entries
on and below the main diagonal of a lower triangular matrix do not have to have
specific values.

The LU Factorization

After stating a theorem that gives the LU decomposition, we will give an algo-
rithm for constructing the LU factorization. We will then see how we can use the
factorization to solve a linear system.

If A is an m × n matrix that can be row reduced to echelon form without
row exchanges, then A = LU , where L is a lower triangular m×m matrix
with 1’s on the diagonal, and U is an echelon form of A.

Theorem: The LU Factorization

Proof
To prove the theorem above we will first show that we can write A = LU where
L is an invertible matrix, and U is an echelon form of A.

Page 9

Section 1.2

Suppose thatm×nmatrix A can be reduced to echelon form U with p elementary
row operations that only add a multiple of a row to another row that is below it.
Then each row operation can be performed by multiplying A with p elementary
matrices.

EpEp−1 · · ·E3E2E1A = U (1.2)

If we let L−1 = EpEp−1 · · ·E3E2E1, then

L−1A = U (1.3)

Note that L−1 = EpEp−1 · · ·E3E2E1 is invertible because elementary matrices are
invertible. Therefore L−1 can be reduced to the identity with a sequence of row
operations. Moreover, if we multiply Equation (1.3) by L we obtain:

LL−1A = LU ⇒ A = LU

Therefore A has the decomposition A = LU where U is an echelon form of A and
L is an invertible m × m matrix. To show that L is lower triangular, recall from
equations (1.2) and (1.3) that

L−1 = EpEp−1 · · ·E3E2E1

Each elementary matrix Ei is lower triangular because to reduce A to U we only
used one type of row operation: adding a multiple of a row to a row below it,
so each Ei is a lower triangular matrix. It can also be shown that the product of
two lower-triangular matrices is a lower triangular matrix, and the inverse of a
lower triangular matrix is lower triangular. This implies that both L−1 and L will
be lower-triangular.

�

Constructing the LU Factorization

To construct the LU factorization of a matrix we must first apply a sequence of
row operations to A in order to reduce A to U . Equation (1.3) gives us that

EpEp−1 · · ·E3E2E1A = L−1A = U, where L−1 = EpEp−1 · · ·E3E2E1

But if L−1L = I , then then the sequence of row operations that reduce A to U will
reduce A to I . This gives us an algorithm for constructing the LU factorization.

Page 10

Section 1.2

Suppose A is an m × n matrix that can be row reduced to echelon form
without row exchanges. To construct the LU factorization:

1. reduce A to an echelon form U by a sequence of row replacement
operations, if possible

2. place entries in L such that the sequence of row operations that re-
duces A to U will reduce L to I

Algorithm: Constructing the LU Factorization of a Matrix

Note that the above procedure will work for anym×nmatrix that can be reduced
to echelon form without row exchanges. Meaning that we do not need A to be
square or invertible to construct its LU factorization.

Example 1: LU of a 3× 2 Matrix

In this example we construct LU factorizations of the following matrix.

A =

1 3

2 10

0 12


Because A is a 3× 2 matrix, the LU factorization has the form

A = LU =

 1 0 0

∗ 1 0

∗ ∗ 1

 ∗ ∗0 ∗
0 0

 (1.4)

Each ∗ represents an entry that we need to compute the value of. To reduce A to
U we apply a sequence of row replacement operations as shown below.

A =

1 3

2 10

0 12

 ∼

1 3

0 4

0 12

 ∼

1 3

0 4

0 0

 = U

Matrix U is the echelon form of A that we need for the LU factorization. We next
construct L so that the row operations that reducedA to U will reduce L to I . Our
row operations were:

R2 − 2R1 → R2 and R3 − 3R2 → R3

Page 11

Section 1.2

With these two row operations, we see that L must be the matrix:

L =

1 0 0

2 1 0

0 3 1


Note that the row operations R2−2R1 → R2 and R3−3R2 → R3 applied to L will
give us the identity. The LU factorization of A is

A =

1 0 0

2 1 0

0 3 1

1 3

0 4

0 0



Solving Linear Systems with the LU Factorization

Our motivation for introducing the LU factorization was to introduce an efficient
method for solving linear systems. Given rectangular matrix A and vector ~b, we
wish to use the LU factorization of A to solve A~x = ~b for ~x. A procedure for doing
so is below.

