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Systems of Linear Equations



Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• systems of linear equations

• elementary row operations

• solving linear systems

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• identify coefficients and variables in a linear system

• apply elementary row operations to solve linear systems of equations



A Single Linear Equation

A linear equation has the form

a1x1 + a2x2 + · · ·+ anxn = b

a1, . . . , an and b are the coefficients, x1, . . . , xn are the variables or
unknowns, and n is the number of variables.

For example,

• 2x1 + 4x2 = 4 is one equation with two variables

• 3x1 + 2x2 + x3 = 6 is one equation with three variables



Systems of Linear Equations

When we have one or more linear equation, we have a linear system of
equations. For example, a linear system with two equations is

x1 + 1.5x2 + 0.9x3 = 4

5x1 + 7x3 = 5

We might want to know:

• what values of the unknowns satisfy both equations?

• what procedure can we use to identify those values?



The Solution Set

The set of all possible values of x1, x2, . . . xn that satisfy all equations is
the solution set of the system. One point in the solution set is a solution.

Definition: A Solution of a Linear System



Two Variable Case

The equation of the form a1x1 + a2x2 = b defines a line. How many different
ways can two lines intersect?

x1 − 2x2= −1
−x1 + 3x2= 3

x1

x2

(3, 2)

non-parallel lines
exactly one solution

x1 − 2x2= −1
−x1 + 2x2= 1

x1

x2

identical lines
infinitely many solutions

x1 − 2x2= −1
−x1 + 2x2= 3

x1

x2

parallel lines
no solutions



Three Variable Case

The equation a1x1 + a2x2 + a3x3 = b defines a plane. The solution set to a
system of three equations is the set of points were all planes intersect.
How many different ways can three planes intersect?

planes intersect at a point planes intersect on a line parallel planes

•

unique solution infinite number of solutions no solution



Number of Solutions

The solution set to a system of linear equations can only have
• exactly one point (there is a unique solution), or

• infinitely many points (there are many solutions), or

• no points (there are no solutions)

Theorem: the Number of Solutions to a Linear System

Later in this course we will see why these are the only three possibilities.



Row Reduction by Elementary Row Operations

How can we find the solution set to a set of linear equations?

We can manipulate equations in a linear system using row operations.

1. (Replacement/Addition) Add a multiple of one equation to another.

2. (Interchange) Interchange two equations.

3. (Scaling) Multiply an equation by a non-zero scalar.

When we apply these operations to a linear system we do not change the
solution set. Let’s use these operations to solve a system of equations.



Example: Solving a Linear System

Identify the solution set of the linear system.

x1 −7x3 = 8
2x2 −8x3 = 8

2x1 −2x3 = 4



Summary

We explored the following concepts in this video.

• systems of linear equations

• elementary row operations

• applying elementary row operations to solve a linear system
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• augmented matrices

• fundamental questions of existence and uniqueness of solutions

• row equivalence

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• express a set of linear equations as an augmented matrix

• characterize a linear system in terms of the number of solutions, and
whether the system is consistent or inconsistent



Augmented Matrices

It is redundant to write x1, x2, . . . again and again. So we rewrite systems
using matrices. For example,

x1 −2x2 +x3 = 0
2x2 −8x3 = 7

can be written as the augmented matrix,(
1 −2 1 0
0 2 −8 7

)
The vertical line reminds us that the first three columns are the coefficients to
our variables x1, x2, and x3. Row operations can be applied to rows of
augmented matrices as though they were coefficients in a system.



Consistent Systems and Row Equivalence

A linear system is consistent if it has at least one solution.

Definition: Consistent

Two matrices are row equivalent if a sequence of row operations trans-
forms one matrix into the other.

Definition: Row Equivalence

Note: if the augmented matrices of two linear systems are row equivalent,
then the systems have the same solution set.



Example for Consistent Systems and Row Equivalence

Suppose

A =

(
1 1
0 1

)
, B =

(
1 0
0 1

)
, C =

(
1 1
0 0

)
1. Are A and B row equivalent? Are A and C row equivalent?



Example for Consistent Systems and Row Equivalence

Suppose

A =

(
1 1
0 1

)
, B =

(
1 0
0 1

)
, C =

(
1 1
0 0

)

2. Do the augmented matrices

(
1 1 1
0 1 1

)
and

(
1 1 1
0 0 1

)
correspond to

consistent systems?



Summary: Fundamental Questions

In this video we explored the following concepts.

