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Chapter 1
Motivating Applications

Nonlinear optimization has played an important role in a few different areas, both
as a modeling apparatus and a solution method. In this chapter, we introduce some
well-known nonlinear optimization models in order to motivate our later discussion
about optimization theory and algorithms.

1.1 Regression and Classification

To motivate our discussion, let us start with a simple example. Julie needs to decide
whether she should go to the restaurant “Bamboo Garden” for lunch or not. She
went to ask for her friends Judy and Jim, who had been to this restaurant. Both of
them gave a rating of 3 in the scale between 1 to 5 for the service in this restaurant.
Given these ratings, it is a bit difficult for Julie to decide if she should pay a visit
to “Bamboo Garden”. Fortunately, she has kept a table of Judy and Jim’s ratings for
some other restaurants, as well as her own ratings in the past, as shown in Table 1.1.

Table 1.1: Historical ratings for the restaurants.

Restaurant Judy’s rating Jim’s rating Julie’s ratings?
Goodfellas 1 5 2.5
Hakkasan 4.5 4 5
· · · · · · · · · · · ·

Bamboo Garden 3 3 ?

To fix notation, let us use u(i) to denote the “input” variables (ratings of Judy
and Jim in this example), also called input features, and v(i) to denote the “output”
or target variable (rating of Julie’s) to predict. A pair (u(i),v(i)) is called a training
example, and the dataset — a list of N training examples {(u(i),v(i)}, i = 1, . . . ,N, is
called a training set. We will also use U denote the space of input values, and V the
space of output values. In this example, U = R2 and V = R. Specifically, u(1)1 and

1



2 1 Motivating Applications

u(1)2 are the Judy and Jim’s ratings for Goodfellas, respectively, and v(1) represents
Julie’s rating for Goodfellas.

Our goal is, given a training set, to learn a function h : U → V so that h(u) is a
“good" predictor for the corresponding value of v. This function h is usually called
a hypothesis or decision function. Machine learning tasks of these types are called
supervised learning. When the output v is continuous, we call the learning task
regression. Otherwise, if v takes values on a discrete set of values, the learning
task is called classification. Regression and classification are the two main tasks in
supervised learning.

Linear Regression

One simple idea is to approximate v by a linear function of u:

h(u)≡ hθ (u) = θ0 +θ1u1 + . . .+θnun.

In our example, n simply equals 2. For notational convenience, we introduce the
convention of u0 = 1 so that

h(u) = ∑
n
i=0θiui = θ

T u,

where θ = (θ0; . . . ;θn) and u= (u0; . . . ;un). In order to find the parameters θ ∈Rn+1,
we formulate an optimization problem of

min
θ

{
f (θ) := ∑

N
i=1(hθ (u(i))− v(i))2

}
, (1.1.1)

which gives rise to the ordinary least square regression model.
To derive a solution of θ for (1.1.1), let

U =


u(1)

T

u(2)
T

...
u(N)T

 .

U is sometimes called the design matrix and it consists of all the input variables.
Then, f (θ) can be written as:

f (θ) = ∑
N
i=1(u

(i)T
θ − v(i))2

= (Uθ − v)T (Uθ − v)

= θ
TUTUθ −2θ

TUT v− vT v.

Taking the derivative of f (θ) and setting it to zero, we obtain the normal equation



1.1 Regression and Classification 3

UTUθ −UT v = 0.

Thus the minimizer of (1.1.1) is given by

θ
∗ = (UTU)−1UT v.

The ordinary least square regression is among very few machine learning models
that has an explicit solution. Note, however, that to compute θ ∗, one needs to compute
the inverse of an (n+ 1)× (n+ 1) matrix (UTU). If the dimension of n is big, to
compute the inverse of a large matrix can still be computationally expensive.

The formulation of the optimization problem in (1.1.1) follows a rather intuitive
approach. In the sequel, we provide some statistical reasoning about this formulation.
Let us denote

ε
(i) = v(i)−θ

T u(i), i = 1, . . . ,N. (1.1.2)

In other words, ε(i) denotes the error associated with approximating v(i) by θ T u(i).
Moreover, assume that ε(i), i = 1, . . . ,N, are i.i.d. (independently and identically
distributed) according to a Gaussian (or Normal) distribution with mean 0 and
variance σ2. Then, the density of ε(i) is then given by

p(ε(i)) = 1√
2πσ

exp
(
− (ε(i))2

2σ2

)
.

Using (1.1.2) in the above equation, we have

p(v(i)|u(i);θ) = 1√
2πσ

exp
(
− (v(i)−θ T u(i))2

2σ2

)
. (1.1.3)

Here, p(v(i)|u(i);θ) denotes the distribution of the output v(i) given input u(i) and
parameterized by θ .

Given the input variables u(i) and output v(i), i = 1, . . . ,N, the likelihood function
with respect to (w.r.t.) the parameters θ is defined as

L(θ) :=
N

∏
i=1

p(v(i)|u(i);θ) =
N

∏
i=1

1√
2πσ

exp
(
− (v(i)−θ T u(i))2

2σ2

)
.

The principle of maximum likelihood tells us that we should choose θ to maximize
the likelihood L(θ), or equivalently, the log likelihood

l(θ) := logL(θ)

= ∑
N
i=1 log

[
1√

2πσ
exp
(
− (v(i)−θ T u(i))2

2σ2

)]
= N log 1√

2πσ
− 1

2σ2 ∑
N
i=1(v

(i)−θ
T u(i))2.

This is exactly the ordinary least square regression problem, i.e., to minimize
∑

N
i=1(v

(i)−θ T u(i))2 w.r.t. θ . The above reasoning tells us that under certain proba-
bilistic assumptions, the ordinary least square regression is the same as maximum
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likelihood estimation. It should be noted, however, that the probabilistic assumptions
are by no means necessary for least-squares to be a rational procedure for regression.

Logistic Regression

Let us come back to the previous example. Suppose that Julie only cares about
whether she will like the restaurant “Bamboo Garden” or not, rather her own ratings.
Moreover, she only recorded some historical data indicating whether she likes or
dislikes some restaurants, as shown in Table 1.2. These records are also visualized
in Figure 1.1, where each restaurant is represented by a green “O” or a red “X”,
corresponding to whether Julie liked or disliked the restaurant, respectively. The
question is: with the rating of 3 from both of her friends, will Julie like Bamboo
Garden? Can she use the past data to come up with a reasonable decision?

Table 1.2: Historical ratings for the restaurants.

Restaurant Judy’s rating Jim’s rating Julie likes?
Goodfellas 1 5 No
Hakkasan 4.5 4 Yes
· · · · · · · · · · · ·

Bamboo Garden 3 3 ?

Similar to the regression model, the input values are still denoted by U =

(u(1)
T

; . . . ;u(N)T
), i.e., the ratings given by Judy and Jim. But the output values

are now binary, i.e., v(i) ∈ {0,1}, i = 1, . . . ,N. Here v(i) = 1 means that Julie likes
the i-th restaurant and v(i) = 0 means that she dislikes the restaurant. Julie’s goal is to
come up with a decision function h(u) to approximate these binary variables v. This
type of machine learning task is called binary classification.

Julie’s decision function can be as simple as a weighted linear combination of her
friends’ ratings:

hθ (u) = θ0 +θ1 u1 + . . .+θnun (1.1.4)

with n = 2. One obvious problem with the decision function in (1.1.4) is that its
values can be arbitrarily large or small. On the other hand, Julie wishes its values to
fall between 0 and 1 because those represent the range of v. A simple way to force
h to fall within 0 and 1 is to map the linear decision function θ T u through another
function called the sigmoid (or logistic) function

g(z) = 1
1+exp(−z) (1.1.5)

and define the decision function as

hθ (u) = g(θ T u) = 1
1+exp(−θ T u) . (1.1.6)
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Fig. 1.1: Visualizing ratings of the restaurants

Note that the range of the sigmoid function is given by (0,1), as shown in Figure 1.2.

Now the question is how to determine the parameters θ for the decision function
in (1.1.6). We have seen the derivation of the ordinary least square regression model
as the consequence of maximum likelihood estimation under certain probabilistic
assumptions. We will follow a similar approach for the classification problem.

We assume that v(i), i = 1, . . . ,N, are independent Bernoulli random variables
with success probability (or mean) of hθ (u(i)). Thus their probability mass functions
are given by

p(v(i)|u(i);θ) = [hθ (u(i))]v
(i)
[1−hθ (u(i))]1−v(i) ,v(i) ∈ {0,1},

and the associated likelihood function L(θ) is defined as

L(θ) =
N

∏
i=1

{
[hθ (u(i))]v

(i)
[1−hθ (u(i))]1−v(i)

}
.
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16 | Generalized Linear Models

4 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

5 gaussian_fit = H2OGeneralizedLinearEstimator(family =
"gaussian")

6 gaussian_fit.train(y = "VOL", x = ["AGE", "RACE", "PSA
", "GLEASON"], training_frame = h2o_df)

4.6.2 Logistic Regression (Binomial Family)

Logistic regression is used for binary classification problems where the response is
a categorical variable with two levels. It models the probability of an observation
belonging to an output category given the data (for instance Pr(y = 1|x)).
The canonical link for the binomial family is the logit function (also known as
log odds). Its inverse is the logistic function, which takes any real number and
projects it onto the [0, 1] range as desired to model the probability of belonging
to a class. The corresponding s-curve (or sigmoid function) is shown below,

and the fitted model has the form:

ŷ = Pr(y = 1|x) =
ex>�+�0

1 + ex>�+�0

Fig. 1.2: The Sigmoid (logistic) function

In view of the principle of maximum likelihood, we intend to maximize L(θ), or
equivalently, the log likelihood

l(θ) = ∑
N
i=1 log

{
[hθ (u(i))]v

(i)
[1−hθ (u(i))]1−v(i)

}
= ∑

N
i=1

{
v(i) loghθ (u(i))+ [1− v(i)] log[1−hθ (u(i))]

}
.

Accordingly, we formulate an optimization problem of

max
θ

∑
N
i=1

{
− log[1+ exp(−θ

T u(i))]− [1− v(i)]θ T u(i)
}
. (1.1.7)

Even though this model is used for binary classification, it is often called logistic
regression for historical reasons.

Unlike linear regression, (1.1.7) does not have an explicit solution. Instead, we
need to develop some numerical procedures to find its approximate solutions. These
procedures are called optimization algorithms, a subject to be studied later in our
lectures.

Suppose that Julie can solve the above problem and find at least one of its optimal
solutions θ ∗. She then obtains a decision function hθ∗(u) which can be used to predict
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whether she likes a new restaurant (say “Bamboo Garden”) or not. More specifically,
recall that the example corresponding to “Bamboo Garden" is u = (1,3,3) (recall
u1 = 1). If hθ∗((1,3,3))> 0.5, then Julie thinks she will like the restaurant, otherwise
she will not. The values of u’s that cause hθ∗(u) to be 0.5 is called the “decision
boundary” as shown in Figure 1.3. The black line is the “decision boundary.” Any

Jim

Judy

X5

1 2 3 4 5

4

3

2

1

O

Goodfellas

Hakkasan

X X

O
O

X

X

O O

<>
Bamboo Garden

O
X

Fig. 1.3: Decision boundary

point lying above the decision boundary represents a restaurant that Julie likes, while
any point lying below the decision boundary is a restaurant that she does not like.
With this decision boundary, it seems that Bamboo Garden is slightly on the positive
side, which means she may like this restaurant.
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1.2 Reinforcement Learning

Stochastic dynamic programming provides a general framework to model the interac-
tions between the agents and their environment, and to improve the agents’ decisions
through these interactions. More specifically, the status of the environment is de-
scribed by either discrete or continuous state variables, while the agent’s behavior is
described by actions. Upon the agent’s action, the system’s state gets updated, and
the agent receives some reward (or pays some cost). The goal of stochastic dynamic
programming is to find the optimal policy which specifies the agent’s best action at a
given state.

Consider a search-and-rescue mission in a sophisticated environment, described
as follows. Due to an environmental hazard (e.g., sand storm, severe thunderstorm,
etc.), a few friendly units lost contact with the base of operation. A scouting unit
needs to be dispatched to search and rescue these lost friendly units. However, due to
the sophisticated environment there exist a few difficulties. First, since the friendly
units have lost contact, their locations are unknown. Second, due to the sophisticated
environment, the scouting unit may not be able to navigate properly according to its
designated direction. Third, certain hazardous factors would inflict damage on the
scouting unit, and the locations of such hazardous factors are also unknown. Fourth,
the scouting unit might be ambushed by an adversary. In this case, the scouting unit
would prefer to randomized moves, since deterministic moves are more predictable,
and hence more vulnerable to an adversary attack. The main question is: How should
the scouting unit plan its scouting trajectory for the rescue mission?

In the above search-and-rescue mission, in order to design an execution plan, we
need to take several factors into consideration. From the perspective of cost analysis,
we may associate a cost to each action that the scouting unit takes. Specifically, when
designing the plan, the scouting unit needs to consider regular costs for maintaining
its navigation, the potential loss when encountering a hazardous factor, and the reward
for finding the lost friendly unit. In order to be less predictable, the cost analysis
should also take into consideration the preference of a randomized strategy over
deterministic ones. It is important to point out that time is critical for this mission; not
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only that the first several hours/days are well-known to be golden in rescue missions,
but also the scouting unit needs to focus more on its imminent risks and rewards.

As a prototypical example, we can model the aforementioned search-and-rescue
mission as a mathematical optimization problem using the terminology in stochastic
dynamic programming. Our prototypical model is a simple and idealized one known
as “GridWorld” in the literature. It can be extended with more complex factors to
better model realistic search-and-rescue missions.

We describe a simple example of the search-and-rescue mission in Figure 1.4. The
environment described in Figure 1.4 consists of seven locations on the grid, in which
the base of operation is at gridpoint 1 (denoted as *). The friendly unit to be rescued is
dispersed to two locations (gridpoints indexed by 3 and 7), which are our goals of the
mission (denoted as G). There is a location on gridpoint 2 that is a hazardous factor
(denoted as H). The remaining gridpoints 4, 5, and 6 are regular ones. At any gridpoint,
the scouting unit could move and scout four directions (moving left/right/up/down by
one gridpoint). Using terminology of stochastic dynamic programming, we call the
scouting unit the agent, the gridpoints that the agent can reside on the states, and say
that that an agent could perform four actions at any state (left/right/up/down). Upon
choosing an action, due to possible navigation error, the agent then moves along
the chosen direction with probability p, or a randomly chosen direction (among the
remaining three directions) with probability (1− p)/3. After taking an action and
moving to an updated gridpoint, the agent pays a cost associated with the updated
gridpoint and the process repeats itself at the next timestep. The costs of goal,
hazardous factor, and regular gridpoints are denoted by cG, cH , and cR respectively,
with cG < cR < cH . When either at a goal or a hazardous factor gridpoint, the agent
would transit to the base of operator with probabilities pG and pH respectively. Such
probabilities model the possible respective scenarios that the friendly unit is impaired
and needs the scouting unit’s transport back to the base, or that the scouting unit is
heavily damaged by the hazardous factor and need to return to the base and re-deploy.
The goal of our model is to compute a policy for the agent to decide its strategies of
choosing actions performed at different states in order to minimize its cumulative
cost throughout the time horizon of actions. The cumulative cost is discounted by a
factor to balance the objective of minimizing the cost and the urgency of reducing
the imminent costs.

1 2 3
∗ H G

G
4 5 6 7

Fig. 1.4: A simple and idealized 2D GridWorld description of the search-and-rescue
mission

Mathematically, we may model the aforementioned search-and-rescue mission
through a finite Markov decision process (MDP), one of the most widely used
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stochastic dynamic programming models. The finite Markov decision process is
abstracted by a quintuple M = (S ,A ,P,c,γ), where S is the finite state space,
A is the finite action space, P : S ×S ×A → R is the transition model (also
known as transition probability/kernel in the literature), c : S ×A → R is the cost
function, and γ ∈ [0,1] is the discount factor. A policy π : A ×S → R determines
the probability π(a|s) of selecting a particular action a ∈A at a given state s ∈S .