To solve A~x = ~b for ~x:
1. Construct the LU decomposition of A to obtain L and U .

2. Set U~x = ~y. Forward solve for ~y in L~y = ~b.

3. Backwards solve for ~x in U~x = ~y.

Algorithm

Example 2: Solving a Linear System With LU

In this example we will solve the linear system A~x = ~b given the LU decomposi-
tion of A.

A = LU =


1 0 0 0

1 1 0 0

0 2 1 0

0 0 3 1




1 4 1

0 1 1

0 0 2

0 0 0

 , ~b =


2

3

2

0


Page 12

Section 1.2

We first set U~x = ~y and solve L~y = ~b. Reducing the augmented matrix (L |~b)
gives us:

1 0 0 0 2

1 1 0 0 3

0 2 1 0 2

0 0 3 1 0

 ∼


1 0 0 0 2

0 1 0 0 1

0 2 1 0 2

0 0 3 1 0

 ∼


1 0 0 0 2

0 1 0 0 1

0 0 1 0 0

0 0 3 1 0

 ∼


1 0 0 0 2

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0


Therefore, ~y is the vector

~y =


2

1

0

0

 .

We now solve U~x = ~y.
1 4 1 2

0 1 1 1

0 0 2 0

0 0 0 0

 ∼


1 4 0 2

0 1 0 1

0 0 1 0

0 0 0 0

 ∼


1 0 0 −2

0 1 0 1

0 0 1 0

0 0 0 0


The solution to the linear system, ~x, is the vector

~x =

−2

1

0



Final Notes on The LU Factorization

In our treatment of the LU factorization we constructed the LU decomposition
using the following process.

1. reduce A to an echelon form U by a sequence of row replacement opera-
tions, if possible

2. place entries in L such that the same sequence of row operations reduces L
to I

Certainly there is much more to the LU factorization than what was presented
in this section. There are for example other methods for constructing A = LU

Page 13

Section 1.2

that you may encounter in future courses or project you are working on. In our
approach, the only row operation we use to construct L and U is to replace a
row with a multiple of a row above it. Multiplying a row by a non-zero scalar is
not needed, but more importantly, we cannot swap rows. More advanced linear
algebra and numerical analysis courses would address this significant limitation.

Exercises

1. Construct the LU Factorizations for the following matrices.

a) A =

(
−1 5 3

1 −10 −3

)

b) A =

1 5

2 10

0 60



c) A =

2 1 0

4 3 1

0 −1 2


2. Show that the product of two n×n lower triangular matrices is lower trian-

gular.

3. Show that the inverse of an n× n lower triangular matrix is also n× n and
lower triangular.

Page 14

Section 1.3

1.3 The Leontif Input-Output Model
Input–output models are used in economics to model the inter-dependencies be-
tween different sectors of an economy. Wassily Leontief (1906–1999) is credited
with developing the type of analysis that we explore in this chapter. His work on
this model earned a Nobel Prize in Economics.

The input-output model assumes that there are sectors in an economy that pro-
duce a set of desired products to meet an external demand. The model also as-
sumes that the sectors themselves will also demand a portion of the output that
the sectors produce. If the sectors produce exactly the number of units to meet
the external demand, then we have the equation

(sector output)− (internal consumption) = (external demand)

In this section we will see that this equation is a linear system that can be solved
to determine the output the economy needs to produce to meet the external de-
mand.

Example 1: The Internal Consumption Matrix

Suppose an economy that has two sectors: manufacturing (M) and energy (E).
Both of the sectors produce an output to meet an external demand (D) for their
products. Sectors M and E also require output from each other to produce their
output. The way in which they do so is described in the diagram below.

M

D

E

0.2

0.4

4 12
0.1

0.3

The numbers in the above diagram can be interpreted as follows.

Page 15

Section 1.3

• For every 100 units that sector M creates, M requires 40 units from M and
10 units from E.

• For every 100 units that sector E creates, E requires 20 units from M and 30
units from E.