• Augmented matrices, row equivalence, and consistent systems.

• Fundamental questions that we revisit many times throughout our course:

1. Does a given linear system have a solution? In other words, is it consistent?

2. If it is consistent, is the solution unique?
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• echelon form and row reduced echelon form

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• identify whether a matrix is in echelon form or in row reduced echelon
form (RREF)

• give examples of matrices in echelon form or in RREF



Motivation: Identifying a Solution to a Linear System

This matrix below in a form referred to as row reduced echelon form.(
1 0 3
0 1 7

)
By inspection, what is the solution to the linear system?



Definition: Echelon Form

A rectangular matrix is in echelon form if

1. All zero rows (if any are present) are at the bottom.

2. The first non-zero entry (or leading entry) of a row is to the right of any
leading entries in the row above it (if any).

3. All entries below a leading entry (if any) are zero.

Examples
Matrix A is in echelon form. B is not in echelon form.

A =

 2 0 1 1
0 0 5 3
0 0 0 0

 , B =

(
0 0 3
0 0 2

)



Definition: Echelon Form

A matrix in echelon form is in row reduced echelon form (RREF) if

1. All leading entries, if any, are equal to 1.

2. Leading entries are the only nonzero entry in their respective column.

Examples
Matrix A is in RREF. B is not in RREF.

A =

 1 0 0 1
0 0 1 3
0 0 0 0

 , B =

 1 0 6 1
0 0 1 3
0 0 0 0





Example of a Matrix in Echelon Form

� = non-zero number, ∗ = any number
0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 � ∗ ∗
0 0 0 0 0 0 0 0 � ∗
0 0 0 0 0 0 0 0 0 0





Example

Which of the following are in RREF?

a)

(
1 0
0 2

)
d)

(
0 6 3 0

)

b)

(
0 0
0 0

)
e)

(
1 17 0
0 0 1

)

c)


0
1
0
0





Summary: Echelon and RREF

In this video we explored the following concepts.

• echelon and row reduced echelon forms

• identifying whether a matrix is in echelon or in RREF
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• row reduction algorithm

• pivots and pivot columns

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize a linear system in terms of the number of leading entries,
pivots, pivot columns, pivot positions

• apply the row reduction algorithm to reduce a linear system to echelon
form, or to RREF



Definition: Pivot Position, Pivot Column

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the row reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.

Example: Express the matrix in RREF and identify the pivot columns. 0 −3 −6 9
−1 −2 −1 3
−2 −3 0 3





Row Reduction Algorithm

The algorithm we used in the previous example produces a matrix in RREF. Its
steps can be stated as follows.

Step 1: Swap the first row with a lower one so the leftmost nonzero
entry is in the first row

Step 2: Scale the 1st row so that its leading entry is equal to 1

Step 3: Use row replacement so all entries above and below this leading
entry (if any) are equal to zero

Then repeat these steps for row 2, then for row 3, and so on, for the
remaining rows of the matrix.



Notes on the Row Reduction Algorithm

• There are many algorithms for reducing a matrix to echelon form, or to
RREF.

• If we only need to count pivots, we do not need RREF. Echelon form is
sufficient.



Summary: Fundamental Questions

In this video we explored the following concepts.

• pivot, pivot columns, pivot positions

• the row reduction algorithm
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• consistency, existence, uniqueness

• pivots, and basic and free variables

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• determine whether a linear system is consistent from its echelon form

• apply the row reduction algorithm to compute the coefficients of a
polynomial



Basic and Free Variables

Consider the augmented matrix

(
A ~b

)
=

1 3 0 7 0 4
0 0 1 4 0 5
0 0 0 0 1 6


The leading one’s are in first, third, and fifth columns.

• The pivot columns of A are the first, third, and fifth columns

• The corresponding variables of the system A~x = ~b are x1, x3, and x5.
Variables that correspond to a pivot are basic variables.

• Variables that are not basic are free variables. They can take any value.

• The free variables are x2 and x4. Any choice of the free variables leads to
a solution of the system.



Notes on Basic and Free Variables

• Note that a matrix, on its own, does not have basic variables or free
variables. Systems have variables.

• If A has n columns, then the linear system(
A ~b

)
must have n variables. One variable for each column of the matrix.