For a given policy π , we measure its performance by the state-value function
V π : S → R defined as

V π(s) := E
[
∑

∞
t=0γ

t [c(st ,at)+hπ(st)]

| s0 = s,at ∼ π(·|st),st+1 ∼ P(·|st ,at)] , (1.2.1)

where γ is the discount factor and hπ is a regularizer that describes the difference
between the desirable policy and a reference policy. The above state-value function
definition reflects the following interpretation of the associated value of policy π at
state s: Initialized at state s0 = s and timestep t = 0, the agent (e.g., the scouting unit)
chooses an action (e.g., a move and scout direction) a0 ∼ π(·|s0) randomly based
on the probabilities described by policy π . After action a0 is performed, the agent
transitions to state s1 ∼ P(·|s0,a0) following the transition model that incorporates
the navigation error probability p and the return-to-base probabilities pG and pH .
The process repeats then at state s1 and continues on infinitely. The total value is the
discounted sum of all costs c(st ,at)’s (e.g., the scouting unit’s costs by cG, cH , and cR
described above) and regularization values hπ(st)’s (e.g., the Kullback–Leibler (KL)
divergence to promote randomized policies) over the infinite horizon t = 0,1, · · · , with
discount factor γ . Here γ captures the balance between cumulative cost minimization
and urgency of reducing imminent costs. Our main objective is to solve the policy
optimization problem, namely, to find an optimal policy π∗ : S ×A → R such that
the associated expected discounted cumulative cost is minimized:

V π∗(s)≤V π(s),∀π(·|s) ∈ ∆|A |, (1.2.2)

for any state s ∈S . Here ∆|A | denotes the standard simplex constraint for describing
probabilities. Regarding our simple example described in Figure 1.4, there are in
total |S |= 7 states and |A |= 4 actions, and hence we need to minimize |S |= 7
state-value objective functions V π(s) in (1.2.2) (one for each state), each with respect
to |S | · |A |= 28 decision variables (one for probability of each actions in each state)
in policy π .

Note that although there are |S | state-value objective functions in (1.2.2), we
may reformulate the problem to a single objective by taking the weighted sum of V π

over s (with arbitrary weights ρs > 0 and ∑s∈Sρs = 1):

minπ f (π) := Es∼ρ [V π(s)] s.t. π(·|s) ∈ ∆|A |,∀s ∈S . (1.2.3)

The above problem is a nonlinear nonconvex optimization. For example, in the
unregularized case when hπ(s)≡ 0 in the definition (1.2.1) of state-value function
V π(s), f (π) in the above problem is a weighted sum of V π(s)’s, and it can be verified
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that for any s ∈ S the state-value function V π(s) defined in (1.2.1) is possibly
nonconvex as a quotient of two polynomial functions.

It should be noted that the nonlinear optimization problem (1.2.3) is defined based
on the probability transition model P in (1.2.1). However, the transition probability
P may not be accessible when we compute for the optimal policy π∗ and we may
need to rely on samples obtained via the transition model. In some of the stochastic
dynamic programming literature, the term MDP refers to the case when the transition
model P is provided in advance; the case when we have no access to exact information
in regards to P is categorized as reinforcement learning (RL). While both belong
to the stochastic dynamic programming realm, the a-priori knowledge of P can be
viewed as the main difference between MDP and RL.

1.3 Radiation Therapy Treatment Planning

In this section, we turn our attention to the intensity modulated radiation therapy
(IMRT) problem arising from healthcare engineering. According to CDC, in 2017,
the latest year for which incidence data are available in the United States, about
1.7 millions new cases of cancer were reported, and around 600,000 people died of
cancer. Cancer is the second leading cause of death, exceeded only by heart disease.
One of every four deaths in the US is due to cancer.

Among many different types of treatment for cancer, radiation therapy can benefit
more than half of these patients. It helps to cure cancer, prevent it from returning, and
stop or slow its growth. Technology advancements in cancer treatment in general,
and radiation therapy in particular, are critical to save patients’ lives and improve
their life quality. Radiation therapy applies high doses of radiation to kill cancer cells
and shrink tumors. In particular, Intensity modulated radiation therapy (IMRT) is
one type of external beam radiation therapy (see Figure 1.5). During the treatment,
the patient will be irradiated by a linear accelerator from several different angles.
Th target structures of patient are discretized into small voxels. We expect that the
voxels of tumor receive high doses, while little or no doses will be applied to those
in healthy organs.

Fig. 1.5: Intensity modulated radiation therapy
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The process flow of IMRT can be briefly described as follows. Images, such as
magnetic resonance images (MRI) or computer tomography (CT), will be taken
before the treatment starts. A treatment usually consists of a few (e.g., five) sessions.
Before each session begins, treatment planners need to make two types of decisions.
First, dose fractionation determines how to allocate doses across different sessions.
Second, dose localization determines how to apply the right amount of does to the
target structures. Inter-session images will be used observe the effectiveness of the
previous treatment sessions, and provide guidance for the subsequent ones.

Optimization are quite useful throughout these steps. Linear regression with total
variation regularization has been widely used for MRI or CT image reconstruction.
The dose fractionation problem can be modeled as a MDP and hence falls into the
reinforcement learning framework described in the previous section. Here we focus
on the dose localization problem.

Aperture is an important concept for dose localization in IMRT. Recall that the
beam will applied to the patient from different angles, as shown in Figure 1.5. A
beam in each angle is decomposed into a rectangular grid of beamlets. A beamlet
(i, j) is effective if it is not blocked by either the left, li, and right, ri, leaves. These
leaves in the IMRT equipment are zoomed-in in the left picture below. An aperture is
defined as the collection of effective beamlets, as shown in Figure 1.6 on the right.
The motion of the leaves controls the set of effective beamlets and thus the shape of

Fig. 1.6: Aperture

the aperture. A linear combination of effective beamlets from different aperture will
determine the doses applied to the patient at different voxels, as we will see a little
bit later.

We need to consider two types of decision variables to properly define and use an
aperture. The xk,a variables describe the shape of the k-th aperture in angle a. These
are binary matrix variables. Specifically, the (i, j)-th entry of xk,a = 1 if beamlet (i, j)
is effective, that is, it falls within the left and right leaves of row i, o.w., it equals
0. Figure 1.7 shows two examples of aperture, where “gray" means 0 and “white"
means 1.
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Fig. 1.7: Different example of apertures

Let Ka be the set of allowed apertures in beam angle a. It is easy to see that for
an m× n grid, the number of possible apertures in a beam angle is O(nm), which
increases exponentially w.r.t. m. Once after an aperture is defined, we use the yk,a

variable to represent the influence rate for aperture (k,a). It will determine the dose
intensity and radiation time from the k-th aperture of the a-th angle.

Dose in Gray(Gy) absorbed by voxel v is given by the summations of doses
received from each aperture. More specifically, the dose received at each voxel is a
convex combination of doses received from each aperture, with weights given by the
y variables:

zv = ∑a∈A ∑k∈Ka(y
k,aR∑

m
i=1∑

n
j=1D(i, j)v xk,a

i j ).

Here D(i, j)v denotes how much does are received from beamlet (i, j) at unit intensity.
Figure 1.8 provides a simple illustrative example.

Fig. 1.8: Example of received dose with y = (0.4,0.2,0.4,0, . . . ,0), R = 5, D(i, j)v =
1.

Since the dose received at each voxel has some prescribed lower and upper
threshold values. We can define objective function f by penalizing the weighted sum
of doses falling outside the pre-specified lower and upper bounds. In particular, we
have

f(z) := ∑
v∈V

{
wv [T v− zv]

2
++wv [zv−T v]

2
+

}
,
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where [·]+ denotes max{0, ·}, and T v and T v are pre-specified lower and upper dose
thresholds.

Putting the objective function and constraints together, we have a basic formulation
for the dose localization problem. In this formulation, we intend to minimize a convex
objective function over a simplex constraint.

min f(z) := 1
Nv

∑v∈V
{

wv [T v− zv]
2
++wv [zv−T v]

2
+

}
s.t. zv = ∑a∈A ∑k∈KaRD̂k,a

v yk,a,

∑a∈A ∑k∈Kayk,a = 1,

yk,a ≥ 0.

(1.3.1)

Here D̂k,a
v := ∑

m
i=1∑

n
j=1D(i, j)v xk,a

i j .
Problem (1.3.1) appears to be a relatively easy problem. The challenge, however,

comes from its high dimensionality. Since the number of apertures in each angle
increases exponentially with m. For a problem with 180 angles and 10×10 grids,
the dimension is 180×4510. It is impossible to compute the full gradient of ∇ f . This
fact excludes any algorithms that require the computation of full gradient information
at each iteration.

High dimensionality is not the only challenge we have. In order to make the
formulation more practical, we need to consider two additional types of constraints.
Firstly, we need to introduce risk averse constraints that help to to generate treatment
plans satisfying certain clinical criteria. These criteria are usually specified as value at
risk (VaR) constraints. For example, “PTV56:V56≥ 95%" means that the percentage
of voxels in structure PTV56 that receive at least 56 Gy dose should be ≥ 95%.
Similarly we need to avoid overdoses. For instance, “PTV68: V74.8≤ 10%" says
that the percentage of voxels in structure PTV68 that receive more than 74.8 Gy dose
should be ≤ 10%. In our formulation, we suggest to use Conditional Value at Risk
(CVaR) as a convex approximation for value at risk constraints.

Secondly, in practice we prefer to have a small number of angles in order to
avoid frequently adjusting the patient’s position, which will reduce the treatment
time. We suggest to incorporate a group sparsity constraint to handle this issue.
Viewing the y variables from each angle as a group, we add the requirement that the
summation of the group l∞ norm should be smaller than a threshold value. Intuitively,
this constraint will encourage the selection of apertures in those angles Ka that have
already contained some nonzero yk,a, k ∈ Ka (see Figure 1.9).

Putting all these pieces together, we now have a complete problem formulation.
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Fig. 1.9: Group sparsity.

min f(z) := 1
Nv

∑v∈V wv [T v− zv]
2
++wv [zv−T v]

2
+

s.t. zv = ∑a∈A ∑k∈KaRD̂k,a
v yk,a,

− τi +
1

piNi
∑v∈Si [τi− zv]+ ≤−bi,∀i ∈ UD,

τi +
1

piNi
∑v∈Si [zv− τi]+ ≤ bi,∀i ∈ OD,

∑a∈A max
k∈Ka

yk,a ≤Φ ,

∑a∈A ∑k∈Kayk,a = 1,

yk,a ≥ 0,τi ∈ [τ i,τ i].

Here OD and UD denote the set of overdose and underdose clinical criteria. In addi-
tion to high problem dimensionality, the above problem formulation has complicated
function constraints, which further complicated its solutions.

1.4 General Formulation

A typical Mathematical Programming problem is given in the form of

minimize
f (x) [ objective ]

subject to

hi(x) = 0, i = 1, ...,m
[

equality
constraints

]
g j(x) ≤ 0, j = 1, ...,k

[
inequality
constraints

]
x ∈ X [ domain ]

(1.4.1)

In (1.4.1), a solution x ∈ Rn represents a candidate decision, and the constraints
express restrictions on the meaningful decisions. These restrictions can be bounds on
the resources, the definition of a probability vector (see Section 1.2, or risk averse
requirement (see Section 1.3). The objective to be minimized represents the losses
(minus profit) associated with a decision.
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To solve problem (1.4.1) means to find its optimal solution x∗, that is, a feasible
solution satisfying all the constraints

hi(x∗) = 0∀i; g j(x∗)≤ 0∀ j; x∗ ∈ X ,

such that its objective is smaller than or equal to that at any other feasible solutions,
i.e.,

f (x∗)≤ f (x)

for any x satisfying
hi(x) = 0∀i; g j(x)≤ 0∀ j; x ∈ X .

In combinatorial (or discrete) optimization, the domain X is a discrete set, such as
the set of all integral or 0/1 vectors. In contrast to this, in continuous optimization, X
is a “continuum” set like the entire Rn,a box {x : a≤ x≤ b}, or simplex, etc., and the
objective and the constraints are (at least) continuous on X . In linear programming,
X = Rn and the objective and the constraints are linear functions of x. In contrast
to this, for nonlinear continuous optimization, (some of) the objectives and the
constraints are nonlinear.

The goals of our course is to present

a) basic theory of continuous optimization, with emphasis on existence and unique-
ness of optimal solutions and their characterization (i.e., necessary and/or suffi-
cient optimality conditions);

b) basic algorithms for building approximate optimal solutions to continuous opti-
mization problems.

The mathematical foundation of optimization theory is given by Convex Analysis,
which is a specific combination of of real analysis and geometry unified by and fo-
cusing on investigating convexity-related notions. We will start with this fundamental
topic in continuous optimization in next chapter.



Chapter 2
Convex Sets

2.1 Definition and Examples

We begin with the definition of the notion of a convex set.

Definition 2.1. A set X ⊆ Rn is said to be convex if it contains all of its segments,
that is

λx+(1−λ )y ∈ X , ∀(x,y,λ ) ∈ X×X× [0,1]. (2.1.1)

Note that the point λx+ (1− λ )y is called a convex combination of x and y.
Figure 2.1 show the examples of a convex set (left) and a nonconvex set (right).

Fig. 2.1: Convex vs. nonconvex sets

We can see some immediate examples of convex sets.

a) An n-dimensional Euclidean space, Rn. Given x,y ∈ Rn, we must have λx+(1−
λ )y ∈ Rn.

b) The empty set /0. This set is defined as being convex by convention, since we can
not identify any two points in /0 violating (2.1.1).

We now give a few more nontrivial examples of convex sets that are widely used
in optimization.

17



18 2 Convex Sets

Linear and Affine Subspaces

Recall that a linear subspace L is a nonempty subset in Rn such that for any x,y ∈ L
and λ ∈ R, we have we have x+ y ∈ L and λx ∈ L. Geometrically, L is a special
plane that passes through the origin.

A linear subspace can be constructed by the so-called inner representation. Given
a set of vectors X , the linear span of X , denoted by Lin(X), is comprised of all the
linear combinations of X defined as ∑

k
i=1λixi, where λi ∈ R, i = 1, . . . ,k and k may

depend on x. Let d ≤ n be the maximum number of linearly independent vectors
in X , and {x1, . . . ,xd} be a set of basis vectors, Lin(X) can be written succinctly
as the linear span of of basis vectors {x1, . . . ,xd} ⊆ X and d ≤ n is also called the
dimension of L. It is known that Lin(X) is the smallest subspace containing X .

A more convenient way to to check the convexity of L is through its outer represen-
tation. More specifically, L can be written as the solution set to a homogeneous linear
system, i.e., {x ∈Rn|⟨ai,x⟩= 0, i = 1, . . . ,r}. Here r = n−d and {ai, i = 1, . . . ,r} is
an arbitrary basis of the orthogonal complement of L in Rn, denoted by L⊥. Using
this representation, the convexity of L can be easily verified by definition.

Given a linear subspace L and a vector a ∈ Rn, an affine space M is defined as
M := a+L. Geometrically, it represents a plane obtained by shifting L by a fixed
vector a. The linear subspace L used in this decomposition is uniquely determined by
M, given by L = M−M = {x− y : x,y ∈M}. The shifting vector a is not uniquely
defined and can be chosen arbitrarily from M. The affine dimension of M is defined
as the dimension of L. Using the outer presentation of the linear subspace L, we can
derive an outer representation of M = {y : ⟨ai,y⟩= ⟨ai,a⟩}. Therefore, M must be
the solution set of a non-homogeneous linear system. The convexity of M follows
easily from this representation and the definition in (2.1.1).

Polyhedron

An affine space of dimension n−1 in Rn is called a hyperplane. It can be written as the
solution set of one linear equation {x∈Rn : ⟨a1,x⟩= b1}. A hyperplane separates Rn

into two halfspaces, denoted by {x ∈ Rn : ⟨a1,x⟩ ≥ b1} and {x ∈ Rn : ⟨a1,x⟩ ≤ b1}.
A polyhedron is defined as the intersection of a finite or infinite number of

halfspaces. Equivalently, it is the solution set of an arbitrary (finite or infinite) system
of linear inequalities given by P = {x ∈ Rn : ⟨ai,x⟩ ≤ bi, i ∈ I}.

The convexity of polyhedron directly follows from (2.1.1). Indeed, let x,y ∈ P,
then for any i ∈ I, we have ⟨ai,x⟩ ≤ bi and ⟨ai,y⟩ ≤ bi. For any λ ∈ [0,1], we have

⟨ai,λx+(1−λ )y⟩= λ ⟨ai,x⟩+(1−λ )⟨ai,y⟩ ≤ λbi +(1−λ )bi = bi.

Using the same argument, we can show that the set P0 = {x ∈Rn : ⟨ai,x⟩< bi, i ∈
I} is convex. While P is a closed set (as it contains the limit point of any convergent
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sequences), P0 is not a closed set. We will see later that every closed and convex set
X ⊆ Rn is the solution set of an appropriate countable system of non-strict linear
inequalities, i.e., X = {x ∈ Rn : ⟨ai,x⟩ ≤ bi, i = 1,2, . . .}.

Polyhedral Representations

By definition, a polyhedral set X ⊂ Rn is a set which can be represented as

X = {x : Ax≤ b},

that is, as the solution set of a finite system of nonstrict linear inequalities. A polyhe-
dral representation of a set X ⊂ Rn is a representation of X of the form:

X = {x : ∃w : Px+Qw≤ r}.