• An external demand (D) requires 4 units from M and 12 units from E.

In other words, if M were to create xM units, then M would consume 0.4xM units
from M and 0.1xM units from E. The consumption from sector M could be repre-
sented with a vector.

consumption from M =

(
0.4xM
0.1xM

)
=
xM
10

(
4

1

)
Likewise, the consumption from sector E would be

consumption from E =
xE
10

(
3

2

)
Adding these vectors together gives us the total internal consumption from both
sectors.

total internal consumption =
xM
10

(
4

1

)
+
xE
10

(
3

2

)
=

1

10

(
4 2

1 3

)(
xM
xE

)
= C~x, where C =

1

10

(
4 2

1 3

)
, ~x =

(
xM
xE

)
Matrix C is called the consumption matrix. Typically its entries are between 0
and 1, and the sum of the entries in each column of C will be less than 1. Vector ~x
is the output of the sectors. If the sectors produce exactly the number of units to
meet the external demand, then we have the equation

(sector output)− (internal consumption) = (external demand) (1.5)

~x− C~x = ~d (1.6)

Page 16

Section 1.3

In our example, vector ~d =

(
4

12

)
, and ~x−C~x = (I−C)~x. This simplifies Equation

(1.6) to

(I − C)~x = ~d (1.7)((
1 0

0 1

)
− 1

10

(
4 2

1 3

))(
xM
xE

)
=

(
4

12

)
(1.8)(

0.6 −0.2

−0.1 0.7

)(
xM
xE

)
=

(
4

12

)
(1.9)

This is a linear system with two equations, whose solution gives us the output
vector that balances production with demand. Expressing the system as an aug-
mented matrix and using row operations yields the solution as shown below.(

.6 −.2 4

−0.1 0.7 12

)
∼
(
−1 7 120

6 −2 40

)
∼
(
−1 7 120

0 40 760

)
∼
(

1 0 13

0 1 19

)

The unique solution to this linear system is ~x =

(
13

19

)
. This is the output that

sectors M and E would need to produce to meet the external demand exactly.

Example 2: An Economy with Three Sectors

Suppose an economy that has three sectors: X, Y, and Z. Each of these sectors
produce an output to meet an external demand (D) for their products. The way
in which they do so is described in the diagram below.

YX Z

D

0.2

16

0.2

24

0.4 0.4

0.4

4

Page 17

Section 1.3

The external demand, D, is requiring 24 units from X, 4 units from Y, and 16 units
from Z. Our goal is to determine how many units the sectors need to produce in
order to satisfy this demand, while also accounting for internal consumption.

If Sector X were to create xX units, then it would consume 0.2xX units from X and
0.4xX units from Y. This consumption could be represented by the vector

consumption from Sector X =

0.2xX
0.4xX
0xX

 =
xX
10

2

4

0


Likewise, the consumption from the other two sectors are

consumption from Sector Y =
xY
10

0

4

0


consumption from Sector Z =

xZ
10

0

4

2


Adding these three vectors together gives us the total internal consumption from
all sectors and the consumption matrix C.

total internal consumption =
xX
10

2

4

0

+
xY
10

0

4

0

+
xZ
10

0

4

2


=

1

10

2 0 0

4 4 4

0 0 2

xXxY
xZ


= C~x, where C =

1

10

2 0 0

4 4 4

0 0 2

 , ~x =

xXxY
xZ


Each of the sectors in our economy are producing units to satisfy an external
demand. The difference between the output and the internal consumption will
represent the number of units produced to meet external demand.

remaining units to meed demand = (sector output)− (internal consumption)

= ~x− C~x
= (I − C)~x

Page 18

Section 1.3

If the sectors are to meet the needs of the external demand exactly, the demand
would need to equal the number of units produced after internal consumption is
taken into account. That is, we need that

(I − C)~x = ~d

This is a linear system that can be solved for the output vector, ~x. This could be
computed using an augmented matrix.