• There are two types of variables: basic and free. And a variable cannot be
both free and basic at the same time.

n = number of columns of A

= (number of basic variables) + (number of free variables)



Existence and Uniqueness

A linear system is consistent if and only if (exactly when) the last column
of the augmented matrix does not have a pivot. This is the same as
saying that the RREF of the augmented matrix does not have a row of
the form (

0 0 0 · · · 0 | 1
)

Moreover, if a linear system is consistent, then it has
1. a unique solution if and only if there are no free variables, and

2. infinitely many solutions that are parameterized by free variables.

Theorem



Example: Existence and Uniqueness

If possible, determine the coefficients of the polynomial y(t) = a0t+ a1t
2 that

passes through the points that are given in the form (t, y).

a) L(−1, 0) and M(1, 1)

b) P (2, 0), Q(1, 1), and R(0, 2)



Summary: Fundamental Questions

In this video we explored the following concepts.

• augmented matrices and consistent systems

• pivots, and basic and free variables

• fundamental questions that we will revisit throughout the course regarding
consistency, existence, uniqueness
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• vectors in Rn, and their basic properties

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• apply geometric and algebraic properties of vectors in Rn to compute
vector additions and scalar multiplications



Motivation

We want to think about the algebra in linear algebra (systems of equations
and their solution sets) in terms of geometry (points, lines, planes, etc).

x− 3y = −3
2x+ y = 8

This other perspective:

• gives us deeper insight into the properties of systems and their solutions

• requires that we introduce n-dimensional space Rn, and vectors inside it.



Definition of Rn

R denotes the collection of all real numbers.

Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

When n = 1, we get R back: R1 = R. Geometrically, this is the number line.

−3 −2 −1 0 1 2 3



Definition of R2

Note that:

• when n = 2, we can think of R2 as a plane

• every point in this plane can be represented by an ordered pair of real
numbers, its x- and y-coordinates

Example: Sketch the point (3, 2) and the vector

(
3
2

)
.



Vectors as Points in Rn

In the previous slides, we were thinking of elements of Rn as points: in the
line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and
direction.

For example, the vector

(
3
2

)
points horizontally in the amount of its

x-coordinate, and vertically in the amount of its y-coordinate.



Vector Algebra

When we think of an element of Rn as a vector, we write it as a matrix with n
rows and one column. For example, suppose

~u =

(
u1
u2

)
, ~v =

(
v1
v2

)
.

Vectors have the following properties.

1. Scalar Multiples:

c~u =

(
cu1
cu2

)
2. Vector Addition:

~u+ ~v =

(
u1 + v1
u2 + v2

)
Note that vectors in higher dimensions have the same properties.



Parallelogram Rule for Vector Addition

~a

~a+~b

~b



Summary

We explored the following concepts in this video.

• geometric and algebraic properties of vectors in Rn

• vector algebra: compute vector additions and scalar multiplications
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• linear combinations of vectors

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize a set of vectors in terms of linear combinations



Linear Combinations Definition

Given vectors ~v1, ~v2, . . . , ~vp ∈ Rn, and scalars c1, c2, . . . , cp, the
vector ~y, where

~y = c1~v1 + c2~v2 + · · ·+ cp~vp

is called a linear combination of ~v1, ~v2, . . . , ~vp with weights
c1, c2, . . . , cp.

Definition



Linear Combinations Example

Can ~y be represented as a linear combination of ~v1 and ~v2?

~y =

(
1
3

)
, ~v1 =

(
1
1

)
, ~v2 =

(
−1
1

)
Solution
If ~y can be represented as a linear combination of ~v1 and ~v2, we can find c1
and c2 so that c1~v1 + c2~v2 = ~y. The vector equation c1~v1 + c2~v2 = ~y is

c1

(
1
1

)
+ c2

(
−1
1

)
=

(
1
3

)
Can we represent this vector equation as a system of equations?



Linear Combinations Example

Our vector equation c1~v1 + c2~v2 = ~y is

c1

(
1
1

)
+ c2

(
−1
1

)
=

(
1
3

)
This can be written as(

c1
c1

)
+

(
−c2
c2

)
=

(
c1 − c2
c1 + c2

)
=

(
1
3

)
Thus, we have the linear system

c1 − c2 = 1

c1 + c2 = 3

There is a solution to this system, c1 = 2, c2 = 1. Therefore, ~y can be
represented as a linear combination of ~v1 and ~v2.



Linear Combinations Example

We found that 2~v1 + ~v2 = ~y.

x1

x2

~y

~v1~v2

2~v1

~v1

~v2



Geometric Interpretation of Linear Combinations

Any vector in R2 can be represented as a linear combination of two vectors in
R2 that are not multiples of each other.