In other words, a representation of X is the a projection onto the space of x-variables
of a polyhedral set X+ = {[x;w] : Px+Qw≤ r} in the space of x,w-variables.

Below we state a few examples of polyhedral representations.

a) The set X = {x ∈ Rn : ∑i |xi| ≤ 1} admits the polyhedral representation

X =

x ∈ Rn : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1≤ i≤ n,
∑i wi ≤ 1

 .

b) The set
X =

{
x ∈ R6 : max[x1,x2,x3]+2max[x4,x5,x6]
≤ x1− x6 +5

}
admits the polyhedral representation

X =

{
x ∈ R6 : ∃w ∈ R2 :

x1 ≤ w1,x2 ≤ w1,x3 ≤ w1
x4 ≤ w2,x5 ≤ w2,x6 ≤ w2
w1 +2w2 ≤ x1− x6 +5

}
.

A natural question we may have is whether a polyhedrally represented set is
polyhedral. More specifically, let X be given by a polyhedral representation:

X = {x ∈ Rn : ∃w : Px+Qw≤ r},

i.e., as the projection of the solution set

Y = {[x;w] : Px+Qw≤ r} (2.1.2)

of a finite system of linear inequalities in variables x,w onto the space of x-variables.
Is it true that X is polyhedral, i.e., X is a solution set of finite system of linear
inequalities in variables x only?
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This question will be answered positively below through the development of the
so-called Fourier-Motzkin elimination procedure.

Elimination step: eliminating a single slack variable. Given set (2.1.2), assume
that w = [w1; ...;wm] is nonempty, and let Y+ be the projection of Y on the space of
variables x,w1, ...,wm−1:

Y+ = {[x;w1; ...;wm−1] : ∃wm : Px+Qw≤ r}.

Let us show that Y+ is polyhedral. Indeed, let us split the linear inequalities
pT

i x+qT
i w≤ r, 1≤ i≤ I, defining Y into three groups:

a) The coefficient at wm is 0.
b) The coefficient at wm is > 0.
c) The coefficient at wm is < 0.

Then
Y =

{
x ∈ Rn : ∃w = [w1; ...;wm] :

aT
i x+bT

i [w1; ...;wm−1]≤ ci, i is in group a)
wm ≤ aT

i x+bT
i [w1; ...;wm−1]+ ci, i is in group b)

wm ≥ aT
i x+bT

i [w1; ...;wm−1]+ ci, i is in group c)
}

which implies that

Y+ =
{
[x;w1; ...;wm−1] :

aT
i x+bT

i [w1; ...;wm−1]≤ ci, i is in group a)
aT

µ x+bT
µ [w1; ...;wm−1]+ cµ ≥ aT

ν x+bT
ν [w1; ...;wm−1]+ cν

whenever µ is in group b) and ν is in group c)
}

and thus Y+ is polyhedral. Now that the projection

Y+ = {[x;w1; ...;wm−1] : ∃wm : [x;w1; ...;wm] ∈ Y}

of the polyhedral set Y = {[x,w] : Px+Qw≤ r} is polyhedral, iterating the process,
we conclude that the set X = {x : ∃w : [x,w] ∈ Y} is polyhedral.

Therefore, we arrive at the following conclusion.

Theorem 2.1. Every polyhedrally representable set is polyhedral.

Now let us consider an linear optimization problem of

Opt = max
x

{
cT x : Ax≤ b

}
(2.1.3)

Observe that the set of values of the objective at feasible solutions can be represented
as

T = {τ ∈ R : ∃x : Ax≤ b,cT x− τ = 0}
= {τ ∈ R : ∃x : Ax≤ b,cT x≤ τ,cT x≥ τ},

which means that T is polyhedrally representable. By Theorem 2.1, T is polyhedral,
i.e., T can be represented by a finite system of linear inequalities in variable τ only.
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It immediately follows that if T is nonempty and is bounded from above, T has
the largest element. Thus, we have proved the following important consequence of
Theorem 2.1.

Corollary 2.1. A feasible and bounded linear optimization problem admits an opti-
mal solution and thus is solvable.

Fourier-Motzkin Elimination Scheme also suggests a finite algorithm for solving
an LO program using the following procedure. First, we apply the scheme to get a
representation of T by a finite system S of linear inequalities in variable τ . Second,
we analyze S to find out whether the solution set is nonempty and bounded from
above, and when it is the case, to find out the optimal value Opt ∈ T of the program.
Third, use the Fourier-Motzkin elimination scheme in the backward fashion to find x
such that Ax≤ b and cT x = Opt , thus recovering an optimal solution to the problem
of interest. Unfortunately, the resulting algorithm is completely impractical, since
the number of inequalities we should handle at a step usually rapidly grows with the
number of steps and can become astronomically large when eliminating just tens of
variables.

Unit Balls

A real-valued function ∥x∥ on Rn is a norm if

∥x∥ ≥ 0,∀x ∈ Rn;∥x∥= 0 iff x = 0
∥λx∥= |λ |∥x∥,∀x ∈ Rn and λ ∈ R

∥x+ y∥ ≤ ∥x∥+∥y∥.

To show that a ball defined by an arbitrary norm, {x ∈ Rn|∥x∥ ≤ 1} (e.g., the

l2 norm ∥x∥2 =
√

∑
n
i=1x2

i or l1 norm ∥x∥1 = ∑
n
i=1|xi| balls) is convex, it suffices to

apply the Triangular inequality and the positive homogeneity associated with a norm.
Suppose that ∥x∥ ≤ 1,∥y∥ ≤ 1 and λ ∈ [0,1]. Then

∥λx+(1−λ )y∥ ≤ ∥λx∥+∥(1−λ )y∥= λ∥x∥+(1−λ )∥y∥ ≤ 1.

Notice that except some popular norms listed above, there is a more general
characterization of the unit ball of a norm. A set V ∈ Rn is the unit ball of a norm iff
V is (a) convex and symmetric w.r.t. 0, i.e., V =−V , (b) bounded and closed, and (c)
contains a neighbourhood of the origin.
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Ellipsoid

Let Q be an n×n positive definite and symmetric matrix (Q≻ 0), the center a ∈ Rn

and radius r > 0 be given. An ellipsoid in Rn is defined as

X := {x : (x−a)T Q(x−a)≤ r2}.

To show X is convex, we can write

(x−a)T Q(x−a) = [(x−a)T Q1/2][Q1/2(x−a)] = ∥Q1/2(x−a)∥2
2 = ∥x−a∥2

Q.

Hence, X is a ∥ · ∥Q-ball and is therefore a convex set.

ε-neighbourhood of Convex Set

Let M be a nonempty convex set in Rn, ∥ · ∥ be a norm and ε ≥ 0. Then the set

X := {x : dist∥·∥(x,M)≡ infy∈M∥x− y∥ ≤ ε}

is convex.
To show this statement, first observe that x ∈ X if and only for every ε ′ > ε there

exists y ∈M such that ∥x−y∥ ≤ ε ′. For any x,y ∈ X , λ ∈ [0,1], and any ε ′ > ε , there
exists u,v ∈M, such that ∥x−u∥ ≤ ε ′ and ∥y− v∥ ≤ ε ′. Setting w = λu+(1−λ )v,
we conclude

∥λx+(1−λ )y−w∥= ∥λ (x−u)+(1−λ )(y− v)∥
≤ λ∥x−u∥+(1−λ )∥y− v∥ ≤ ε

′,

which implies that X is convex.

Convex Combinations and Convex Hulls

Let x1, . . . ,xm ∈ Rn be given. y = ∑
m
i=1λixi is call their convex combination if λi ≥ 0

and ∑
m
i=1 = 1.

We claim that a set X ∈ Rn is convex iff it is closed w.r.t. convex combinations,
i.e.,

Xi ∈ X ,λi ≥ 0,∑m
i=1λi = 1⇒ ∑

m
i=1λixi ∈ X . (2.1.4)

To show the sufficient condition is straightforward. One just need to fix m = 2
and use the definition of convexity.

We need to prove the necessarily condition by using induction. (2.1.4) holds
obviously for m = 1. Suppose it is true when the number of terms is given by m.
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Then

∑
m+1
i=1 λixi = λm+1xm+1 +∑

m
i=1λixi

= λm+1xm+1 +
1−λm+1

∑
m
i=1λi

∑
m
i=1λixi

∈ X ,

where the second identity follows from 1−λm+1 = ∑
m
i=1λi, and the last inclusion

follows from the fact that ∑
m
i=1λixi/∑

m
i=1λi by our induction hypothesis.

It can be easily checked by the definition of convex sets that the intersection
∩α∈AXα of an arbitrary family of convex set {Xα}α∈A in Rn is convex. Now let
X ⊂ Rn be an arbitrary set. Then among convex sets containing X (which do exist,
e.g. Rn), there exists the smallest one, namely, the intersection of all convex sets
containing X . We use the convex hull Conv(X) to denote this smallest convex set
containing X .

The following simple result shows the inner construction of a convex hull.

Proposition 2.1. Let a subset X ⊆ Rn (not necessarily convex) be given, and let X̂
denote the set of all convex combination of points in X. Then Conv(X) = X̂ .

Proof. First note that every convex set which contains X must contain any convex
combination of point from X . Therefore, X̂ ⊆ Conv(X).

To show the opposite site, we only need to show that the set X̂ ⊇ X is convex
since Conv(X) is the smallest one containing X . This is immediate. Let x,y ∈ X̂ .
Then x = ∑

m
i=1uixi and y = ∑

n
i=1viyi, with xi ∈ X , i = 1, . . . ,m, yi ∈ X , i = 1, . . . ,n,

∑
m
i=1ui = 1, ui ≥ 0, ∑

m
i=1vi = 1, vi ≥ 0. For some λ ∈ [0,1],

λx+(1−λ )y = ∑
m
i=1λuixi +∑

n
i=1(1−λ )viyi ∈ X̂ .

Simplex

We have introduce the affine subspace from the geometric point of view together
with its outer representation using non-homogenous linear systems. We now review
an inner representation of an affine subspace, which will play an important role later
in the theory of convex sets.

For an nonempty set Y ⊆Rn, the affine hull Aff(Y ) is defined as the set comprised
of all affine combinations of elements of Y defined as y = ∑

k
i=0λiyi. Here yi ∈ Y , k

may depend on y, λi ∈ R and ∑iλi = 1. To see that this is an affine subspace, fix a
point y0 ∈ Y , we have

y = y0− (1−λ0)y0 +∑
k
i=1λiyi = y0 +∑

k
i=1λi(yi− y0).
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Since the last term ∑
k
i=1λi(yi− y0) denotes the linear subspace spanned by Y − y0,

Aff(Y ) must be an affine subspace by definition. In fact, since Ln(Y − y0) is the
smallest linear subspace containing Y−y0, Aff(Y ) is also the smallest affine subspace
containing Y . Let {y1−y0, . . . ,yd−y0} denotes the basis vectors in Ln(Y −y0), with
d being its dimension. It then follows that the generic element of Y can be more
compactly written as

y = y0 +∑
d
i=1(yi− y0).

We say that y0, . . . ,yd are affinely independent if y1− y0, . . . ,yd − y0 are linearly
independent.

An m-dimensional simplex ∆ with vertices x0, ...,xm is defined as the convex hull
of m+1 affinely independent points x0, ...,xm:

∆ = ∆(x0, ...,xm) = Conv({x0, ...,xm}).

A few example are given as follows. a) 2-dimensional simplex is given by 3 points
not belonging to a line and is the triangle with vertices at these points; b) Let e1, ...,en
be the standard basic orths in Rn. These n points are affinely independent, and the
corresponding (n−1)-dimensional simplex is the standard simplex ∆n = {x ∈ Rn :
x ≥ 0,∑

i
xi = 1}; and c) adding to e1, ...,en the vector e0 = 0, we get n+ 1 affine

independent points. The corresponding n-dimensional simplex is ∆+
n = {x ∈ Rn :

x ≥ 0,∑
i

xi ≤ 1}. Note that Simplex with vertices x0, ...,xm is convex since it is the

convex hull of a set), and every point from the simplex is a convex combination of
the vertices with the coefficients uniquely defined by the point.

Cone

A subset K of Rn is conic if K ̸= /0 and tx ∈ K for any x ∈ K and t ≥ 0. A convex
conic set is called a cone.

A few examples of cone are given below. a) Nonnegative orthant

Rn
+ = {x ∈ Rn : x≥ 0};

b) Lorentz cone

Ln = {x ∈ Rn : xn ≥
√

x2
1 + ...+ x2

n−1};

c) Semidefinite cone Sn
+. This cone “lives” in the space Sn of n×n symmetric matri-

ces and is comprised of all positive semidefinite symmetric n×n matrices;
d) The solution set {x : aT

α x≤ 0∀α ∈A } of an arbitrary (finite or infinite) homoge-
neous system of nonstrict linear inequalities is a closed cone. In particular, so is a
polyhedral cone {x : Ax≤ 0}. It is worth noting that every closed cone in Rn is the
solution set of a countable system of nonstrict homogeneous linear inequalities.

Below we provide a different characterization of a cone.
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Proposition 2.2. A nonempty subset K ⊆ Rn is a cone iff

a) K is conic: x ∈ K, t ≥ 0⇒ tx ∈ K;
b) K is closed w.r.t. addition: x,y ∈ K⇒ x+ y ∈ K.

Proof.⇒: Let K be convex and x,y ∈ K, Then 1
2 (x+ y) ∈ K by convexity, and

since K is conic, we also have x+ y ∈ K. Thus, a convex conic set is closed w.r.t.
addition.
⇐: Let K be conic and closed w.r.t. addition. In this case, a convex combination

λx+(1−λ )y of vectors x,y from K is the sum of the vectors λx and (1−λ )y and
thus belongs to K, since K is closed w.r.t. addition. Thus, a conic set which is closed
w.r.t. addition is convex

Cones form an extremely important class of convex sets with properties “parallel”
to those of general convex sets. For example,

• Intersection of an arbitrary family of cones again is a cone. As a result, for every
nonempty set X , among the cones containing X there exists the smallest cone
Cone(X), called the conic hull of X .

• A nonempty set is a cone iff it is closed w.r.t. taking conic combinations of its
elements (i.e., linear combinations with nonnegative coefficients).

• The conic hull of a nonempty set X is exactly the set of all conic combinations of
elements of X .

2.2 “Calculus” of Convex Sets

The following operations preserve convexity of sets.

1. Intersection: If Xα ⊂ Rn, α ∈A , are convex sets, so is
⋂

α∈A
Xα .

2. Direct product: If Xℓ ⊂ Rnℓ are convex sets, ℓ= 1, ...,L, so is the set

X = X1× ...×XL
≡ {x = (x1, ...,xL) : xℓ ∈ Xℓ,1≤ ℓ≤ L}
⊂ Rn1+...+nL .

3. Taking weighted sums: Let X1, ...,XL be nonempty convex subsets in Rn and
λ1, ...,λL be reals. Then the set

λ1X1 + ...+λLXL
≡ {x = λ1x1 + ...+λLxℓ : xℓ ∈ Xℓ,1≤ ℓ≤ L}

is convex.
4. Affine image: Let X ⊂Rn be convex and x 7→A (x)=Ax+b be an affine mapping

from Rn to Rk. Then the image of X under the mapping – the set

A (X) = {y = Ax+b : x ∈ X}
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is convex.
5. Inverse affine image: Let X ⊂Rn be convex and y 7→A (y) = Ay+b be an affine

mapping from Rk to Rn. Then the inverse image of X under the mapping – the set

A −1(X) = {y : Ay+b ∈ X}

is convex.

All these statements can be easily checked by using the definition of convexity.

2.3 Topological Properties of Convex Sets

Recall that a set X ⊂ Rn is called closed, if X contains the limits of all converging
sequences of its points:

xi ∈ X & xi→ x, i→ ∞⇒ x ∈ X .

It is open, if it contains, along with every of its points x, a ball of a positive radius
centered at x:

x ∈ X ⇒∃r > 0 : {y : ∥y− x∥2 ≤ r} ⊂ X .

For example, the solution set of an arbitrary system of nonstrict linear inequalities
{x : aT

α x ≤ bα} is closed, while the solution set of a finite system of strict linear
inequalities {x : Ax < b} is open.

Also there are a few important facts about open and closed set.

A. X is closed iff Rn\X is open.
B. The intersection of an arbitrary family of closed sets and the union of a finite

family of closed sets are closed.
B′.The union of an arbitrary family of open sets and the intersection of a finite family

of open sets are open.

Observe that B′ is equivalent to B in view of the identity that Rn\(A∩B) = (Rn\A)∪
(Rn\B). From B it follows that the intersection of all closed sets containing a given
set X is closed. The smallest closed set containing X , called the closure clX of X is
exactly the set of limits of all converging sequences of points of X :

clX = {x : ∃xi ∈ X : x = lim
i→∞

xi}.