(
I − C ~d

)
=

 0.8 0 0 24

−0.4 0.6 −0.4 4

0 0 0.8 16


∼

 8 0 0 240

−4 6 −4 40

0 0 8 160


∼

 1 0 0 30

−4 6 −4 40

0 0 1 20


∼

 1 0 0 30

0 1 0 40

0 0 1 20


A helpful trick when reducing these matrices by hand is to multiply each row by
10 to make the algebra a bit less tedious. The above augmented matrix is in row
reduced echelon form, and indicates that the desired output is

~x =

30

40

20



Exercises

1. Consider the production model ~x = C~x+~d for an economy with two sectors,

where C =

(
.0 .5

.6 .2

)
, and ~d =

(
5

3

)
.

a) Construct the augmented matrix that can be used to calculate ~x.

Page 19

Section 1.3

b) Solve your linear system for ~x.

2. A model for an economy consists of four sectors, W, X, Y, and Z, and an ex-
ternal demand, D. The relationships between them are given in the diagram
below.

W X Y

Z

D

0.1

18

0.2

0.10.1

3

0.1

27

0.2 0.2

0.2

Sector Z provides resources to the other sectors internally. There is no ex-
ternal demand from D for the output from Z.

a) Construct the augmented matrix which can be used to solve the sys-
tem for the output that would meet the external demand exactly while
accounting for internal consumption between the four sectors.

b) Solve your augmented matrix to determine the desired output vector.

Page 20

Section 1.4

1.4 2D Computer Graphics
Linear transformations are often used in computer graphics to simulate the mo-
tion of an object. They can be modeled with a matrix-vector product of the form

T (~x) = A~x

where ~x is a vector that represents a point that is transformed to the vector A~x.
The matrix-vector product A~x is a transformation that acts on the vector ~x to
produce a new vector,~b = A~x, and if we set the function T (~x) to be

T (~x) = A~x = ~b

then T maps the vector ~x to vector~b. The nature of the transform is described by
matrix A.

Translations are a type of transformation needed in computer graphics. But trans-
lations are not a linear transformation because they do not leave the origin fixed.
How might we use matrix multiplication in order to perform such transforma-
tions? In this section we answer this question by introducing homogeneous co-
ordinates, which allow for more general transformations to be computed with
linear algebra.

Homogeneous Coordinates

Homogeneous coordinates are a tool that can be used to model translations.

Each point (x, y) in R2 can be identified with the point (x, y, 1), on the plane
in R3 that lies 1 unit above the xy-plane.

Definition: Homogeneous Coordinates in R2

For example, a translation of the form (x, y)→ (x + h, y + k) is a transformation.
The parameters h and k adjust the location of the point (x, y) after the transfor-
mation. This transform can be represented as a matrix multiplication with homo-

Page 21

Section 1.4

geneous coordinates in the following way. 1 0 h

0 1 k

0 0 1

x

y

1

 =

x+ h

y + k

1


The first two entries can be extracted from the output of the transform to obtain
the coordinate of the translated point. The following examples demonstrate how
homogeneous coordinates can be used to create more general transforms.

Example 1: A Composite Transform with Translation

Suppose the transformation T (~x) reflects points in R2 across the line x2 = x1 and
then translates them by 2 units in the x1 direction and 3 units in the x2 direction.
In this example we will use homogeneous coordinates to construct a matrix A so
that T = A~x.

With homogeneous coordinates the point (x, y) may be represented by the vectorxy
1


Points in R2 can be reflected across the line x2 = x1 using the standard matrix

Ar =

(
0 1

1 0

)
With homogeneous coordinates our point is represented with a vector in R3, so
we use the block matrix

A1 =

(
Ar 0
0 1

)
=

0 1 0

1 0 0

0 0 1


The symbol 0 denotes a matrix of zeroes. In this case, either a 1 × 2 matrix or a
2 × 1 matrix. Then the matrix-vector product below produces the needed trans-
formation.

A1~x =

0 1 0

1 0 0

0 0 1

xy
1

 =

yx
1


Page 22

Section 1.4

Note that the x1 and x2 coordinates have been swapped, as required for the re-
flection through the line x2 = x1. The matrix below will perform the translation
we need.

A2 =

1 0 2

0 1 3

0 0 1


The product below will apply the translation, of 2 units in the x1 direction and 3

units in the x2 direction, to the reflected point.