~0
~u 2~u

~v ~v + ~u ~v + 2~u

2~v + 2~u2~v + ~u2~v2~v − ~u

~v − ~u

−~u

1.5~v − 0.5~u



Linear Combinations Example in R3

Can ~y be represented as a linear combination of ~v1 and ~v2?

~y =

 1
3
1

 , ~v1 =

 1
1
0

 , ~v2 =

−11
0


Solution
If ~y can be represented as a linear combination of ~v1 and ~v2, we can find c1
and c2 so that c1~v1 + c2~v2 = ~y. The vector equation c1~v1 + c2~v2 = ~y is

c1

 1
1
0

+ c2

−11
0

 =

 1
3
1





Linear Combinations Example in R3

Expressing this as a linear system, we obtain

c1 − c2 = 1

c1 + c2 = 3

0c1 + 0c2 = 1

Thus, the system is inconsistent.

• There is no solution to this system.

• There are no values of c1 and c2 so that c1~v1 + c2~v2 = ~y

• ~y cannot be expressed as a linear combination of the other two vectors.



Summary

We explored the following concepts in this video.

• characterizing a set of vectors in terms of linear combinations

• determining whether a given vector can be represented by a linear
combination of a set of vectors
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• the span of a set of vectors

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize a set of vectors in terms of linear combinations and their
span, and how they are related to each other geometrically



Span

Given vectors ~v1, ~v2, . . . , ~vp ∈ Rn, and scalars c1, c2, . . . , cp.
The set of all linear combinations of ~v1, ~v2, . . . , ~vp is called the
span of ~v1, ~v2, . . . , ~vp.

Definition



Span Example

Is ~y in the span of vectors ~v1 and ~v2?

~v1 =

 1
−2
−3

, ~v2 =

 2
5
6

, and ~y =

 7
4
15

.



The Span of Two Vectors in R3

In the previous example, did we find that ~y is in the span of ~v1 and ~v2?

In general: Any two non-parallel vectors in R3 span a plane that passes
through the origin. Any vector in that plane is also in the span of the two
vectors.

~0



Summary

We explored the following concepts in this video.

• characterizing a set of vectors in terms of linear combinations, their
span, and how they are related to each other geometrically
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• matrix notation for systems of equations

• the matrix product A~x

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• compute matrix-vector products

• express linear systems as vector equations and matrix equations



Multiple Representations

“Mathematics is the art of giving the same name to different things.”
- H. Poincaré

In this section we introduce another way of expressing a linear system that we
will use throughout this course.



Notation for Dimensions of Vectors and Matrices

symbol meaning

∈ belongs to

Rn the set of vectors with n real-valued elements

Rm×n the set of real-valued matrices with m rows and n columns

Example
The notation ~x ∈ R5 means that ~x is a vector with five real-valued elements.



Matrix-Vector Product as a Linear Combination

If A ∈ Rm×n has columns ~a1, . . . ,~an and ~x ∈ Rn, then the matrix
vector product A~x is a linear combination of the columns of A.

A~x =

 | | · · · |
~a1 ~a2 · · · ~an
| | · · · |



x1
x2
...
xn

 = x1~a1 + x2~a2 + · · ·+ xn~an

Note that A~x is in the span of the columns of A.

Definition



Linear Combination Examples

Suppose A =

(
1 0
0 −3

)
and ~x =

(
2
3

)
1. The following product can be written as a linear combination of vectors:

A~x =

2. Is ~b =

(
2
9

)
in the span of the columns of A?



Summary

We explored the following concepts in this video.

• computing matrix-vector products

• expressing linear systems as vector equations and matrix equations
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• solution sets

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• express linear systems as vector equations and matrix equations

• characterize solution sets of linear systems using the concepts of span,
linear combinations



Equivalent Solution Sets

Note that if A is a m× n matrix with columns ~a1, . . . ,~an, and ~x ∈ Rn and
~b ∈ Rm, then the solutions to

A~x = ~b

has the same set of solutions as the vector equation

x1~a1 + · · ·+ xn~an = ~b

which as the same set of solutions as the set of linear equations with the
augmented matrix [

~a1 ~a2 · · · ~an ~b
]



Linear Combinations and the Existence of Solutions

The equation A~x = ~b has a solution if and only if ~b is a linear
combination of the columns of A.

Theorem

This follows directly from our definition of A~x being a linear combination of
the columns of A.