From B′ it follows that the union of all open sets contained in a given set X is open.
The largest open set contained in X , called the interior intX of X is exactly the set of
all interior points of X – points x belonging to X along with balls of positive radii
centered at the points:

intX = {x : ∃r > 0 : {y : ∥y− x∥2 ≤ r} ⊂ X}.
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Let X ⊂ Rn. Then intX ⊂ X ⊂ clX . The “difference” ∂X = clX\intX is called the
boundary of X ; boundary always is closed (as the intersection of the closed sets clX
and the complement of intX).

In general, the discrepancy between intX and clX can be pretty large. For example,
let X ⊂ R1 be the set of irrational numbers in [0,1]. Then intX = /0, clX = [0,1],
so that intX and clX differ dramatically. Fortunately, a convex set is perfectly well
approximated by its closure (and by interior, if the latter is nonempty) as shown in
the following proposition.

Proposition 2.3. Let X ⊂ Rn be a nonempty convex set. Then

a) Both intX and clX are convex.
b) If intX is nonempty, then intX is dense in clX. Moreover,

x ∈ intX , y ∈ clX ⇒ λx+(1−λ )y ∈ intX ∀λ ∈ (0,1]. (2.3.1)

Proof. We first show part a). To prove that intX is convex, note that for every two
points x,y ∈ intX there exists a common r > 0 such that the balls Bx, By of radius r
centered at x and y belong to X . Since X is convex, for every λ ∈ [0,1], X contains
the set λBx +(1−λ )By, which clearly is nothing but the ball of the radius r centered
at λx+(1−λ )y. Thus, λx+(1−λ )y ∈ intX for all λ ∈ [0,1].
Similarly, to prove that clX is convex, assume that x,y ∈ clX , so that x = limi→∞ xi
and y = lim

i→∞
yi for appropriately chosen xi,yi ∈ X . Then for λ ∈ [0,1] we have

λx+(1−λ )y = lim
i→∞

[λxi +(1−λ )yi]︸ ︷︷ ︸
∈X

,

so that λx+(1−λ )y ∈ clX for all λ ∈ [0,1].
To prove part b), it suffices to prove (2.3.1). Indeed, let x̄ ∈ intX (the latter set

is nonempty). Every point x ∈ clX is the limit of the sequence xi =
1
i x̄+

(
1− 1

i

)
x.

Given (2.3.1), all points xi belong to intX , thus intX is dense in clX .
Now to show (2.3.1), Let x ∈ intX , y ∈ clX , λ ∈ (0,1]. Let us prove that λx+

(1−λ )y ∈ intX . Since x ∈ intX , there exists r > 0 such that the ball B of radius r
centered at x belongs to X . Since y ∈ clX , there exists a sequence yi ∈ X such that
y = limi→∞ yi. Now let

Bi = λB+(1−λ )yi
= {z = [λx+(1−λ )yi]︸ ︷︷ ︸

zi

+λh : ∥h∥2 ≤ r}

≡ {z = zi +δ : ∥δ∥2 ≤ r′ = λ r}.

Since B ⊂ X , yi ∈ X and X is convex, the sets Bi (which are balls of radius r′ > 0
centered at zi) are contained in X . Since zi→ z = λx+(1−λ )y as i→ ∞, all these
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balls, starting with certain number, contain the ball B′ of radius r′/2 centered at z.
Thus, B′ ⊂ X , i.e., z ∈ intX .

Let X be a convex set. It may happen that intX = /0 (e.g., X is a segment in 3D).
In this case, interior definitely does not approximate X and clX . So how should we
do with this? A natural way to overcome this difficulty is to pass to relative interior,
which is nothing but the interior of X taken w.r.t. the affine hull aff(X) of X rather
than to Rn. This affine hull, geometrically, is just certain Rm with m≤ n; replacing,
if necessary, Rn with this Rm, we arrive at the situation where intX is nonempty.

To implement the outlined idea, we need to the following definition.

Definition 2.2 (relative interior and relative boundary). Let X be a nonempty
convex set and M be the affine hull of X . The relative interior rintX is the set of all
point x ∈ X such that a ball in M of a positive radius, centered at x, is contained in X :

rintX = {x : ∃r > 0s.t.{y ∈ aff(X),∥y− x∥2 ≤ r} ⊂ X}.

The relative boundary of X is, by definition, clX\rintX .

We have the following important result for nonempty convex sets.

Proposition 2.4. Let X ⊂ Rn be a nonempty convex set. Then rintX ̸= /0.

Proof. By Linear Algebra, whenever x ∈ Rn is nonempty, one can find in X an
affine basis for the affine hull aff(X) of X . In other words, there exists x0,x1, ...,xm ∈
X so that every x ∈ aff(X) admits a representation

x =
m

∑
i=0

λixi, ∑
i

λi = 1

and the coefficients in this representation are uniquely defined by x.
When xi ∈ X , i = 0,1, ...,m, form an affine basis in aff(X), the system of linear

equations
m
∑

i=0
λixi = x

m
∑

i=0
λi = 1

in variables λ has a unique solution whenever x ∈ aff(X). Since this solution is
unique, it, again by Linear Algebra, depends continuously on x∈ aff(X). In particular,
when x = x̄ = 1

m+1 ∑
m
i=0 xi, the solution is positive; by continuity, it remains positive

when x ∈ aff(X) is close enough to x̄. Therefore,

∃r > 0 : x ∈ aff(X),∥x− x̄∥2 ≤ r⇒
x =

m
∑

i=0
λi(x)xi with ∑i λi(x) = 1 and λi(x)> 0
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It follows that when X is convex, x̄ ∈ rintX .

In view of the above result, by replacing, if necessary, the original “universe” Rn

with a smaller geometrically similar universe ( i.e. aff(X) or geometrically, Rm with
certain m≤ n), we can reduce investigating an arbitrary nonempty convex set X to the
case where this set has a nonempty interior (which is nothing but the relative interior
of X). In particular, our results for the “full-dimensional” case in Proposition 2.3
imply that for a nonempty convex set X , both rintX and clX are convex sets such
that

/0 ̸= rintX ⊂ X ⊂ clX ⊂ aff(X)

and rintX is dense in clX . Moreover, whenever x ∈ rintX , y ∈ clX and λ ∈ (0,1],
one has

λx+(1−λ )y ∈ rintX .

Now, we discuss how to construct the clX . Let X be convex and x̄ ∈ rintX . As we
know,

λ ∈ [0,1], y ∈ clX ⇒ yλ = λ x̄+(1−λ )y ∈ X .

It follows that in order to pass from X to its closure clX , it suffices to pass to “radial
closure” as follows. For every direction 0 ̸= d ∈ aff(X)− x̄, let Td = {t ≥ 0 : x̄+ td ∈
X}. Note that Td is a convex subset of R+ which contains all small enough positive
t’s. A few cases may happen.

• If Td is unbounded or is a bounded segment: Td = {t : 0≤ t ≤ t(d)< ∞}, the inter-
section of clX with the ray {x̄+ td : t ≥ 0} is exactly the same as the intersection
of X with the same ray.

• If Td is a bounded half-segment: Td = {t : 0≤ t < t(d)< ∞}, the intersection of
clX with the ray {x̄+ td : t ≥ 0} is larger than the intersection of X with the same
ray by exactly one point, namely, x̄+ t(d)d. Adding to X these “missing points”
for all d, we arrive at clX .
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2.4 Caratheodory’s Theorem

Let M be affine subspace in Rn, so that M = a+L for a linear subspace L. The linear
dimension of L is called the affine dimension dimM of M.

Examples: The affine dimension of a singleton is 0. The affine dimension of Rn

is n. The affine dimension of an affine subspace M = {x : Ax = b} is n− rank(A).
For a nonempty set X ⊂ Rn, the affine dimension dimX of X is exactly the affine
dimension of the affine hull aff(X) of X .

Theorem 2.2. Let /0 ̸= X ⊂ Rn. Then every point x ∈ conv(X) is a convex combina-
tion of at most dim(X)+1 points of X.

Proof. We will go through the following few steps.
10. We should prove that if x is a convex combination of finitely many points

x1, ...,xk of X , then x is a convex combination of at most m+1 of these points, where
m = dim(X). Replacing, if necessary, Rn with aff(X), it suffices to consider the case
of m = n.

20. Consider a representation of x as a convex combination of x1, ...,xk with
minimum possible number of nonzero coefficients; it suffices to prove that this
number is ≤ n+1. Let, on the contrary, the “minimum representation” of x

x =
p

∑
i=1

λixi, [λi ≥ 0,∑
i

λi = 1]

has p > n+1 terms.
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30. Consider the homogeneous system of linear equations in p variables δi
(a)

p
∑

i=1
δixi = 0 [n linear equations]

(b) ∑
i

δi = 0 [single linear equation]

Since p > n+1, this system has a nontrivial solution δ (i.e. δ ̸= 0). Observe that for
every t ≥ 0 one has

x =
p

∑
i=1

[λi + tδi]︸ ︷︷ ︸
λi(t)

xi & ∑
i

λi(t) = 1.

Now consider how to represent x as a convex combination of a smaller number of
xi’s by varying t.

• When t = 0, all coefficients λi(t) are nonnegative.
• When t→∞, some of the coefficients λi(t) go to−∞ (indeed, otherwise we would

have δi ≥ 0 for all i, which is impossible since ∑
i

δi = 0 and not all δi are zeros).

It follows that the quantity

t∗ = max{t : t ≥ 0 & λi(t)≥ 0∀i}

is well defined; when t = t∗, all coefficients in the representation

x =
p

∑
i=1

λi(t∗)xi

are nonnegative, sum of them equals to 1, and at least one of the coefficients λi(t∗)
vanishes. This contradicts the assumption of minimality of the original representation
of x as a convex combination of xi.

We also have a conic version of the Caratheodory Theorem. We will leave its
proof as an exercise.

Theorem 2.3. Let /0 ̸=X ⊂Rn. Then every vector x∈ cone(X) is a conic combination
of at most n vectors from X.

It is worth noting that the bounds given by Caratheodory Theorems (usual and
conic version) are sharp as shown in the following examples.

• For a simplex ∆ with m+1 vertices v0, ...,vm one has dim∆ = m, and it takes all

the vertices to represent the barycenter 1
m+1

m
∑

i=0
vi as a convex combination of the

vertices.
• The conic hull of n standard basic orths in Rn is exactly the nonnegative or-

thant Rn
+, and it takes all these vectors to get, as their conic combination, the

n-dimensional vector of ones.
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As an illustrative example of the above results, consider a supermarkets sell 99
different herbal teas; every one of them is certain blend of 26 herbs A,...,Z. Let xi
denote the fraction of each herb for a herbal tea. These herbal teas sit within an affine
space of dimension 25, i.e., {x ∈ R26 : ∑

26
i=1 xi = 1}.

In spite of such a variety of marketed blends, John is not satisfied with any one of
them; the only herbal tea he likes is their mixture, in the proportion

1 : 2 : 3 : ... : 98 : 99

Once it occurred to John that in order to prepare his favorite tea, there is no
necessity to buy all 99 marketed blends; a smaller number of them will do. With
some arithmetics, John found a combination of 66 marketed blends which still allows
to prepare his tea. Do you believe John’s result can be improved?

2.5 Radon’s Theorem

Theorem 2.4. Let x1, ...,xm be m≥ n+2 vectors in Rn. One can split these vectors
into two nonempty and non-overlapping groups A and B such that

conv(A)∩ conv(B) ̸= /0.

Proof. Consider the homogeneous system of linear equations in m variables δi:
m
∑

i=1
δixi = 0 [n linear equations]

m
∑

i=1
δi = 0 [single linear equation]

Since m ≥ n+ 2, the system has a nontrivial solution δ . Setting I = {i : δi > 0},
J = {i : δi ≤ 0}, we split the index set {1, ...,m} into two nonempty (due to δ ̸=
0,∑

i
δi = 0) groups such that

∑
i∈I

δixi = ∑
j∈J

[−δ j]x j

γ = ∑
i∈I

δi = ∑
j∈J
−δ j > 0

whence

∑
i∈I

δi

γ
xi︸ ︷︷ ︸

∈conv({xi:i∈I})

= ∑
j∈J

−δ j

γ
x j︸ ︷︷ ︸

∈conv({x j : j∈J})

.
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2.6 Helley’s Theorem

The following is a basic version of Helley’s Theorem.

Theorem 2.5. Let A1, ...,AM be convex sets in Rn. Assume that every n+1 sets from
the family have a point in common. Then all sets also have point in common.

Proof. We prove the result based on induction in M. The base M≤ n+1 is trivially
true. Now assume that for certain M ≥ n+1 our statement hods true for every M-
member family of convex sets, and let us prove that it holds true for M+1-member
family of convex sets A1, ...,AM+1.

• By inductive hypotheses, every one of the M+1 sets

Bℓ = A1∩A2∩ ...∩Aℓ−1∩Aℓ+1∩ ...∩AM+1

is nonempty. Let us choose xℓ ∈ Bℓ, ℓ= 1, ...,M+1.
• By Radon’s Theorem, the collection x1, ...,xM+1 can be split in two sub-collections

with intersecting convex hulls. W.l.o.g., let the split be {x1, ...,xJ−1}∪{xJ , ...,xM+1},
and let

z ∈ conv({x1, ...,xJ−1})
⋂

conv({xJ , ...,xM+1}).
We claim that z ∈ Aℓ for all ℓ ≤M + 1 and hence the result is proved. Indeed, the
points xJ ,xJ+1, ...,xM+1 belong to the convex set Aℓ for ℓ≤ J−1, whence

z ∈ conv({xJ , ...,xM+1})⊂ Aℓ.

Moreover, the points x1, ...,xJ−1 belong to the convex set Aℓ for ℓ≥ J, whence

z ∈ conv({x1, ...,xJ−1})⊂ Aℓ.

We can refine Helley’s theorem as follows.

Theorem 2.6. Assume that A1, ...,AM are convex sets in Rn and that

• the union A1∪A2∪ ...∪AM of the sets belongs to an affine subspace P of affine
dimension m.

• every m+1 sets from the family have a point in common.

Then all the sets have a point in common.

Proof. We can think of A j as of sets in P, or, which is the same, as sets in Rm and
apply the Helley Theorem

When trying to extend Helley’s Theorem from finite to infinite collections of
convex sets Aα , α ∈A , we meet two immediate obstacles. First, things can go wrong
when the sets Aα are not closed. For example, for the collection {Ai = (0,1/i)}, i≥ 1
of convex subsets of R, the intersection of sets from every finite subcollection is
nonempty, but the intersection of all Ai is empty. Second, things can go wrong when



34 2 Convex Sets

the intersections of sets from finite subcollections can “run to infinity," as is the case
for collection {Ai = [i,∞)}, i ≥ 1 of convex subsets of R. Here again intersection
of sets from every finite subcollection is nonempty, but the intersection of all Ai is
empty. It turns out that these are the only two obstacles for Helley Theorem to be
applicable to infinite collections of convex sets.

Below we show a more general form of Helley’s theorem for an infinite collection
of convex sets.

Theorem 2.7. Let Aα , α ∈A , be a family of convex sets in Rn such that every n+1
sets from the family have a point in common. Assume, in addition, that

• the sets Aα are closed.
• one can find finitely many sets Aα1 , ...,AαM with a bounded intersection.

Then all sets Aα , α ∈A , have a point in common.

Proof. By Helley’s Theorem, every finite collection of the sets Aα has a point in
common, and it remains to apply the following standard fact from Analysis:
Let Bα be a family of closed sets in Rn such that

• every finite collection of the sets has a nonempty intersection;
• in the family, there exists finite collection with bounded intersection.

Then all sets from the family have a point in common.
The proof of the Standard Fact is based upon the following fundamental property

of Rn: Every closed and bounded subset of Rn is a compact set. Recall two equivalent
definitions of a compact set:

• A subset X in a metric space M is called compact, if from every sequence of points
of X one can extract a sub-sequence converging to a point from X .

• A subset X in a metric space M is called compact, if from every open covering of
X (i.e., from every family of open sets such that every point of X belongs to at
least one of them) one can extract a finite sub-covering.

Now let Bα be a family of closed sets in Rn such that every finite sub-family of
the sets has a nonempty intersection and at least one of these intersection, let it be B,
is bounded. Let us prove that all sets Bα have a point in common. Assume that it is
not the case. Then for every point x ∈ B there exists a set Bα which does not contain
x. Since Bα is closed, it does not intersect an appropriate open ball Vx centered at
x. Note that the system {Vx : x ∈ B} forms an open covering of B. By its origin,
B is closed (as intersection of closed sets) and bounded and thus is a compact set.
Therefore one can find a finite collection Vx1 , ...,VxM which covers B. For every i≤M,

there exists a set Bαi in the family which does not intersect Vxi ; therefore
M⋂

i=1
Bαi does

not intersect B. Since B itself is the intersection of finitely many sets in Bα , we see
that the intersection of these finitely many sets from Bα used to define B and the
constructed sets Bα1 ,...,BαM is empty, which is a contradiction (to the assumption
that every finite sub-family of the sets has a nonempty intersection).