T (~x) = A2(A1~x) = A2A1~x =

1 0 2

0 1 3

0 0 1

yx
1

 =

y + 2

x+ 3

1


Therfore, our standard matrix is

A = A2A1 =

1 0 2

0 1 3

0 0 1

0 1 0

1 0 0

0 0 1

 =

0 1 2

1 0 3

0 0 1



Example 2: Rotation About the Point (0,1)

Triangle S is determined by the points (1, 1), (2, 3), (3, 1). Transform T rotates
these points by π/2 radians counterclockwise about the point (0, 1). Our goal is
to use matrix multiplication to determine the image of S under T .

A sketch of the triangle before and after the rotation is in the diagram below.

x1

x2

1 2 3

1

2

3

We need a way to calculate the locations of the points after the transformation.
The rotation can be calculated by first representing each point by a vector in ho-
mogeneous coordinates, and then multiplying the vectors by a sequence of ma-
trices that perform the needed transformation. The transformations will first shift

Page 23

Section 1.4

the points in a way so that the rotation point is about the origin. We will then ro-
tate about the origin by the desired about. And then we move the rotated points
up by one unit to account for the initial translation.

Step 1: Shift Points Down by 1 Unit
In homogeneous coordinates our three points can be represented by the vectors
below.

~a =

1

1

1

 , ~b =

2

3

1

 , ~c =

3

1

1


Multiplying each vector by the matrix

A1 =

1 0 0

0 1 −1

0 0 1


shifts the points down by one unit.

~a =

1

1

1

→ A1~a =

1 0 0

0 1 −1

0 0 1

1

1

1

 =

1

0

1


~b =

2

3

1

→ A1
~b =

1 0 0

0 1 −1

0 0 1

1

1

1

 =

2

2

1


~c =

3

1

1

→ A1~c =

1 0 0

0 1 −1

0 0 1

1

1

1

 =

3

0

1


Note the difference between the input and output vectors. The second entry of the
output vectors is one less than their corresponding entries in the input vectors.
Our translated triangle and rotation point is shown below.

x1

x2

1 2 3

1

2

3

Page 24

Section 1.4

With this transform, the rotation point also moves down one unit, from (0, 1) to
the origin (0, 0).

Step 2: Rotate About (0,0)

Rotating the translated points by π/2 radians about the origin can be calulated by
multiplying the three vectors by the matrix

A2 =

0 −1 0

1 0 0

0 0 1


This gives us three new points.

~a =

1

1

1

→ A2A1~a =

0 −1 0

1 0 0

0 0 1

1

0

1

 =

0

1

1


~b =

2

3

1

→ A2A1
~b =

0 −1 0

1 0 0

0 0 1

2

2

1

 =

−2

2

1


~c =

3

1

1

→ A2A1~c =

0 −1 0

1 0 0

0 0 1

3

0

1

 =

0

3

1


Finally, to undo the initial translation that placed the rotation point at the origin,
we need to translate our points up by one unit.

Step 3: Translate Points Up One Unit
Translating the data up by one unit can be accomplished by multiplying the three
vectors by the matrix

A3 =

1 0 0

0 1 1

0 0 1



Page 25

Section 1.4

This gives us three new points.

~a =

1

1

1

→ A3A2A1~a =

1 0 0

0 1 1

0 0 1

0

1

1

 =

0

2

1


~b =

2

3

1

→ A3A2A1
~b =

1 0 0

0 1 1

0 0 1

−2

2

1

 =

−2

3

1


~c =

3

1

1

→ A3A2A1~c =

1 0 0

0 1 1

0 0 1

0

3

1

 =

0

4

1


Our rotated and translated triangle is shown below.

x1

x2

1 2 3−1−2−3

1

2

3

Therefore the standard matrix that performs a rotation by π/2 degrees about (0, 1)

is the matrix

A = A3A2A1 =

1 0 0

0 1 1

0 0 1

0 −1 0

1 0 0

0 0 1

1 0 0

0 1 −1

0 0 1

 =

0 −1 1

1 0 1

0 0 1


Our result can be verified by calculating A~a, A~b, or A~c.