Using Linear Combinations to Characterize a System

Example

For what vectors ~b =

 b1
b2
b3

 does the equation have a solution?

 1 3 4
2 8 4
0 1 −2

 ~x = ~b



Multiple Representations of Linear Systems

We now have four equivalent ways of representing a linear system.

1. A list of equations: 2x1 + 3x2 = 7, x1 − x2 = 5

2. An augmented matrix:

(
2 3 7
1 −1 5

)

3. A vector equation: x1

(
2
1

)
+ x2

(
3
−1

)
=

(
7
5

)

4. A matrix equation:

(
2 3
1 −1

)(
x1
x2

)
=

(
7
5

)
Each representation gives us a different way to think about linear systems.



Summary

We explored the following concepts in this video.

• computing matrix-vector products

• expressing linear systems as vector equations and matrix equations

• characterize linear systems and sets of vectors using the concepts of span,
linear combinations, and pivots
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• homogeneous systems

• parametric vector forms of solutions to linear systems

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize homogeneous linear systems using the concepts of free
variables, span, pivots, linear combinations, and echelon forms



Homogeneous Systems

Linear systems of the form A~x = ~0 are homogeneous.

Linear systems of the form A~x = ~b, ~b 6= ~0, are inhomogeneous.

Definition

Because homogeneous systems always have the trivial solution, ~x = ~0, the
interesting question is whether they have non-trivial solutions.



Homogeneous Systems

A~x = ~0 has a nontrivial solution

⇐⇒ there is a free variable

⇐⇒ A has a column with no pivot.

Observation



Example: a Homogeneous System

Identify the free variables, and the solution set, of the system.

x1 + 3x2 + x3 = 0

2x1 − x2 − 5x3 = 0

x1 − 2x3 = 0



Summary

We explored the following concepts in this video.

• characterizing homogeneous and inhomogeneous systems

• relationships between free variables, pivots, and solutions

• identifying free variables of homogeneous systems
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• homogeneous systems

• parametric vector forms of solutions to linear systems

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• express the solution set of a linear system in parametric vector form



Recall: Homogeneous Systems

Linear systems of the form A~x = ~0 are homogeneous.

Linear systems of the form A~x = ~b, ~b 6= ~0, are inhomogeneous.

Definition

These systems are related to each other in a way that is easier to see with
parametric vector form.



Parametric Vector form of the Solution of a
Non-homogeneous System

Write the solution as a sum of vectors. Give a geometric interpretation of the
solution.

x1 + 3x2 + x3 = 4

2x1 − x2 − 5x3 = 1

x1 − 2x3 = 1

Note that the left-hand side is the same as a previous example.



Parametric Forms, Homogeneous Case

In general, suppose the free variables for A~x = ~0 are xk, . . . , xn. Then all
solutions to A~x = ~0 can be written as

~x = xk~vk + xk+1~vk+1 + · · ·+ xn~vn

for some ~vk, . . . , ~vn. This is the parametric form of the solution.



Summary

We explored the following concepts in this video.

• expressing the solution set of a linear system in parametric vector form

• the geometric relationship between the solution to A~x = ~b and A~x = ~0
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• linear independence

• geometric interpretation of linearly independent vectors

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize a set of vectors and linear systems using the concept of linear
independence



A Motivating Question

What is the smallest number of vectors needed in a parametric solution to a
linear system?



Linear Independence

A set of vectors {~v1, . . . , ~vk} in Rn are linearly independent if

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0

has only the trivial solution. It is linearly dependent otherwise.

In other words, {~v1, . . . , ~vk} are linearly dependent if there are real numbers
c1, c2, . . . , ck not all zero so that

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0



How to Establish Linear Independence

Consider the vectors:
~v1, ~v2, . . . ~vk

To determine whether the vectors are linearly independent, we can set the
linear combination to the zero vector:

c1~v1 + c2~v2 + · · ·+ ck~vk =
(
~v1 ~v2 · · · ~vk

)
c1
c2
...
cn

 = V ~c
??
= ~0

Linear independence: there is NO non-zero solution ~c

Linear dependence: there is a non-zero solution ~c.



Example: Determine Whether Set is Independent

For what values of h, if any, is the set of vectors linearly independent?1
1
h

 ,

1
h
1

 ,

h1
1







Summary

We explored the following concepts in this video.

• characterizing a set of vectors using the concept of linear independence
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• linear independence

• geometric interpretation of linearly independent vectors

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize a set of vectors and linear systems using the concept of linear
independence

• construct dependence relations between linearly dependent vectors



A Motivating Question

What is the smallest number of vectors needed in a parametric solution to a
linear system?