2.6 Helley’s Theorem 35

Example 2.1. We are given a function f (x) on a 7,000,000-point set X ⊂ R. At every
7-point subset of X , this function can be approximated, within accuracy 0.001 at
every point, by appropriate polynomial of degree 5. To approximate the function on
the entire X , we want to use a spline of degree 5 (a piecewise polynomial function
with pieces of degree 5). How many pieces do we need to get accuracy 0.001 at every
point?

The answer is: Just one. Indeed, let Ax, x ∈ X , be the set of coefficients of all
polynomials of degree 5 which reproduce f (x) within accuracy 0.001:

Ax =
{

p = (p0, ..., p5) ∈ R6 : | f (x)−
5
∑

i=0
pixi| ≤ 0.001

}
.

The set Ax is polyhedral and therefore convex, and we know that every 6+1 = 7 sets
from the family {Ax}x∈X have a point in common. By Helley Theorem, all sets Ax,
x ∈ X , have a point in common, that is, there exists a single polynomial of degree 5
which approximates f within accuracy 0.001 at every point of X .

Example 2.2. Consider an optimization program

c∗ =
{

cT x : gi(x)≤ 0, i = 1, ...,2022
}

with 11 variables x1, ...,x11. Assume that the constraints are convex, that is, every
one of the sets

Xi = {x : gi(x)≤ 0}, i = 1, ...,2022

is convex. Assume also that the problem is solvable with optimal value 0. Clearly,
when dropping one or more constraints, the optimal value can only decrease or
remain the same. Is it possible to find a constraint such that dropping it, we preserve
the optimal value? Two constraints which can be dropped simultaneously with no
effect on the optimal value? Three of them?

In fact, you can drop as many as 2022− 11 = 2011 appropriately chosen con-
straints without varying the optimal value!

Assume, on the contrary, that every 11-constraint relaxation of the original problem
has negative optimal value. Since there are finitely many such relaxations, there exists
ε < 0 such that every problem of the form

min
x
{cT x : gi1(x)≤ 0, ...,gi11(x)≤ 0} (2.6.1)

has a feasible solution with the value of the objective <−ε . Since this problem has
a feasible solution with the value of the objective equal to 0 (namely, the optimal
solution of the original problem) and its feasible set is convex, problem (2.6.1) has a
feasible solution x with cT x =−ε , obtained by taking a convex combination of the
two optimal solutions to the original problem and the reduced problem in (2.6.1).
In other words, every 11 of the 2022 sets (each defined by one single constraint
gi(x)≤ 0 and cT x =−ε)
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Yi = {x : cT x =−ε,gi(x)≤ 0}, i = 1, ...,2022

have a point in common. The sets Yi are convex (as intersections of convex sets Xi
and an affine subspace). If c ̸= 0, then these sets belong to affine subspace of affine
dimension 10, and since every 11 of them intersect, all 2022 intersect; a point x from
their intersection is a feasible solution of the original problem with cT x < 0, which
is impossible. When c = 0, the claim is evident: we can drop all 2022 constraints
without varying the optimal value!

2.7 Separation Theorem

Separating Linear Form

Recall from linear algebra that every linear form f (x) on Rn is representable via
inner product:

f (x) = ⟨ f ,x⟩
for appropriate vector f ∈Rn uniquely defined by the form. Nontrivial (not identically
zero) forms correspond to nonzero vectors f . A level set

M = {x : ⟨ f ,x⟩= a} (2.7.1)

of a nontrivial linear form on Rn is affine subspace of affine dimension n−1; vice
versa, every affine subspace M of affine dimension n−1 in Rn can be represented
by (2.7.1) with appropriately chosen f ̸= 0 and a; f and a are defined by M up to
multiplication by a common nonzero factor. (n−1)-dimensional affine subspaces in
Rn are called hyperplanes.

Level set (2.7.1) of nontrivial linear form splits Rn into two parts:

M+ = {x : ⟨ f ,x⟩ ≥ a} and M− = {x : ⟨ f ,x⟩ ≤ a}

called closed half-spaces given by ( f ,a); the hyperplane M is the common boundary
of these half-spaces. The interiors M++ of M+ and M−− of M− are given by

M++ = {x : ⟨ f ,x⟩> a} and M−− = {x : ⟨ f ,x⟩< a}

and are called open half-spaces given by ( f ,a). We have

Rn = M−
⋃

M+ [M−
⋂

M+ = M]

and
Rn = M−−

⋃
M
⋃

M++.

Let S and T be two nonempty sets in Rn. We say that a hyperplane M in (2.7.1)
separates S and T , if S ⊂ M−, T ⊂ M+, and S∪T ̸⊂ M. We say that a nontrivial
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linear form ⟨ f ,x⟩ separates S and T if, for properly chosen a, the hyperplane (2.7.1)
separates S and T . Geometrically, whenever M separates S and T , S does not go
above M, T does not go below M, and their union is not contained completely in M.

Below we give a few examples of separating hyperplanes.

Example 2.3. The linear form x1 on R2 (with a = 0)

1) separates the sets
S = {x ∈ R2 : x1 ≤ 0,x2 ≤ 0},
T = {x ∈ R2 : x1 ≥ 0,x2 ≥ 0}.

2) separates the sets

S = {x ∈ R2 : x1 ≤ 0,x2 ≤ 0},
T = {x ∈ R2 : x1 + x2 ≥ 0,x2 ≤ 0}.

3) does not separate the sets

S = {x ∈ R2 : x1 = 0,1≤ x2 ≤ 2},
T = {x ∈ R2 : x1 = 0,−2≤ x2 ≤−1}.

4) separates the sets

S = {x ∈ R2 : x1 = 0,1≤ x2 ≤ 2},
T = {x ∈ R2 : 0≤ x1 ≤ 1,−2≤ x2 ≤−1}.

An important characterization of separating linear form is given as follows. A
linear form ⟨ f ,x⟩ separates nonempty sets S and T if and only if

sup
x∈S
⟨ f ,x⟩ ≤ inf

y∈T
⟨ f ,y⟩ and inf

x∈S
⟨ f ,x⟩< sup

y∈T
⟨ f ,y⟩.

In this case, the hyperplanes associated with f separating S and T are exactly the
hyperplanes

{x : ⟨ f ,x⟩= a} with sup
x∈S
⟨ f ,x⟩ ≤ a≤ inf

y∈T
⟨ f ,y⟩.

Main Theorem

Separation theorems states that two nonempty convex sets can be separated iff their
relative interiors do not intersect. In order to prove this fundamental results in convex
analysis, we need to prepare a few technical results.

Lemma 2.1. Let X be a convex set, f (x) = ⟨ f ,x⟩ ≡ f T x be a linear form and a ∈
rintX. Then

f T a = max
x∈X

f T x⇔ f (·)
∣∣∣∣
X
= const.
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Proof. Shifting X , we may assume a = 0. Let, on the contrary to what should be
proved, f T x be non-constant on X , so that there exists y ∈ X with f T y ̸= f T a = 0.
The case of f T y > 0 is impossible, since f T a = 0 is the maximum of f T x on X . Thus,
f T y < 0. The line {ty : t ∈ R} passing through 0 and through y belongs to aff(X);
since 0 ∈ rintX , all points z =−εy on this line belong to X , provided that ε > 0 is
small enough. At every point of this type, f T z > 0, which contradicts the fact that
max
x∈X

f T x = f T a = 0.

The following result is well-known in real analysis. We put it here for the sake of
completeness.

Lemma 2.2. Every nonempty subset S in Rn is separable, meaning that one can find
a sequence {xi} of points from S which is dense in S, i.e., is such that every point
x ∈ S is the limit of an appropriate subsequence of the sequence.

Proof. Let r1,r2, ... be the countable set of all rational vectors in Rn. For every
positive integer t, let Xt ⊂ S be the countable set given by the following construction:

We look, one after another, at the points r1,r2, ... and for every point rs check whether there is
a point z in S which is at most at the distance 1/t away from rs. If points z with this property
exist, we take one of them and add it to Xt and then pass to rs+1, otherwise directly pass to
rs+1.

Is is clear that every point x ∈ S is at the distance at most 2/t from certain point of
Xt . Indeed, since the rational vectors are dense in Rn, there exists s such that rs is at
the distance ≤ 1/t from x. Therefore, when processing rs, we definitely add to Xt a
point z which is at the distance ≤ 1/t from rs and thus is at the distance ≤ 2/t from

x. By construction, the countable union
∞⋃

t=1
Xt of countable sets Xt ⊂ S is a countable

set in S, and this set is dense in S since every point x ∈ S is at the distance at most
2/t from certain point of Xt .

We are now ready to prove the main result in this subsection.

Theorem 2.8. Two nonempty convex sets S and T can be separated iff their relative
interiors do not intersect.

Proof.⇒: Suppose that f T x separates S and T so that sup
x∈S

f T x≤ inf
y∈T

f T y. Assume,

on contrary to what should be proved, that a ∈ rintS∩ rintT . Since a ∈ T , we get
f T a ≥ sup

x∈S
f T x, that is, f T a = max

x∈S
f T x. By Lemma 2.1, f T x = f T a for all x ∈ S.

Moreover, since a∈ S, we get f T a≤ inf
y∈T

f T y, that is, f T a = min
y∈T

f T y. By Lemma 2.1,

f T y = f T a for all y ∈ T . Thus, for any z ∈ S∪T , we have f T z≡ f T a, so that f does
not separate S and T , which is a contradiction.

⇐: Assume that S and T are nonempty convex sets such that rintS∩ rintT = /0.
We will prove that S and T can be separated by a few steps.

10: Separating a point and a convex hull of a finite set. Let S= conv({b1, ...,bm})
and T = {b} with b ̸∈ S, and let us prove that S and T can be separated. Indeed,
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S = conv({b1, ...,bm}) = {x : ∃λ s.t.λ ≥ 0,∑
i

λi = 1,x = ∑
i

λibi}

is polyhedrally representable and thus by Theorem 2.1, is polyhedral, i.e.,

S = {x : pT
l x≤ ql , l ≤ L}.

Since b ̸∈ S, for some l̄, we have pT
l̄ b > ql̄ ≥ supx∈S pT

l̄ x, which is the desired
separation.

20: Separating a point and a convex set which does not contain the point. Let
S be a nonempty convex set and T = {b} with b ̸∈ S, and let us prove that S and T
can be separated. W.L.O.G., shifting S and T by −b (which clearly does not affect
the possibility of separating the sets), we can assume that T = {0} ̸⊂ S. Moreover,
replacing, if necessary, Rn with lin(S), we may further assume that Rn = lin(S). In
view of Lemma 2.2, Let {xi ∈ S} be a sequence which is dense in S. Since S is convex
and does not contain 0, we have

0 ̸∈ conv({x1, ...,xi}) ∀i

whence by Step 1,
∃ fi : 0 = f T

i 0 > max
1≤ j≤i

f T
i x j. (2.7.2)

By scaling, we may assume that ∥ fi∥2 = 1. The sequence { fi} of unit vectors
possesses a converging subsequence { fis}∞

s=1; the limit f of this subsequence is,
of course, a unit vector. By (2.7.2), for every fixed j and all large enough s we have
f T
is x j < 0, whence

f T x j ≤ 0 ∀ j. (2.7.3)

Since {x j} is dense in S, (2.7.3) implies that f T x≤ 0 for all x ∈ S, whence

sup
x∈S

f T x≤ 0 = f T 0. (2.7.4)

In view of the above relation, all we need to prove is to verify that

inf
x∈S

f T x < f T 0 = 0.

Assuming the opposite, (2.7.4) would say that f T x = 0 for all x ∈ S, which is
impossible, since lin(S) = Rn and f is nonzero.

30: Separating two non-intersecting nonempty convex sets. Suppose that S
and T are nonempty convex sets which do not intersect. Let us prove that they can
be separated. Let Ŝ = S−T and T̂ = {0}. The set Ŝ clearly is convex and does not
contain 0 (since S∩T = /0). By Step 2, Ŝ and {0}= T̂ can be separated: there exists
f such that



40 2 Convex Sets

sup
x∈S

f T s− inf
y∈T

f T y︷ ︸︸ ︷
sup

x∈S,y∈T
[ f T x− f T y] ≤ 0 = inf

z∈{0}
f T z

inf
x∈S,y∈T

[ f T x− f T y]︸ ︷︷ ︸
inf
x∈S

f T x−sup
y∈T

f T y

< 0 = sup
z∈{0}

f T z

whence
sup
x∈S

f T x≤ inf
y∈T

f T y and inf
x∈S

f T x < sup
y∈T

f T y.

40: Completing the proof of Separation Theorem. Finally, suppose that S and
T are nonempty convex sets with non-intersecting relative interiors. Let us prove that
S and T can be separated. As we know, the sets S′ = rintS and T ′ = rintT are convex
and nonempty, and hence we are in the situation when these sets do not intersect. By
Step 3, S′ and T ′ can be separated: for properly chosen f , one has

sup
x∈S′

f T x ≤ inf
y∈T ′

f T y

inf
x∈S′

f T x < sup
y∈T ′

f T y

Since S′ is dense in S and T ′ is dense in T , inf’s and sup’s in the above relation
remain the same when replacing S′ with S and T ′ with T . Thus, f separates S and T .

Separation of sets S and T by linear form f T x is called strict, if

sup
x∈S

f T x < inf
y∈T

f T y

Theorem 2.9. Let S and T be nonempty convex sets. These sets can be strictly
separated iff they are at positive distance:

dist(S,T ) = inf
x∈S,y∈T

∥x− y∥2 > 0.

Proof.⇒: Suppose f strictly separate S and T . Let us prove that S,T are at positive
distance. Otherwise we could find sequences xi ∈ S, yi ∈ T with ∥xi− yi∥2→ 0 as
i→ ∞, whence f T (yi− xi)→ 0 as i→ ∞. It follows that the sets on the axis

Ŝ = {a = f T x : x ∈ S}, T̂ = {b = f T y : y ∈ T}

are at zero distance, which is a contradiction with

sup
a∈Ŝ

a < inf
b∈T̂

b.
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⇐: Suppose S and T be nonempty convex sets which are at positive distance 2δ :

2δ = inf
x∈S,y∈T

∥x− y∥2 > 0.

Let
S+ = S+{z : ∥z∥2 ≤ δ}

The sets S+ and T are convex and do not intersect, and thus can be separated:

sup
x+∈S+

f T x+ ≤ inf
y∈T

f T y [ f ̸= 0]

Since
sup

x+∈S+
f T x+ = sup

x∈S,∥z∥2≤δ

[ f T x+ f T z]

= [sup
x∈S

f T x]+δ∥ f∥2,

we arrive at
sup
x∈S

f T x < inf
y∈T

f T y.

2.8 Supporting Planes

Let Q be a closed convex set in Rn and x̄ be a point from the relative boundary of Q.
A hyperplane

Π = {x : f T x = a} [a ̸= 0]

is called supporting to Q at the point x̄, if the hyperplane separates Q and {x̄}:

sup
x∈Q

f T x ≤ f T x̄

inf
x∈Q

f T x < f T x̄

Equivalently, Π = {x : f T x = a} supports Q at x̄ if and only if the linear form f T x
attains its maximum on Q, equal to a, at the point x̄ and the form is non-constant on
Q.

Proposition 2.5. Let Q be a convex closed set in Rn and x̄ be a point from the relative
boundary of Q. Then

a) There exist at least one hyperplane Π which supports Q at x̄;
b) For every such hyperplane Π , the set Q∩Π has dimension less than the one of Q.

Proof. Existence of supporting plane is given by the Separation Theorem in
Theorem 2.8 since
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x̄ ̸∈ rintQ⇒ ({x̄} ≡ rint{x̄})∩ rintQ = /0.

Furthermore,

Q ⊈ Π ⇒ aff(Q)⊈ Π ⇒ aff(Π ∩Q)⫋ aff(Q).

If two distinct affine subspaces are embedded one into another, then the dimension of
the embedded subspace is strictly less than the dimension of the embedding one.

2.9 Extreme Points*

We first give a few equivalent definitions of extreme points. Let Q be a convex set in
Rn and x̄ be a point of Q. The point is called extreme, if it is not a convex combination,
with positive weights, of two points of X distinct from x̄:

x̄ ∈ ext(Q)
⇕

{x̄ ∈ Q} &
{

u,v ∈ Q,λ ∈ (0,1)
x̄ = λu+(1−λ )v

}
⇒ u = v = x̄

}
Equivalently, a point x̄ ∈ Q is extreme if and only if it is not the midpoint of a
nontrivial segment in Q:

x±h ∈ Q⇒ h = 0.

