
Instructor Workflow

Data Classification Process

Motivation
• Start-of-semester and mid-semester surveys help instructors become more aware of 

student needs[1,2].
• We have found that interpreting survey data can be a challenge when:
• Surveys include open-response questions.
• Enrollment of the course is large (> 500 students).

• Open-response data can have items that the instructor may need to identify but can 
be missed as the size of the data increases. Specific examples:
• Requests for support.
• Questions for the instructor.
• Concerns and/or needs that the instructor may be able to address.

Methods
• Machine learning algorithms offer many methods to assist with text classification[3].
• Our approach augments the approach that an instructor might use without AI.
• OpenAI reduces need for human annotation with a large language model (LLM)[4]. 
• Requirements
• FERPA and institute privacy policy compliance.
• Reduce time instructor uses to process survey data. 
• Instructor must read all student responses. 

• Hypothesis
• Categorizing survey responses reduces time needed to process data. 

• Assumptions
• Instructor will review all responses after categorization for accuracy.
• Survey data can be grouped into categories useful to instructor.
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Code Definition Action
NC No concerns Thank student for completing survey

LM Learning management concern 
(e.g. exam stress, reviewing pre-req)

Direct student to recommend resources

TM Time management concern Direct student to recommend resources

OT Other (i.e. – all other comments) Case-by-case

Human generated examples for each category

GPT3.5 API

Example lists for each category
Over 5000 examples per category 
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Data Categories
• Start-of-semester survey data hypothesized to have four useful categories for 

identification, defined below. 
• Categories defined based on how instructor might respond to student.
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Preliminary Results
• Overall percent agreement across all categories was roughly 83%.
• Concerns (OT, TM, and LM): 
• Instructor coded 260 comments as concerns.
• Model coded 240 comments as concerns (92.3% match).

• No concern (NC): 
• Instructor coded 365 comments as no concern.
• Model coded 360 comments as no concern (98.63% match).

Analysis and Conclusions
• Model struggled with complex statements. For example:
• Statements that included multiple concerns.
• Statements that expressed a concern and a no-concern sentiment 

(eg – I had a concern, but I am ok now).
• Instructor would still need to review all comments so that no concerns 

would be missed.

Future Work
• Apply methods to mid-semester survey data and other courses.
• Reduce number of categories to decrease categorization errors. 
• Detach from GPT API to make model free (i.e. – no cost). 
• Develop methods to fine tune with real/complicated data on top of 

existing fine tuning. 
• Experiment with different categories, for example:
• Algorithms that generate categories rather than relying on 

predefined categorizes. 
• Only two categories: no concerns vs everything else. 

Methods
• Applied our classification process to a start-of-semester survey data set.
• Data had roughly 600 responses from a large course taught at GT. 
• Analyzed data from an open response question: At this point in the semester, 

what concerns you the most about taking this course, if any? If you do not 
have any, you can write "none" or "NA”.

• Open response survey data was:
1. Human coded by instructor using four categories (NC, LM, TM, OT).
2. Machine coded by our Augmented Data Fine-Tuned BERT.
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