Recall: Linear Independence

A set of vectors {~v1, . . . , ~vk} in Rn are linearly independent if

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0

has only the trivial solution. It is linearly dependent otherwise.

In other words, {~v1, . . . , ~vk} are linearly dependent if there are real numbers
c1, c2, . . . , ck not all zero so that

c1~v1 + c2~v2 + · · ·+ ck~vk = ~0



Example: Two Dependent Vectors

Suppose ~v1, ~v2 ∈ Rn. When is the set {~v1, ~v2} linearly dependent? Provide a
geometric interpretation.

Solution
From our definition of linear dependence, if ~v1, ~v2 are dependent, then there
exists a c1 and a c2, not both zero, so that

c1~v1 + c2~v2 = ~0



Example: Two Dependent Vectors

We consider two cases:

1) If ~v1 and/or ~v2 is the zero vector, then the vectors are dependent. If for
example ~v1 = ~0, then c1~v1 + c2~v2 = ~0 is satisfied for c2 = 0 and any c1.

2) If ~v1 6= ~0 and ~v2 6= ~0, then ~v2 = −c1
c2
~v1, so ~v1 and ~v2 are multiples of each

other. The vectors are parallel (one vector is in the span of the other).



Example: Two Dependent Vectors (continued)

Thus, two vectors in Rn are dependent when either or both of the following
occur.

• One or both vectors are the zero vector.

• One vector is a multiple of the other.



Linear Independence Theorems

1) More Vectors Than Elements: Suppose ~v1, . . . , ~vk are vectors in Rn. If
k > n, then {~v1, . . . , ~vk} is linearly dependent.

Wny? Every column of the matrix

A = (~v1, . . . , ~vk)

would have to be pivotal for the vectors to be independent. But A has
more columns than rows, so every column cannot be pivotal. The
vectors must be linearly dependent.



Linear Independence Theorems

2) Set Contains Zero Vector: If any one or more of ~v1, . . . , ~vk is ~0, then
{~v1, . . . , ~vk} is linearly dependent.

Wny? Every column of the matrix

A = (~v1, . . . , ~vk)

would have to be pivotal for the vectors to be independent. But A has a
zero column, so every column cannot be pivotal. The vectors must be
linearly dependent.



Application of our Linear Independence Theorems

By inspection, which matrices have linearly independent columns?

1. A =

(
1 0
2 0

)
zero column ⇒ dependent

2. B =

(
1 0 1
0 1 1

)
more columns than rows ⇒ dependent

3. C =

 1 0 1
2 1 3
3 1 4

 last column is the sum of the first two ⇒ dependent

4. D =

 1 0 1
0 1 1
0 0 1

 every column is pivotal ⇒ linearly independent



Summary

We explored the following concepts in this video.

• characterizing a set of vectors and linear systems using the concept of
linear independence

• constructing dependence relations between linearly dependent vectors
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• the definition of a linear transformation

• domain, codomain, image, and range

• the interpretation of matrix multiplication as a linear transformation

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize linear transforms using the concepts of domain, codomain,
image, and range



From Matrices to Functions

Let A be an m× n matrix. We define a function

T : Rn → Rm, T (~v) = A~x

This is called a matrix transformation.

• The domain of T is Rn.

• The codomain of T is Rm.

• The vector T (~x) is the image of ~x under T .

• The set of all possible images T (~x) is the range.



Functions from Calculus

Many of the functions we know have domain and codomain R. We can
express the rule that defines the function sin this way:

f : R→ R f(x) = sin(x)

In calculus we often think of a function in terms of its graph. The horizontal
axis is the domain, the vertical axis is the codomain.

−π 0 π 2π

1
sin(x)

x

y



Example: A Matrix Transformation

Let A =

1 1
0 1
1 1

 , ~u =

(
3
4

)
, T (~x) = A~x

a) What is the domain and codomain of T?

b) Compute the image of ~u under T .

c) What is the range of T?



From Matrices to Functions

The function

T : Rn → Rm, T (~v) = A~x

gives us another interpretation of A~x = ~b. We now have five ways of
representing A~x = ~b:

• set of linear equations

• augmented matrix

• matrix equation

• vector equation

• linear transformation equation



Example: A Matrix Transformation as a System

Consider again the matrix A =

1 1
0 1
1 1

, and associated transform

T (~x) = A~x.

a) Calculate ~v ∈ R2 so that T (~v) = ~b =

7
5
7



b) Give a ~c ∈ R3 so there is no ~v with T (~v) = ~c.
or: Give a ~c that is not in the range of T .
or: Give a ~c that is not in the span of the columns of A.