It is also equivalent to say that a point x̄ ∈ Q is extreme if and only if the set Q\{x̄}
is convex. Here are a few examples for extreme points.

a) Extreme points of [x,y] are the end points x and y.
b) Extreme points of△ABC are the vertices A, B and C.
c) Extreme points of the ball {x : ∥x∥2 ≤ 1} are the points {x : ∥x∥2 = 1} on the

boundary of the ball.

Krein-Milman’s theorem below tells us when a convex set possess extreme points.
Moreover, it shows that a closed convex bounded set Q is given by the convex hull
of its extreme points. Before presenting this result, we need to prove two important
technical results.

Lemma 2.3. Let S be a closed convex set and Π = {x : f T x = a} be a hyperplane
which supports S at certain point. Then

ext(Π ∩S)⊂ ext(S).

Proof. Let x̄ ∈ ext(Π ∩ S). We should prove that x̄ ∈ ext(S). Assume, on the
contrary, that x̄ is a midpoint of a nontrivial segment [u,v] ⊂ S. Then f T x̄ = a =
max
x∈S

f T x, whence f T x̄ = max
x∈[u,v]

f T x. A linear form can attain its maximum on a

segment at the midpoint of the segment if and only if the form is constant on the
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segment. Thus, a = f T x̄ = f T u = f T v, that is, [u,v]⊂Π ∩S. This contradicts with
the assumption that x̄ is an extreme point of Π ∩S.

Here is another important lemma.

Lemma 2.4. Let S be a closed convex set such that {x̄+ th : t ≥ 0} ⊂ S for certain x̄.
Then

{x+ th : t ≥ 0} ⊂ S ∀x ∈ S.

Proof. For every s > 0 and x ∈ S we have

x+ sh = lim
i→∞

[(1− s/i)x+(s/i)[x̄+(i/s)h]]︸ ︷︷ ︸
∈S

.

Hence x+ sh ∈ S by the closeness of S.
Note that the set of all directions h ∈ Rn such that {x+ th : t ≥ 0} ⊂ S for some

(and then, for all) x ∈ S, is called the recessive cone rec(S) of closed convex set S.
rec(S) indeed is a cone, and S+ rec(S) = S.

Theorem 2.10 (Krein-Milman). Let Q be a closed convex and nonempty set in Rn.
Then

a) Q possess extreme points if and only if Q does not contain lines;
b) If Q is bounded, then Q is the convex hull of its extreme points:

Q = conv(ext(Q))

so that every point of Q is convex combination of extreme points of Q.

Proof. We prove the results through a few steps.
10: If closed convex set Q does not contain lines, then ext(Q) ̸= /0. In order to build
an extreme point of Q, we apply the following Purification algorithm.

Initialization: Set S0 = Q and choose x0 ∈ Q.
Step t: Given a nonempty closed convex set St which does not contain lines and is
such that ext(St)⊂ ext(Q) and xt ∈ St ,
1) check whether St is a singleton {xt}. If it is the case, terminate: xt ∈ ext{St} ⊂
ext(Q).
2) if St is not a singleton, find a point xt+1 on the relative boundary of St and build
a hyperplane Πt which supports St at xt+1. More specifically, to find xt+1, take a
direction h ̸= 0 parallel to aff(St). Since St does not contain lines, when moving from
xt either in the direction h, or in the direction −h, we eventually leave St , and thus
cross the relative boundary of St . The intersection point is the desired xt+1.
3) Set St+1 = St ∩Πt , replace t with t +1 and loop to 1).

By Lemma 2.3, we have

ext(St+1)⊂ ext(St),
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so that
ext(St)⊂ ext(Q) ∀t.

Besides this, dim(St+1)< dim(St), so that Purification algorithm does terminate with
an extreme point.

20: If a closed convex set Q contains lines, it has no extreme points. By Lemma 2.4,
If a closed convex set Q contains a line ℓ (both directions of a ray), then the parallel
lines, passing through points of Q, also belong to Q. In particular, Q possesses no
extreme points.

30: If a nonempty closed convex set Q is bounded, then Q = conv(ext(Q)). The
inclusion conv(ext(Q)) ⊂ Q is evident. Let us prove the opposite inclusion, i.e.,
prove that every point of Q is a convex combination of extreme points of Q based on
induction on k = dimQ. The base case k = 0 (Q is a singleton) is evident. Suppose
the result holds for any dimension up to k. Now given (k+1)-dimensional closed
and bounded convex set Q and a point x ∈ Q, we, as in the Purification algorithm,
can represent x as a convex combination of two points x+ and x− from the relative
boundary of Q. Let Π+ be a hyperplane which supports Q at x+, and let Q+ =Π+∩Q.
As we know, Q+ is a closed convex set such that

dimQ+ < dimQ, ext(Q+)⊂ ext(Q), x+ ∈ Q+.

Invoking inductive hypothesis,

x+ ∈ conv(ext(Q+))⊂ conv(ext(Q)).

Similarly, x− ∈ conv(ext(Q)). Since x ∈ [x−,x+], we get x ∈ conv(ext(Q)).

Suppose that we are given a linear form gT x which is bounded from above on Q.
Then in the Purification algorithm we can easily ensure that gT xt+1 ≥ gT xt . Thus, If
Q is a nonempty closed set in Rn which does not contain lines and f T x is a linear
form which is bounded above on Q, then for every point x0 ∈ Q there exists (and
can be found by Purification) a point x̄ ∈ ext(Q) such that gT x̄≥ gT x0. In particular,
if gT x attains its maximum on Q, then the maximizer can be found among extreme
points of Q.

2.10 Exercises

1 Show that a set is convex if and only if its intersection with any line is convex.
Show that a set is affine if and only if its intersection with any line is affine.

2 Voronoi description of halfspace. Let a and b be distinct points in Rn. Show
that the set of all points that are closer (in Euclidean norm) to a than b, i.e.,
{x | ∥x−a∥2 ≤ ∥x−b∥2}, is a halfspace. Describe it explicitly as an inequality
of the form cT x≤ d. Draw a picture.
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3 Which of the following sets S are polyhedra? If possible, express S in the form
S = {x | Ax≤ b,Fx = g}
(a) S = {y1a1 + y2a2 | −1≤ y1 ≤ 1,−1≤ y2 ≤ 1}, where a1,a2 ∈ Rn

(b) S=
{

x ∈ Rn | x≥ 0, 1T x = 1,∑n
i=1 xiai = b1,∑

n
i=1 xia2

i = b2
}

, where a1, . . . ,an ∈
R and b1,b2 ∈ R.

(c) S =
{

x ∈ Rn | x≥ 0,xT y≤ 1 for all y with ∥y∥2 = 1}.
(d) S =

{
x ∈ Rn | x≥ 0,xT y≤ 1 for all y with ∑

n
i=1 |yi|= 1}.

4 Which of the following sets are convex?

(a) A slab, i.e., a set of the form
{

x ∈ Rn | α ≤ aT x≤ β
}

.
(b) A rectangle, i.e., a set of the form {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, . . . ,n}. A

rectangle is sometimes called a hyperrectangle when n > 2.
(c) A wedge, i.e.,

{
x ∈ Rn | aT

1 x≤ b1,aT
2 x≤ b2

}
.

(d) The set of points closer to a given point than a given set, i.e.,

{x | ∥x− x0∥2 ≤ ∥x− y∥2 for all y ∈ S}

where S⊆ Rn.
(e) The set of points closer to one set than another, i.e.,

{x | dist(x,S)≤ dist(x,T )},

where S,T ⊆ Rn, and

dist(x,S) = inf{∥x− z∥2 | z ∈ S} .

(f) The set {x | x+S2 ⊆ S1}, where S1,S2 ⊆ Rn with S1 convex.
(g) The set of points whose distance to a does not exceed a fixed fraction θ of

the distance to b, i.e., the set {x | ∥x−a∥2 ≤ θ∥x−b∥2}. You can assume
a ̸= b and 0≤ θ ≤ 1

5 Expanded and restricted sets. Let S⊆ Rn, and let ∥ · ∥ be a norm on Rn.

(a) For a≥ 0 we define Sa as {x | dist(x,S)≤ a}, where dist(x,S) = infy∈S ∥x−
y∥. We refer to Sa as S expanded or extended by a. Show that if S is convex,
then Sa is convex.

(b) For a ≥ 0 we define S−a = {x | B(x,a) ⊆ S}, where B(x,a) is the ball (in
the norm ∥ · ∥), centered at x, with radius a. We refer to S−a as S shrunk or
restricted by a, since S−a consists of all points that are at least a distance a
from Rn\S. Show that if S is convex, then S−a is convex.

6 Some sets of probability distributions. Let x be a real-valued random variable
with prob(x = ai) = pi, i = 1, . . . ,n, where a1 < a2 < · · ·< an. Of course p∈Rn

lies in the standard probability simplex P =
{

p | 1T p = 1, p⪰ 0
}

. Which of the
following conditions are convex in p ? (That is, for which of the following
conditions is the set of p ∈ P that satisfy the condition convex?)
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(a) α ≤ E f (x)≤ β , where E f (x) is the expected value of f (x), i.e., E f (x) =
∑i=1 pi f (ai) (The function f : R→ R is given.)

(b) prob(x > α)≤ β .
(c) E

∣∣x3
∣∣≤ αE|x|.

(d) Ex2 ≤ α .
(e) Ex2 ≥ α .
(f) var(x)≤ α , where var(x) = E(x−Ex)2 is the variance of x.
(g) var(x)≥ α .
(h) quartile(x)≥ α , where quartile(x) = inf{β | prob(x≤ β )≥ 0.25}.
(i) quartile(x)≤ α .

7 Show that if S1 and S2 are convex sets in Rm+n, then so is their partial sum

S = {(x,y1 + y2) | x ∈ Rm,y1,y2 ∈ Rn,(x,y1) ∈ S1,(x,y2) ∈ S2}

8 The set of separating hyperplanes. Suppose that C and D are disjoint subsets
of Rn. Consider the set of (a,b) ∈ Rn+1 for which aT x ≤ b for all x ∈C, and
aT x≥ b for all x ∈ D. Show that this set is a convex cone (which is the singleton
{0} if there is no hyperplane that separates C and D).

9 Supporting hyperplanes.

(a) Express the closed convex set
{

x ∈ R2
+ | x1x2 ≥ 1

}
as an intersection of

halfspaces.
(b) Let C = {x ∈ Rn | ∥x∥∞ ≤ 1}, the ℓ∞-norm unit ball in Rn, and let x̂ be a

point in the boundary of C. Identify the supporting hyperplanes of C at x̂
explicitly.

10 Inner and outer polyhedral approximations. Let C ⊆ Rn be a closed convex
set, and suppose that x1, . . . ,xK are on the boundary of C. Suppose that for
each i,aT

i (x− xi) = 0 defines a supporting hyperplane for C at xi, i.e., C ⊆{
x | aT

i (x− xi)≤ 0
}

. Consider the two polyhedra

Pinner = conv{x1, . . . ,xK} , Pouter =
{

x | aT
i (x− xi)≤ 0, i = 1, . . . ,K

}
.

Show that Pinner ⊆C ⊆ Pouter. Draw a picture illustrating this.
11 Support function. The support function of a set C ⊆ Rn is defined as

SC(y) = sup
{

yT x | x ∈C
}
.

(We allow SC(y) to take on the value +∞.) Suppose that C and D are closed
convex sets in Rn. Show that C = D if and only if their support functions are
equal.

12 Converse supporting hyperplane theorem. Suppose the set C is closed, has
nonempty interior, and has a supporting hyperplane at every point in its boundary.
Show that C is convex.

13 Separation of cones. Let K and K̃ be two convex cones whose interiors are
nonempty and disjoint. Show that there is a nonzero y such that y ∈ K∗,−y ∈ K̃∗.
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14 Mark in the following list the sets which are convex:

a.
{

x ∈ R2 : x1 + i2x2 ≤ 1, i = 1, · · · ,10
}

b.
{

x ∈ R2 : x2
1 +2ix1x2 + i2x2

2 ≤ 1, i = 1, · · · ,10
}

c.
{

x ∈ R2 : x2
1 + ix1x2 + i2x2

2 ≤ 1, i = 1, · · · ,10
}

d.
{

x ∈ R2 : x2
1 +5x1x2 +4x2

2 ≤ 1
}

e.
{

x ∈ R10 : x2
1 +2x2

2 +3x2
3 + · · ·+10x2

10 ≤ 2004x1−2003x2 +2002x3−·· ·+1996x9−1995x10
}

f.
{

x ∈ R2 : exp{x1} ≤ x2
}

g.
{

x ∈ R2 : exp{x1} ≥ x2
}

h.
{

x ∈ Rn :
n
∑

i=1
x2

i = 1
}

i.
{

x ∈ Rn :
n
∑

i=1
x2

i ≤ 1
}

j.
{

x ∈ Rn :
n
∑

i=1
x2

i ≥ 1
}

k.
{

x ∈ Rn : max
i=1,··· ,n

xi ≤ 1
}

l.
{

x ∈ Rn : max
i=1,··· ,n

xi ≥ 1
}

m.
{

x ∈ Rn : max
i=1,··· ,n

xi = 1
}

n.
{

x ∈ Rn : min
i=1,··· ,n

xi ≤ 1
}

o.
{

x ∈ Rn : min
i=1,··· ,n

xi ≥ 1
}

p.
{

x ∈ Rn : min
i=1,··· ,n

xi = 1
}

15 Which ones of the following three statements are true?

a. The convex hull of a closed set in Rn is closed
b. The convex hull of a closed convex set in Rn is closed
c. The convex hull of a closed and bounded set in Rn is closed and bounded

For true statements, present proofs; for wrong, give counterexamples.
Hint: Recall that a bounded and closed subset of Rn is compact and that there

exists Caratheodory Theorem.

16 A cake contains 300 g1) of raisins (you may think of every one of them as of a
3D ball of positive radius). John and Jill are about to divide the cake according
to the following rules:

• first, Jill chooses a point a in the cake;
• second, John makes a cut through a, that is, chooses a 2D plane Π passing

through a and takes the part of the cake on one side of the plane (both Π and
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the side are up to John, with the only restriction that the plane should pass
through a); all the rest goes to Jill.

a. Prove that it may happen that Jill cannot guarantee herself 76 g of the raisins
b. Prove that Jill always can choose a in a way which guarantees her at least

74 g of the raisins
c. Consider n-dimensional version of the problem, where the raisins are n-

dimensional balls, the cake is a domain in Rn, and “a cut" taken by John is
defined as the part of the cake contained in the half-space{

x ∈ Rn : eT (x−a)≥ 0
}
,

where e ̸= 0 is the vector (“inner normal to the cutting hyperplane") chosen
by John. Prove that for every ε > 0, Jill can guarantee to herself at least
300
n+1 − εg of raisins, but in general cannot guarantee to herself 300

n+1 + εg.

17 Prove the following Kirchberger’s Theorem:
Assume that X = {x1, · · · ,xk} and Y = {y1, · · · ,ym} are finite sets in Rn, with
k+m≥ n+2, and all the points x1, · · · ,xk,y1, · · · ,ym are distinct. Assume that
for any subset S⊂ X ∪Y comprised of n+2 points the convex hulls of the sets
X ∩S and Y ∩S do not intersect. Then the convex hulls of X and Y also do not
intersect.
Hint: Assume, on contrary, that the convex hulls of X and Y intersect, so that

k

∑
i=1

λixi =
m

∑
j=1

µ jy j

for certain nonnegative λi,∑i λi = 1, and certain nonnegative µ j,∑ j µ j = 1, and
look at the expression of this type with the minimum possible total number of
nonzero coefficients λi,µ j.

18 Show that:

(a) The intersection ∩i∈ICi of a collection {Ci | i ∈ I} of cones is a cone.
(b) The Cartesian product C1×C2 of two cones C1 and C2 is a cone.

19 Let C1 and C2 be two nonempty convex sets such that C1 ⊂C2.

(a) Give an example showing that ri(C1) need not be a subset of ri(C2).
(b) Assuming that the sets C1 and C2 have the same affine hull, show that

ri(C1)⊂ ri(C2).
(c) Assuming that the set ri(C1)∩ ri(C2) is nonempty, show that ri(C1)⊂ ri(C2)
(d) Assuming that the set C1 ∩ ri(C2) is nonempty, show that the set ri(C1)∩

ri(C2) is nonempty.
(e) Show that the relative interior of a singleton {x0} is nonempty.
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20 Let X1 and X2 be nonempty subsets of ℜn, and let X = conv(X1)+ cone(X2).
Show that every vector x in X can be represented in the form

x =
k

∑
i=1

αixi +
m

∑
i=k+1

αiyi

where m is a positive integer with m≤ n+1, the vectors x1, . . . ,xk belong to X1,
the vectors yk+1, . . . ,ym belong to X2, and the scalars α1, . . . ,αm are nonnegative
with α1+ · · ·+αk = 1. Furthermore, the vectors x2−x1, . . . ,xk−x1,yk+1, . . . ,ym
are linearly independent.