Example 3: A Reflection Through The Line x2 = x1+3

In this example we construct the 3×3 standard matrix, A, that uses homogeneous
coordinates to reflect points in R2 across the line x2 = x1 + 3. We will confirm
that our results are correct by calculating T (~x) = A~x for any point ~x that uses
homogeneous coordinates.

Page 26

Section 1.4

The standard matrix A will be the product of three matrices that translate and re-
flect points using homogeneous coordinates. The first matrix will translate points
in some way so that the line about which we are reflecting will pass through the
origin. We can use

A1 =

1 0 0

0 1 −3

0 0 1


This matrix will shift points down three units so that the line x2 = x1 + 3 will
pass through the origin. Note that at this point we could have also used a matrix
that, for example, shifts to the right by three units. The second matrix will reflect
points through the shifted line, which is x2 = x1. Recall that the matrix(

0 1

1 0

)
will reflect vectors in R2 through the line x2 = x1. This is because any point with
coordinates (x1, x2) can be represented with the vector

~x =

(
x1
x2

)
and (

0 1

1 0

)(
x1
x2

)
=

(
x2
x1

)
The point (x1, x2) is mapped to (x2, x1), which is a reflection through the line
x2 = x1 in R2. The standard matrix for this transformation in homogeneous coor-
dinates is

A2 =

0 1 0

1 0 0

0 0 1


Our final transformation shifts points back up by three units to undo the initial
translation.

A3 =

0 1 0

1 0 3

0 0 1


The standard matrix for the transformation that reflects points in R2 across the
line x2 = x1 + 3 is

A = A3A2A1 =

0 1 0

1 0 3

0 0 1

0 1 0

1 0 0

0 0 1

1 0 0

0 1 −3

0 0 1

 =

0 1 −3

1 0 3

0 0 1


Page 27

Section 1.4

We can check whether our work is correct by transforming any point (x1, x2) with
the above standard matrix. For example, the point (1, 1) is transformed by calcu-
lating

T (~x) = A~x =

0 1 −3

1 0 3

0 0 1

1

1

1

 =

−2

4

1


The reflected point is (−2, 4). The line of reflection, initial point, and the reflected
point are shown below.

x1

x2

(1, 1)

(−2, 4)

0 2 4−2−4

2

4

The Data Matrix

The examples in this section have only involved a small number points that need
to be transformed. For problems involving many points, it may be more conve-
nient to represent the points in what we refer to as a data matrix. For example, the
shape in the figure below is determined by five points, or vertices, d1, d2, . . . , d5.
Their respective homogeneous coordinates can be stored in the columns of a ma-
trix, D.

D =
(
~d1 ~d2 ~d3 ~d4 ~d5

)
=

2 2 3 4 4

1 2 3 2 1

1 1 1 1 1


For our purposes, the order in which the points are placed into D is arbitrary.

Page 28

Section 1.4

x1

x2

d1

d2

d3

d4

d5

0 1 2 3 4

1

2

3

In the previous examples we applied a transform with a matrix-vector multipli-
cation. With a data matrix we can use a similar approach. Recall that the product
of two matrices A and D, is defined as

AD = A
(
~d1 ~d2 · · · ~dp

)
=
(
A~d1 A~d2 · · · A~dp

)
where ~d1, ~d2, · · · , ~dp are the columns of D. In other words, can perform the trans-
formation on our data by computing AD, which transforms each column inde-
pendently of the others.

For example, applying the transform in the previous example will reflect our
shape through the line x2 = x1 + 3. The transformation is found by computing

AD =

0 1 −3

1 0 3

0 0 1

2 2 3 4 4

1 2 3 2 1

1 1 1 1 1

 =

−2 −1 0 −1 −2

5 5 6 7 7

1 1 1 1 1


Extracting the first two entries of each column of the result gives us the trans-
formed points (green), as shown in the figure below.

x1

x2

d1

d2

d3

d4

d5

0−2−4 2 4

2

4

8

Page 29

Section 1.4

Exercises

1. Construct the standard matrices for the following transforms.

a) The standard matrix of the transform ~x→ A~x that reflects points in R2

across the line x1 = k.

b) The standard matrix of the transform ~x → A~x that rotates points in
R2 about the point (1, 1) and then reflects points through the the line
x2 = 1.