Summary

We explored the following concepts in this video.

• Characterized linear transforms using the concepts of domain, codomain,
image, and range.

• The interpretation of matrix multiplication as a linear transformation.
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• geometric interpretations of a linear transform

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• construct and interpret linear transformations in Rn (for example, interpret
a linear transform as a projection, or as a shear)



Linear Transformations

A function T : Rn → Rm is linear if

• T (~u+ ~v) = T (~u) + T (~v) for all ~u,~v in Rn.

• T (c~v) = cT (~v) for all ~v ∈ Rn, and c in R.

So if T is linear, then

T (c1~v1 + · · ·+ ck~vk) = c1T (~v1) + · · ·+ ckT (~vk)

This is called the principle of superposition.

Fact: Every matrix transformation TA is linear.



Geometric Interpretations of Transforms in R2

Suppose T is the linear transformation T (~x) = A~x. Give a short geometric
interpretation of what T (~x) does to vectors in R2.

1) A =

(
0 1
1 0

)

2) A =

(
1 0
0 0

)

3) A =

(
k 0
0 k

)
for k ∈ R



Geometric Interpretations of Transforms in R3

What does TA do to vectors in R3?

a) A =

1 0 0
0 1 0
0 0 0



b) A =

1 0 0
0 −1 0
0 0 1





Constructing the Matrix of the Transformation

A linear transformation T : R2 7→ R3 satisfies

T

((
1
0

))
=

 5
−7
2

 , T

((
0
1

))
=

−38
0


What is the matrix, A, so that T = Ax?



Summary

We explored the following concepts in this video.

• constructing linear transformations in R2 and R3 and geometric
interpretations for them

We will need to go into more detail on linear transformations and their
relationships to linear systems.
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• the standard vectors and the standard matrix

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• identify and construct linear transformations of a matrix



Definition: The Standard Vectors

The standard vectors in Rn are the vectors ~e1, ~e2, . . . , ~en, where:

~e1 = ~e2 = ~en =

For example, in R3,

~e1 = ~e2 = ~e3 =



A Property of the Standard Vectors

Note: if A is an m× n matrix with columns ~v1, ~v2, . . . , ~vn, then

A~ei = ~vi, for i = 1, 2, . . . , n

So multiplying a matrix by ~ei gives column i of A.

Example  1 2 3
4 5 6
7 8 9

~e2 =



The Standard Matrix

Let T : Rn 7→ Rm be a linear transformation. Then there is a
unique matrix A such that

T (~x) = A~x, ~x ∈ Rn.

In fact, A is a m× n, and its jth column is the vector T (~ej).

A =
(
T (~e1) T (~e2) · · · T (~en)

)

Theorem

The matrix A is the standard matrix for a linear transformation.



Standard Matrix for a Counterclockwise Rotation

What is the linear transform T : R2 → R2 defined by:

T (~x) = ~x rotated counterclockwise by angle θ?



Standard Matrix for a Clockwise Rotation

https://xkcd.com/184



Example: Constructing a Standard Matrix

Define a linear transformation by

T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2)

Is T one-to-one? Is T onto?



Summary

We explored the following concepts in this video.

• constructing linear transformations and standard matrices in R2

• constructing the standard matrix for a rotation matrix

The rotation matrix was just one of the standard matrices that are defined in
the textbook. There are other standard matrices for transformations that we
will explore.
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• the standard vectors and the standard matrix

• two dimensional transformations in more detail

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• identify and construct linear transformations of a matrix



Standard Matrices in R2

• There is a long list of geometric transformations of R2 in our textbook, as
well as on the next few slides (reflections, rotations, contractions and
expansions, shears, projections, . . . ).

• Please familiarize yourself with them: you are expected to memorize them,
or be able to derive them.