21 (a) Let C1 be a convex set with nonempty interior and C2 be a nonempty convex
set that does not intersect the interior of C1. Show that there exists a hyper-
plane such that one of the associated closed halfspaces contains C2, and does
not intersect the interior of C1.

(b) Show by an example that we cannot replace interior with relative interior in
the statement of part (a).

22 Let C be a nonempty convex set in ℜn, and let M be a nonempty affine set in ℜn.
Show that M∩ ri(C) =∅ is a necessary and sufficient condition for the existence
of a hyperplane H containing M, and such that ri(C) is contained in one of the
open halfspaces associated with H.

23 Let C1 and C2 be nonempty convex subsets of ℜn such that C2 is a cone.

(a) Suppose that there exists a hyperplane that separates C1 and C2 properly.
Show that there exists a hyperplane which separates C1 and C2 properly and
passes through the origin.

(b) Suppose that there exists a hyperplane that separates C1 and C2 strictly. Show
that there exists a hyperplane that passes through the origin such that one of
the associated closed halfspaces contains the cone C2 and does not intersect
C1.

24 Is the set
{

a ∈ Rk|p(0) = 1, |p(t) |≤ 1 for α ≤ t ≤ β}, where

p(t) = a1 +a2t + · · ·+aktk−1,

convex?
25 Let /0 ̸= X ⊂ Rn. Then every vector x ∈ cone(X) is a conic combination of at

most n vectors from X .





Chapter 3
Convex Functions

3.1 Definition and examples

Let f be a real-valued function defined on a nonempty subset dom f in Rn. f is called
convex, if

a) dom f is a convex set,
b) for all x,y ∈ dom f and λ ∈ [0,1] one has

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y). (3.1.1)

Equivalently, let f be a real-valued function defined on a nonempty subset dom f in
Rn. The function is called convex, if its epigraph – the set

epi{ f}= {(x, t) ∈ Rn+1 : f (x)≤ t}

is a convex set in Rn+1. We leave the proof for the equivalence of these two definitions
as an exercise.

Note that the inequality in (3.1.1) is automatically satisfied when x = y or when
λ = 0/1. Thus, it says something only when the points x,y are distinct from each other
and the point z= λx+(1−λ )y is a (relative) interior point of the segment [x,y]. What
does (3.1.1) say in this case? Observe that z = λx+(1−λ )y = x+(1−λ )(y− x),
whence

∥y− x∥ : ∥y− z∥ : ∥z− x∥= 1 : λ : (1−λ )

Therefore
f (z)≤ λ f (x)+(1−λ ) f (y)

⇕
f (z)− f (x)≤ (1−λ )︸ ︷︷ ︸

∥z−x∥
∥y−x∥

( f (y)− f (x))

⇕
f (z)− f (x)
∥z−x∥ ≤

f (y)− f (x)
∥y−x∥

51
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Similarly,
f (z)≤ λ f (x)+(1−λ ) f (y) (∗)

⇕
λ︸︷︷︸
∥y−z∥
∥y−x∥

( f (y)− f (x))≤ f (y)− f (z)

⇕
f (y)− f (x)
∥y−x∥ ≤

f (y)− f (z)
∥y−z∥

We then conclude that f is convex iff for every three distinct points x,y,z such
that x,y ∈ dom f and z ∈ [x,y], we have z ∈ dom f and

f (z)− f (x)
∥z− x∥ ≤ f (y)− f (x)

∥y− x∥ ≤ f (y)− f (z)
∥y− z∥ . (3.1.2)

Some examples of convex or nonconvex functions are given as follows.

a) Functions convex on R: x2, x4, x6, exp{x}.
b) Nonconvex functions on R: x3, sin(x).
c) Functions convex on R+: xp, p≥ 1, −xp, 0≤ p≤ 1, x lnx.
d) Functions convex on Rn: affine function f (x) = f T c.
e) A norm ∥ · ∥ on Rn is a convex function.

3.2 Jensen’s Inequality

Below we state the important Jensen’s inequality.

Proposition 3.1. Let f (x) be a convex function. Then

xi ∈ dom f ,λi ≥ 0,∑
i

λi = 1⇒ f (∑
i

λixi)≤ ∑
i

λi f (xi)

Proof. The points (xi, f (xi)) belong to epi{ f}. Since this set is convex, the point

(∑
i

λixi,∑
i

λi f (xi)) ∈ epi{ f}.

By definition of the epigraph, it follows that

f (∑
i

λixi)≤∑
i

λi f (xi).

We can state Jensen’s inequality in a more general form. Let f be convex, dom f
be closed and f be continuous on dom f . Consider a probability distribution π(dx)
supported on dom f . Then

f (Eπ{x})≤ Eπ{ f (x)}.
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To illustrate the application of Jensen’s Inequality, Let p = {pi > 0}n
i=1, q = {qi >

0}n
i=1 be two discrete probability distributions. We claim that the Kullback-Liebler

distance
∑

i
pi ln

pi

qi

between the distributions is≥ 0. Indeed, the function f (x) =− lnx, dom f = {x > 0},
is convex. Setting xi = qi/pi, λi = pi we have

0 = − ln
(

∑
i

qi

)
= f (∑

i
pixi)

≤ ∑
i

pi f (xi) = ∑
i

pi(− lnqi/pi)

= ∑
i

pi ln(pi/qi).

3.3 Extended Real

What is the value of a convex function outside its domain? By convention, it is
convenient to think that a convex function f is defined everywhere on Rn and takes
real values and value +∞. With this interpretation, f “remembers” its domain:

dom f = {x : f (x) ∈ R}
x ̸∈ dom f ⇒ f (x) = +∞

and the definition of convexity becomes

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y) ∀ x,y ∈ Rn

λ ∈ [0,1],

where the arithmetics of +∞ and reals is given by the rules

+∞≤+∞

a ∈ R⇒ a+(+∞) = (+∞)+(+∞) = +∞

0 · (+∞) = 0
λ > 0⇒ λ · (+∞) = +∞.

It should be noted that operations like (+∞)− (+∞) or (−5) · (+∞) are undefined.

3.4 Convexity-preserving Operations

In this section, we discuss a few operations that help to preserve the convexity of
functions.
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1. Taking conic combinations. If fi(x) are convex function on Rn and λi ≥ 0, then
the function ∑

i
λi fi(x) is convex.

2. Affine substitution of argument. If f (x) is convex function on Rn and x = Ay+b
is an affine mapping from Rk to Rn, then the function g(y) = f (Ax+b) is convex on
Rm.

3. Taking supremum. If fα(x), α ∈ A , is a family of convex function on Rn,
then the function sup

α∈A
fα(x) is convex. Indeed, epi{sup

α

fα(·)}=
⋂
α

epi{ fα(·)}, and

intersections of convex sets are convex.

4. Superposition Theorem. Let fi(x) be convex functions on Rn, i = 1, ...,m, and
F(y1, ...,ym) be a convex and monotone function on Rm. Then the function

g(x) =
{

F( f1(x), ..., fm(x)) ,x ∈ dom fi, ∀i
+∞ ,otherwise

is convex.

5. Partial minimization. Let f (x,y) be a convex function of z = (x,y) ∈ Rn, and let

g(x) = inf
y

f (x,y)

be > −∞ for all x. Then the function g(x) is convex. Indeed, g clearly takes real
values and value +∞. Let us check the Convexity Inequality

g(λx′+(1−λ )x′′)≤ λg(x′)+(1−λ )g(x′′) [λ ∈ [0,1]]

There is nothing to check when λ = 0 or λ = 1, so let 0 < λ < 1. In this case, there
is nothing to check when g(x′) or g(x′′) is +∞, so let g(x′)<+∞, g(x′′)<+∞. Since
g(x′)<+∞, for every ε > 0 there exists y′ such that f (x′,y′)≤ g(x′)+ ε . Similarly,
there exists y′′ such that f (x′′,y′′)≤ g(x′′)+ ε . Now,

g(λx′+(1−λ )x′′)
≤ f (λx′+(1−λ )x′′,λy′+(1−λ )y′′)
≤ λ f (x′,y′)+(1−λ ) f (x′′,y′′)
≤ λ (g(x′)+ ε)+(1−λ )(g(x′′)+ ε)
= λg(x′)+(1−λ )g(x′′)+ ε.

Since ε > 0 is arbitrary, we get g(λx′+(1−λ )x′′)≤ λg(x′)+(1−λ )g(x′′).

6. Projective transformation. Let f (x) be a convex function of x ∈ Rn. Then the
function F(α,x) = α f (x/α) : {α > 0}×Rn → R∪{+∞} is convex. Indeed, we
need to verify that if x,x′ ∈ Rn , α,α ′ > 0 and λ ∈ (0,1), the inequality

[λα+(1−λ )α ′] f ([λx+(1−λ )x′]/[λα+(1−λ )α ′])≤ λα f (x/α)+(1−λ )α ′ f (x/α
′)
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holds. The relations follows immediately from the convexity of f and the fact that
[λα +(1−λ )α ′]/[λα +(1−λ )α ′] = 1. As an illustration, the function α ln(α/β )
is convex in the quadrant {α > 0,β > 0}, as can be seen by applying the projective
transformation to ln(1/β ) =− lnβ .

3.5 Detection of Convexity

First, we notice that convexity is one-dimensional property. A set X ⊂ Rn is convex
if and only if the set

{t : a+ th ∈ X}
is, for every (a,h), a convex set on the axis. Moreover, a function f on Rn is convex
iff the function

φ(t) = f (a+ th) (3.5.1)

is, for every (a,h), a convex function on the axis. Indeed, let us check the latter
relation. The convexity of φ(t) follows from that of f by affine substitution. The
convexity of f can be easily checked as follows. For any x,y ∈ X , let h = y− x.
Then φ(0) = f (x+0(y− x)), φ(1) = f (x+1(y− x)). In addition for any t ∈ [0,1],
φ(t) = f (x+ t(y− x)). The convexity of φ implies that

f ((1−t)x+ty)= f (x+t(y−x))= φ(t)≤ (1−t)φ(0)+tφ(1)= (1−t) f (x)+t f (y).

So now we consider when a function φ on the axis is convex. Let φ be convex and
finite on (a,b). By (3.1.2), this is exactly the same as

φ(z)−φ(x)
z− x

≤ φ(y)−φ(x)
y− x

≤ φ(y)−φ(z)
y− z

when a < x < z < y < b. Assuming that φ ′(x) and φ ′(y) exist and passing to limits
as z→ x+0 and z→ y−0, we get

φ
′(x)≤ φ(y)−φ(x)

y− x
≤ φ

′(y)

that is, φ ′(x) is nondecreasing on the set of points from (a,b) where it exists.
It turns out that the following conditions are necessary and sufficient for convexity

of a univariate function.

a) The domain of the function φ should be an open interval ∆ = (a,b), possibly with
added endpoint(s) (provided that the corresponding endpoint(s) is/are finite).

b) φ should be continuous on (a,b) and differentiable everywhere, except, perhaps,
a countable set, and the derivative should be monotonically non-decreasing.

c) at endpoint of (a,b) which belongs to domφ , φ is allowed to “jump up”, but not
to jump down.
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In practice, it is more convenient to use the following sufficient condition for
detecting the convexity of a univariate function φ : domφ is convex, φ is continuous
on domφ and is twice differentiable, with nonnegative φ ′′, on intdomφ . Indeed, we
should prove that under the condition, if x < z < y are in domφ , then

φ(z)−φ(x)
z− x

≤ φ(y)−φ(z)
y− z

By Lagrange Theorem, the left ratio is φ ′(ξ ) for certain ξ ∈ (x,z), and the right ratio
is φ ′(η) for certain η ∈ (z,y). Since φ ′′(·)≥ 0 and η > ξ , we have φ ′(η)≥ φ ′(ξ ).
Similarly, a sufficient condition for convexity of a multivariate function f is given by:
dom f is convex, f is continuous on dom f and is twice differentiable, with positive
semidefinite Hessian matrix f ′′, on intdom f .

Example 3.1. Show that the function f (x) = ln(
n
∑

i=1
exp{xi}) is convex on Rn.

Indeed,

hT f ′(x) =
∑
i

exp{xi}hi

∑
i

exp{xi}

hT f ′′(x)h = −

(
∑
i

exp{xi}hi

)2

(
∑
i

exp{xi}
)2 +

∑
i

exp{xi}h2
i

∑
i

exp{xi}

Setting pi =
exp{xi}

∑
j

exp{x j} and noting ∑
i

pi = 1, we have

hT f ′′(x)h = ∑
i

pih2
i −
(

∑
i

pihi

)2

= ∑
i

pih2
i −
(

∑
i

√
pi(
√

pihi)

)2

≥ ∑
i

pih2
i −
(

∑
i
(
√

pi)
2
)(

∑
i
(
√

pihi)
2
)

= ∑
i

pih2
i −
(

∑
i

pih2
i

)
= 0.

Note that there exists a shortcut to prove the convexity of f in the example with no
computations. It can be easily shown that ln(s) = minz[sexp(z)− z−1] for any s > 0.
Now ln(∑i exp(xi)) = minz[∑i exp(z)exp(xi)− z−1] since the objective function in
the latter relation is convex w.r.t. z and xi’s, it remains to use the rule on preserving
convexity by partial minimization.

Below we prove an important inequality for convex functions.

Proposition 3.2. Let f be a function, x be an interior point of the domain of f and
Q, x ∈ Q, be a convex set such that f is convex on Q. Assume that f is differentiable
at x. Then

∀y ∈ Q : f (y)≥ f (x)+(y− x)T f ′(x). (3.5.2)
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Proof. Let y ∈ Q. There is nothing to prove when y = x or f (y) = +∞, thus,
assume that f (y) < ∞ and y ̸= x. Let zε = x+ ε(y− x), 0 < ε < 1. Then zε is an
interior point of the segment [x,y]. Since f is convex, we have

f (y)− f (x)
∥y− x∥ ≥ f (zε)− f (x)

∥zε − x∥ =
f (x+ ε(y− x))− f (x)

ε∥y− x∥

Passing to limit as ε →+0, we arrive at

f (y)− f (x)
∥y− x∥ ≥ (y− x)T f ′(x)

∥y− x∥ ,

as required by (3.5.2).

3.6 Lipschitz continuity of convex functions*

Our goal in this section is to show that convex functions are Lipschitz continuous
inside the interior of its domain.

We will first show that a convex function is locally bounded.

Lemma 3.1. Let f be convex and x0 ∈ intdom f . Then f is locally bounded, i.e.,
∃ε > 0 and M(x0,ε)> 0 such that

f (x)≤M(x0,ε) ∀ x ∈ Bε(x0) := {x ∈ Rn : ∥x− x0∥2 ≤ ε}.

Proof. Since x0 ∈ intdom f , ∃ε > 0 such that the vectors x0± εei ∈ intdom f for
i = 1, . . . ,n, where ei denotes the unit vector along coordinate i. Also let Hε(x0) :=
{x ∈ Rn : ∥x− x0∥∞ ≤ ε} denote the hypercube formed by the vectors x0± εei. It
can be easily seen that Bε(x0)⊆ Hε(x0) and hence that

max
x∈Bε (x0)

f (x)≤ max
x∈Hε (x0)

f (x)≤ max
i=1,...,n

f (x0± εei) =: M(x0,ε).

Next we show that f is locally Lipschitz continuous.

Lemma 3.2. Let f be convex and x0 ∈ intdom f . Then f is locally Lipschitz, i.e.,
∃ε > 0 and M̄(x0,ε)> 0 such that

| f (y)− f (x0)| ≤ M̄(x0,ε)∥x−y∥, ∀y∈ Bε(x0) := {x∈Rn : ∥x−x0∥2 ≤ ε}. (3.6.1)

Proof. We assume that y ̸= x0 (otherwise, the result is obvious). Let α = ∥y−
x0∥2/ε . We extend the line segment connecting x0 and y so that it intersects the ball
Bε(x0), and then obtain two intersection points z and u (see Figure 3.1). It can be
easily seen that
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y = (1−α)x0 +αz, (3.6.2)
x0 = [y+αu]/(1+α). (3.6.3)

It then follows from the convexity of f and (3.6.2) that

f (y)− f (x0)≤ α[ f (z)− f (x0)] =
f (z)− f (x0)

ε
∥y− x0∥2

≤ M(x0,ε)− f (x0)
ε

∥y− x0∥2,

where the last inequality follows from Lemma 3.1. Similarly, by the convexity f ,
(3.6.2) and Lemma 3.1, we have

f (x0)− f (y)≤ ∥y− x0∥2
M(x0,ε)− f (x0)

ε
.