Page 30

Section 1.5

1.5 3D Computer Graphics
Results from the previous section on 2D graphics have a natural extension to
three dimensions. In this section we extend the data matrix and homogeneous
coordinates to three dimensions. This will allow us to model translations and
composite transforms involving many points with matrix multiplication.

Rotations in 3D

Rotations about the origin are linear transforms. Because they are linear they can
be expressed in the form T (~x) = A~x where A is a 3× 3 matrix, and we can obtain
the columns of matrix A by transforming the standard vectors

~e1 =

1

0

0

 , ~e2 =

0

1

0

 , ~e3 =

0

0

1


We will use the convention that a positive rotation is in the counterclockwise
direction when looking toward the origin from the positive half of the axis of
rotation. For example, rotating ~e1 about the x3-axis by θ radians results in the
vector

T (~e1) =

cos θ

sin θ

0


Transforming the first standard vector ~e1 yields the first column of A. Likewise
the remaining columns can be found by transforming the other standard vectors.

T (~e2) =

− sin θ

cos θ

0

 , T (~e3) =

0

0

1


The third standard vector does not change under this transformation because it is
parallel to the rotation axis. The standard matrix for a rotation about the x3-axis
is

A =
(
T (~e1) T (~e2) T (~e3)

)
=

cos θ − sin θ 0

sin θ cos θ 0

0 0 1


Page 31

Section 1.5

A similar analysis gives us the standard matrices for rotations about the x1 and
the x2 axes. Results are summarized in Table 1.1. The standard matrices in the
table can be multiplied together to model transforms that perform multiple trans-
formations. The next example demonstrates this application.

rotation axis standard matrix

x1-axis

1 0 0
0 cos θ − sin θ
0 sin θ cos θ



x2-axis

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



x3-axis

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Table 1.1: Standard matrices for 3D rotations about the coordinate axes.

Example 1: 3D Rotations

Suppose that the transform ~x → A~x first rotates points in R3 about the x2-axis
by π/2 radians and then rotates points about the x1-axis by π radians. We can
determine the standard matrix, A, for this transform in a few different ways. One
approach is to use the standard matrices in Table 1.1. The standard matrix, A, is
the product of two rotation matrices.

A =

1 0 0

0 cos π − sin π

0 sinπ cosπ

cos(π/2) 0 − sin(π/2)

0 1 0

sin(π/2) 0 cos(π/2)

 =

 0 0 −1

0 −1 0

−1 0 0


Note that the rotation about the x2-axis is applied before the rotation about the
x1-axis, which determines the multiplication order. The standard matrix for the
first transformation is placed in the rightmost position.

We could also obtain the same result by transforming the standard vectors, be-
cause A =

(
T (~e1) T (~e2) T (~e3)

)
. The first standard vector gives us the first col-

Page 32

Section 1.5

umn of A.

~e1 =

1

0

0

→
0

0

1

→
 0

0

−1


This result agrees with our result obtained above by multiplying rotation ma-
trices together. Note also that our convention is that a positive rotation is in the
counterclockwise direction when looking toward the origin from the positive half
of the axis of rotation.

The Data Matrix for 3D Transforms

Similar to the 2D case, for problems involving many points it is convenient to
represent the points a data matrix. Analogous to our approach in 2D, points in
R3 can be represented in a matrix whose columns are vectors that correspond to
the points we wish to transform. We may transform this matrix with a matrix-
vector multiplication. Recall that the product of two matrices A and D, is defined
as

AD = A
(
~d1 ~d2 · · · ~dp

)
=
(
A~d1 A~d2 · · · A~dp

)
where ~d1, ~d2, · · · , ~dp are the columns of D. In other words, can perform the trans-
formation on our data by computing AD, which transforms each column inde-
pendently of the others. The following example demonstrates this approach.

Example 2: A Projection in 3D with the Data Matrix

x1 x2 x3
1 1 1
1 2 1
2 2 1
2 1 1
1 1 2
1 2 2
2 2 2
2 1 2

Table 1.2: Corners of a cube with side length 1.