Two Dimensional Examples: Reflections

transformation image of unit square standard matrix

reflection through x1−axis

x1

x2

~e2

~e1

(
1 0
0 −1

)

reflection through x2−axis

x1

x2

~e2

~e1

(
−1 0
0 1

)



Two Dimensional Examples: Reflections

transformation image of unit square standard matrix

reflection through x2 = x1

x1

x2 x2 = x1

~e2

~e1

(
0 1
1 0

)

reflection through x2 = −x1

x1

x2
x2 = −x1

~e2

~e1

(
0 −1
−1 0

)



Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix

horizontal contraction

x1

x2

~e2

~e1

(
k 0
0 1

)
. |k| < 1

horizontal expansion

x1

x2

~e2

~e1

(
k 0
0 1

)
, k > 1



Two Dimensional Examples: Contractions and Expansions

transformation image of unit square standard matrix

vertical contraction

x1

x2

~e2

~e1

(
1 0
0 k

)
, |k| < 1

vertical expansion

x1

x2

~e2

~e1

(
1 0
0 k

)
, k > 1



Two Dimensional Examples: Shears

transformation image of unit square standard matrix

horizontal shear (left)

x1
k < 0

x2
(
1 k
0 1

)
, k < 0

horizontal shear (right)

x1
k > 0

x2
(
1 k
0 1

)
, k > 0



Two Dimensional Examples: Shears

transformation image of unit square standard matrix

vertical shear (down)

x1

x2

~e2

~e1

(
1 0
k 1

)
, k < 0

vertical shear (up)

x1

x2

~e2

~e1

(
1 0
k 1

)
, k > 0



Two Dimensional Examples: Projections

transformation image of unit square standard matrix

projection onto the x1-axis

x1

x2

~e2

~e1

(
1 0
0 0

)

projection onto the x2-axis

x1

x2

~e2

~e1

(
0 0
0 1

)



Example: Composite Transform

Construct a matrix A ∈ R2×2, such that T (~x) = A~x, where T is a linear
transformation that rotates vectors in R2 counterclockwise by π/2 radians
about the origin, then reflects them through the line x1 = x2.



Summary

We explored the following concepts in this video.

• constructing linear transformations in R2 and gave geometric
interpretations for them

• constructing composite transform that involve two ore more linear
transforms
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Topics and Learning Objectives

Topics
We will explore the following concepts in this video.

• onto and one-to-one transformations

Learning Objectives
Students should be able to do the following after watching this video and
completing the assigned homework.

• characterize and construct linear transformations that are onto and/or
one-to-one



Onto

A linear transformation T : Rn → Rm is onto if for all~b ∈ Rm

there is a ~x ∈ Rn so that T (~x) = A~x = ~b.

Definition

Implications

• Onto is an existence property: for any ~b ∈ Rm, A~x = ~b has a solution.

• T is onto if and only if its standard matrix has a pivot in every row.



One-to-One

A linear transformation T : Rn → Rm is one-to-one if for all ~b ∈ Rm

there is at most one (possibly no) ~x ∈ Rn so that T (~x) = A~x = ~b.

Definition

Implications

• One-to-one is a uniqueness property, it does not assert existence for all ~b.

• T is one-to-one if and only if the only solution to T (~x) = ~0 is the zero
vector, ~x = ~0.

• T is one-to-one if and only if every column of A is pivotal.



Example: Matrix Completion, One-to-one and Onto

Complete the matrices by entering numbers into the missing entries so that
the properties are satisfied. If it isn’t possible to do so, state why.

a) A is a 2× 3 standard matrix for a one-to-one transform.

A =

(
1 0
0 1

)
b) B is a 3× 3 standard matrix for a transform that is one-to-one and onto.

B =


1 1 1





Theorem for Onto Transforms

For a linear transformation T : Rn → Rm with standard
matrix A, these are equivalent statements.
1. T is onto.

2. A has columns that span Rm.

3. Every row of A is pivotal.

Theorem



Theorem for One-to-one Transforms

For a linear transformation T : Rn → Rm with standard
matrix A, these are equivalent statements.
1. T is one-to-one.

2. The unique solution to T (~x) = ~0 is the trivial one.

3. A has linearly independent columns.

4. Each column of A is pivotal.

Theorem



Example: Constructing a Standard Matrix, One-to-one
and Onto

Define a linear transformation by

T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2)

Construct the standard matrix for the transformation. Is T one-to-one? Is T
onto?



Example: Linear Transform Review

Suppose A is an m× n standard matrix for transform T , and there are some
vectors ~b ∈ Rm that are not in the range of T (~x) = A~x.
True or false:

1. A~x = ~b could be inconsistent

2. there cannot be a pivot in every column of A

3. T could be one-to-one



Summary

We explored the following concepts in this video.

• constructing linear transformations of a matrix that are one-to-one and/or
onto

• characterizing transforms that are one-to-one/onto