Page 33

Section 1.5

Data in Table (1.2) define a cube in R3 with side length 1. Suppose the linear
transform T (~x) projects points in R3 onto the x1x2-plane. In this example we
will construct the matrix, A, that is the standard matrix of the transformation
T (~x) = A~x.

The data in Table (1.2) (blue) and its projection (green) are shown Figure (1.2).

x1
x2

x3

Figure 1.1: Data from Table (1.2) and its projection onto the x1x2-plane.

Because the given transform that we are dealing with in this example is linear, we
can express the transform in the form of a matrix-vector product

T (~x) = A~x

where A is a 3× 3 matrix. Moreover, because we are working with a linear trans-
form, each column of A is equal to the product

A~ei, i = 1, 2, 3

and ~ei is a standard vector. For example, the first column of A can be found using
~e1, which is the vector

~e1 =

1

0

0


Projecting ~e1 onto the x1x2-plane does not change the vector, because the vector
is already in that plane.

~e1 → A~e1 = ~e1 = first column of A

The first column of A is ~e1. Likewise, the second column of A is ~e2, becuase ~e2 is
also already in the x1x2-plane.

~e2 =

0

1

0

→ A~e2 = ~e2 = second column of A

Page 34

Section 1.5

The last column ofA is the projection of ~e3 onto the plane, which is the zero vector.

~e3 =

0

0

1

→ A~e3 =

0

0

0

 = third column of A

Combining our results for each column of A gives us the standard matrix.

A =

1 0 0

0 1 0

0 0 0


Now that we have the standard matrix for this transform, we can use it to trans-
form the data in Table 1. Representing each point as a vector in R3 and placing
the vectors in a data matrix, D, will allow us to compute the projection using a
matrix multiplication. Our matrix D is

D =

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2


The transformed points can be computed as follows.

AD =

1 0 0

0 1 0

0 0 0

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

 =

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

0 0 0 0 0 0 0 0


Extracting the columns of the product gives us the projected points.

3D Homogeneous Coordinates

Homogeneous coordinates in 3D are analogous to the homogeneous 2D coordi-
nates we introduced in the previous section.

(X, Y, Z, 1) are homogeneous coordinates for (x, y, z) in R3

Homogeneous Coordinates in R3

Page 35

Section 1.5

A translation of the form (x, y, z) → (x + h, y + k, z + l) can be represented as a
matrix multiplication with homogeneous coordinates:


1 0 0 h

0 1 0 k

0 0 1 l

0 0 0 1



x

y

z

1

 =


x+ h

y + k

z + l

1



Example 3: A Translation in 3D

The data in Table (1.2) can be translated using a homogeneous coordinate system.
The data matrix Dn in homogeneous coordinates would be

Dh =


1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1


The transform that, for example, shifts the data by −3 units in the x2 direction
and by 1 unit in the x3-direction is

1 0 0 0

0 1 0 −3

0 0 1 1

0 0 0 1

Dh =


1 1 2 2 1 1 2 2

−2 −1 −1 −2 −2 −1 −1 −2

2 2 2 2 3 3 3 3

1 1 1 1 1 1 1 1


The figure below shows the original data (blue) and its translated version (green).

x1

x2

x3

Page 36

Section 1.5

Exercises

1. Construct the standard matrices for the following transforms.

a) The 4× 4 standard matrix of the transform ~x→ A~x that uses homoge-
neous coordinates to reflect points in R3 across the plane x3 = k, where
k is any real number.

b) The 3× 3 standard matrix of the transform ~x→ A~x that reflects points
in R3 across the plane x1 + x2 = 0.

c) The 3 × 3 standard matrix of the transform ~x → A~x that first rotates
points in R3 about the x3-axis by an angle θ and then projects them
onto the x2x3-plane.

2. Line L passes through the point (1, 0, 0) and is parallel to the vector ~v, where

~v =

0

1

0


Construct the 4 × 4 matrix that uses homogeneous coordinates to rotate
points in R3 about line L by an angle θ.

Page 37

	Preface
	Contents
	Applications of Matrix Algebra
	Block Matrices
	The LU Factorization
	The Leontif Input-Output Model
	2D Computer Graphics
	3D Computer Graphics