Combining the previous two inequalities, we show (3.6.1) holds with M̄(x0,ε) =
[M(x0,ε)− f (x0)]/ε .

Fig. 3.1: Local Lipschitz continuity of a convex function

The following simple result shows the relation between the Lipschitz continuity
of f and the boundedness of subgradients.

Lemma 3.3. The following statements hold for a convex function f .

a) If x0 ∈ intdom f and f is locally Lipschitz (i.e., (3.6.1) holds), then ∥g(x0)∥ ≤
M̄(x0,ε) for any g(x0) ∈ ∂ f (x0).

b) If ∃g(x0) ∈ ∂ f (x0) and ∥g(x0)∥2 ≤ M̄(x0,ε), then f (x0)− f (y)≤ M̄(x0,ε)∥x0−
y∥2.

Proof. We first show part a). Let y = x0 + εg(x0)/∥g(x0)∥2. By the convexity of f
and (3.6.1), we have

ε∥g(x0)∥2 = ⟨g(x0),y− x0⟩ ≤ f (y)− f (x0)≤ M̄(x0,ε)∥y− x0∥= εM̄(x0,ε),
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which implies part a). Part b) simply follows the convexity of f , i.e.,

f (x0)− f (y)≤ ⟨g(x0),x0− y⟩ ≤ M̄(x0,ε)∥x0− y∥2.

Below we state the global Lipschitz continuity of a convex function in its interior
of domain.

Theorem 3.1. Let f be a convex function and let K be a closed and bounded set
contained in the relative interior of the domain dom f of f . Then f is Lipschitz
continuous on K, i.e., there exists constant M such that

| f (x)− f (y)| ≤MK∥x− y∥2 ∀x,y ∈ K. (3.6.4)

Proof. The result directly follows from the local Lipschitz continuity of a convex
function (see Lemmas 3.2 and 3.3) and the boundedness of K.

Remark 3.1. All three assumptions on K, i.e., (a) closedness, (b) boundedness, and
(c) K ⊂ ridom f – are essential, as it is seen from the following three examples:

• f (x) = 1/x, dom f = (0,+∞), K = (0,1]. We have (b), (c) but not (a); f is neither
bounded, nor Lipschitz continuous on K.

• f (x) = x2, dom f = R, K = R. We have (a), (c) and not (b); f is neither bounded
nor Lipschitz continuous on K.

• f (x) =−√x, dom f = [0,+∞), K = [0,1]. We have (a), (b) and not (c); f is not
Lipschitz continuous on K although is bounded. Indeed, we have limt→+0

f (0)− f (t)
t =

limt→+0 t−1/2 = +∞, while for a Lipschitz continuous f the ratios t−1( f (0)−
f (t)) should be bounded.

3.7 Minima and Maxima of Convex Functions

We first show the unimodality of a convex function.

Proposition 3.3. Let f be a convex function and x∗ be a local minimizer of f s.t.
x∗ ∈ dom f and

∃r > 0 : f (x)≥ f (x∗) ∀(x : ∥x− x∗∥ ≤ r).

Then x∗ is a global minimizer of f : f (x)≥ f (x∗) ∀x.

Proof. All we need to prove is that if x ̸= x∗ and x ∈ dom f , then f (x)≥ f (x∗). To
this end let z ∈ (x∗,x). By convexity we have

f (z)− f (x∗)
∥z− x∗∥

≤ f (x)− f (x∗)
∥x− x∗∥

.
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When z∈ (x∗,x) is close enough to x∗, we have f (z)− f (x∗)
∥z−x∗∥ ≥ 0, whence f (x)− f (x∗)

∥x−x∗∥ ≥ 0,
that is, f (x)≥ f (x∗).

Now we show that the set of global optimizers of f is a convex set.

Proposition 3.4. Let f be a convex function. The set of X∗ of global minimizers is
convex.

Proof. This is an immediate corollary of important lemma. Lemma: Let f be a
convex function. Then the level sets of f , that is, the sets

Xa = {x : f (x)≤ a}

where a is a real, are convex.
Proof of Lemma: If x,y ∈ Xa and λ ∈ [0,1], then

f (λx+(1−λ )y) ≤ λ f (x)+(1−λ ) f (y)
≤ λa+(1−λ )a = a.

Thus, [x,y]⊂ Xa.

We set out to understand when the minimizer of a convex function is unique. To
this end, we say that a convex function strictly convex, if

f (λx+(1−λ )y)< λ f (x)+(1−λ ) f (y)

whenever x ̸= y and λ ∈ (0,1). Note that if a convex function f has open domain and
is twice continuously differentiable on this domain with

hT f ′′(x)h > 0 ∀(x ∈ dom f ,h ̸= 0),

then f is strictly convex.

Proposition 3.5. For a strictly convex function f a minimizer, if it exists, is unique.

Proof. Assume that X∗ = Argmin f contains two distinct points x′,x′′. By strict
convexity,

f ( 1
2 x′+ 1

2 x′′)< 1
2

[
f (x′)+ f (x′′)

]
= inf

x
f ,

which is impossible.

We now state the optimality conditions in convex minimization.

Theorem 3.2. Let f be a function which is differentiable at a point x∗ and is convex
on a convex set Q⊂ dom f which contains x∗. A necessary and sufficient condition
for f to attain its minimum on Q at x∗ is

(x− x∗)T f ′(x∗)≥ 0 ∀x ∈ Q. (3.7.1)
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Proof. ⇐: Assume that (3.7.1) is valid, and let us verify that f (x) ≥ f (x∗) for
every x ∈ Q. There is nothing to prove when x = x∗, thus, let f (x)< ∞ and x ̸= x∗.
For zλ = x∗+λ (x− x∗) we have

f (zλ )− f (x∗)
∥zλ − x∗∥

≤ f (x)− f (x∗)
∥x− x∗∥

∀λ ∈ (0,1)

or, which is the same,

f (x∗+λ [x− x∗])− f (x∗)
λ∥x− x∗∥

≤ f (x)− f (x∗)
∥x− x∗∥

∀λ ∈ (0,1)

As λ→+0, the left ratio converges to (x−x∗)T f ′(x∗)/∥x−x∗∥≥ 0; thus, f (x)− f (x∗)
∥x−x∗∥ ≥

0, whence f (x)≥ f (x∗).
⇒: Given that x∗ ∈ Argminy∈Q f (y), let x ∈ Q. Then

0≤ f (x∗+λ [x− x∗])− f (x∗)
λ

∀λ ∈ (0,1),

whence (x− x∗)T f ′(x∗)≥ 0.

We discuss an equivalent form of the above optimality condition. Let f be a
function which is differentiable at a point x∗ and is convex on a convex set Q⊂ dom f ,
x∗ ∈ Q. Consider the radial cone of Q at x∗:

TQ(x∗) = {h : ∃t > 0 : x∗+ th ∈ Q}

Note that TQ(x∗) is indeed a cone which is comprised of all vectors of the form
s(x− x∗), where x ∈ Q and s≥ 0. Then f attains its minimum on Q at x∗ if and only
if

hT f ′(x∗)≥ 0 ∀h ∈ TQ(x∗),

or, which is the same, if and only if

f ′(x∗) ∈ NQ(x∗) = {g : gT h≥ 0∀h ∈ TQ(x∗)}︸ ︷︷ ︸
normal cone of Q at x∗

. (3.7.2)

Example 3.2. x∗ ∈ intQ. Here TQ(x∗) = Rn, whence NQ(x∗) = {0}, and (3.7.2) be-
comes the Fermat equation f ′(x∗) = 0.

Example 3.3. x∗ ∈ rintQ. Let aff(Q) = x∗+L, where L is a linear subspace in Rn.
Here TQ(x∗) = L, whence NQ(x∗) = L⊥. (3.7.2) becomes the condition

f ′(x∗) is orthogonal to L.

Equivalently, let aff(Q) = {x : Ax = b}. Then L = {x : Ax = 0}, L⊥ = {y = AT λ},
and the optimality condition becomes
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∃λ ∗ :

∇
∣∣
x=x∗

[ f (x)+(λ ∗)T (Ax−b)] = 0
⇕

f ′(x∗)+∑
i

λ ∗i ∇(aT
i x−bi) = 0

[A =

 aT
1
...

aT
m

].
Example 3.4. Let us solve the problem

min
x

{
cT x+

m

∑
i=1

xi lnxi : x≥ 0,∑
i

xi = 1

}
.

The objective is convex, the domain Q = {x ≥ 0,∑
i

xi = 1} is convex (and even

polyhedral). Assuming that the minimum is achieved at a point x∗ ∈ rintQ, the
optimality condition becomes

∇

[
cT x+∑

i
xi lnxi +λ [∑

i
xi−1]

]
= 0

⇕
lnxi =−ci−λ −1 ∀i

⇕
xi = exp{1−λ}exp{−ci}

Since ∑
i

xi should be 1, we arrive at

xi =
exp{−ci}

∑
j

exp{−c j}
.

At this point, the optimality condition is satisfied, so that the point indeed is a
minimizer.

We end this section by a brief discussion about the maxima of convex functions.
Let f be a convex function. Then

• If f attains its maximum over dom f at a point x∗ ∈ rintdom f , then f is constant
on dom f .

• If dom f is closed and does not contain lines and f attains its maximum on dom f ,
then among the maximizers there is an extreme point of dom f .

• If dom f is polyhedral and f is bounded from above on dom f , then f attains its
maximum on dom f .

3.8 Optimality Condition over Polyhedron

Below we discuss the optimality conditions of minimizing a convex function over a
polyhedron. We need to use an important result shown in linear optimization, namely
the homogeneous Farkas Lemma.
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Consider a homogeneous linear inequality

aT x≥ 0 (3.8.1)

along with a finite system of similar inequalities:

aT
i x≥ 0, 1≤ i≤ m. (3.8.2)

Our question is: when (3.8.1) is a consequence of (3.8.2), or equivalently, what kind
of conditions will guarantee that every x satisfying (3.8.2) satisfies (3.8.1) as well?
One immediate observation is that if a is a conic combination of a1, ...,am, i.e.,

∃λi ≥ 0 : a = ∑
i

λiai, (3.8.3)

then (3.8.1) is a consequence of (3.8.2). Indeed, (3.8.3) implies that

aT x = ∑
i

λiaT
i x ∀x,

and thus for every x with aT
i x≥ 0∀i one has aT x≥ 0.

Homogeneous Farkas Lemma below states a much stronger result than the above
observation.

Theorem 3.3. (3.8.1) is a consequence of (3.8.2) if and only if a is a conic combina-
tion of a1, ...,am.

Proof. All we need to prove is that if a is not a conic combination of a1, ...,am,
then there exists d such that aT d < 0 and aT

i d ≥ 0, i = 1, ...,m. Observe first that the
set K = cone{a1, ...,am} is polyhedrally representable:

cone{a1, ...,am}=
{

x : ∃λ ∈ Rm :
x = ∑i λiai
λ ≥ 0

}
.

Hence, by Fourier-Motzkin elimination, K is polyhedral:

K = {x : dT
ℓ x≥ cℓ,1≤ ℓ≤ L}.

Now notice that 0 ∈ K and hence that cℓ ≤ 0∀ℓ. Moreover, using the fact λai ∈
cone{a1, ...,am}∀λ > 0, we have λdT

ℓ ai ≥ cℓ∀λ ≥ 0. Dividing both sides by λ and
as λ tends to ∞, we have dT

ℓ ai≥ 0∀i, ℓ. Now, a ̸∈ cone{a1, ...,am} (i.e., a ̸∈K), hence
there exists ℓ = ℓ∗ such that dT

ℓ∗a < cℓ∗ ≤ 0. Therefore, d = dℓ∗ satisfies aT d < 0,
aT

i d ≥ 0, i = 1, ...,m.
Theorem 3.3 can be stated equivalently as follows. Given vectors a1, ...,am ∈ Rn,

let K = cone{a1, ...,am}= {∑i λiai : λ ≥ 0} be the conic hull of the vectors. Given
a vector a,

a) it is easy to certify that a∈ cone{a1, ...,am}: a certificate is a collection of weights
λi ≥ 0 such that ∑i λiai = a;
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b) it is easy to certify that a ̸∈ cone{a1, ...,am}: a certificate is a vector d such that
aT

i d ≥ 0∀i and aT d < 0.

We now consider minimize a convex function f over the polyhedron Q = {x :
Ax−b≤ 0}. In this case, the tangent cone

TQ(x∗) =
{

h : aT
i h≤ 0 ∀i ∈ I(x∗) = {i : aT

i x∗−bi = 0}
}
.

By Homogeneous Farkas Lemma,

NQ(x∗) ≡ {y : aT
i h≤ 0, i ∈ I(x∗)⇒ yT h≥ 0}

= {y =− ∑
i∈I(x∗)

λiai : λi ≥ 0}

and the optimality condition becomes

∃(λ ∗i ≥ 0, i ∈ I(x∗)) : f ′(x∗)+ ∑
i∈I(x∗)

λ
∗
i ai = 0

or, which is the same:

∃λ ∗ ≥ 0 :

 f ′(x∗)+
m
∑

i=1
λ ∗i ai = 0

λ ∗i (a
T
i x∗−bi) = 0, i = 1, ...,m

The point is that in the convex case these conditions are necessary and sufficient for
x∗ to be a minimizer of f on Q. The optimality condition can be extended to the
case when Q contains linear equality constraints. We leave this development as an
exercise.

3.9 Subgradients

Let f be a convex function and x̄∈ intdom f . If f differentiable at x̄, then, by gradient
inequality, there exists an affine function, specifically,

h(x) = f (x̄)+(x− x̄)T f ′(x̄),

such that
f (x)≥ h(x)∀x & f (x̄) = h(x̄). (3.9.1)

Affine function with this property may exist also in the case when f is not differen-
tiable at x̄ ∈ dom f . (3.9.1) implies that

h(x) = f (x̄)+(x− x̄)T g (3.9.2)

for certain g. Function (3.9.2) indeed satisfies (3.9.1) if and only if g is such that
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f (x)≥ f (x̄)+(x− x̄)T g ∀x. (3.9.3)

Let f be a convex function and x̄ ∈ dom f . Every vector g satisfying (3.9.3) is
called a subgradient of f at x̄. The set of all subgradients, if any, of f at x̄ is called
subdifferential ∂ f (x̄) of f at x̄.

Example 3.5. By Gradient Inequality, if convex function f is differentiable at x̄, then
∇ f (x̄) ∈ ∂ f (x̄). If, in addition, x̄ ∈ intdom f , then ∇ f (x̄) is the unique element of
∂ f (x̄).

Example 3.6. Let f (x) = |x| (x ∈ R). When x̄ ̸= 0, f is differentiable at x̄, whence
∂ f (x̄) = f ′(x̄). When x̄ = 0, subgradients g are given by

|x| ≥ 0+gx = gx ∀x,

that is, ∂ f (0) = [−1,1]. Note that in the case in question, f has directional derivative

D f (x)[h] = lim
t→+0

f (x+ th)− f (x)
t

at every point x ∈ R along every direction h ∈ R, and this derivative is nothing but

D f (x)[h] = max
g∈∂ f (x)

gT h.

The next result establishes the existence of subgradients for convex functions.

Proposition 3.6. Let X ⊆ Rn be convex and f : X → R. If ∀x ∈ X, ∂ f (x) ̸= /0 then f
is convex. Moreover, if f is convex then for any x ∈ ri(X), ∂ f (x) ̸= /0.

Proof. The first claim is obvious. Let g ∈ ∂ f (λx+(1−λ )y) for some λ ∈ [0,1].
Then by definition we have

f (y)≥ f (λx+(1−λ )y)+λ ⟨g,y− x⟩,
f (x)≥ f (λx+(1−λ )y)+(1−λ )⟨g,x− y⟩.

Multiplying the first inequality by 1−λ and the second one by λ , and then summing
them up, we show the convexity of f .

We now show that f has subgradients in the interior of X . We will construct such
a subgradient by using a supporting hyperplane to the epigraph of f . Let x ∈ X . Then
(x, f (x))∈ epi( f ). By the convexity of epi( f ) and the separating hyperplane theorem,
there exists (w,v) ∈ Rn×R ((w,v) ̸= 0) such that

⟨w,x⟩+ v f (x)≥ ⟨w,y⟩+ vt, ∀(y, t) ∈ epi( f ). (3.9.4)

Clearly, by tending t to infinity, we can see that v≤ 0. Now let us assume that x is in
the interior of X . Then for ε > 0 small enough, y = x+ εw ∈ X , which implies that
v ̸= 0, since otherwise, we have 0≥ ε∥w∥2

2 and hence w = 0, contradicting with the
fact that (w,v) ̸= 0. Letting t = f (y) in (3.9.4), we obtain
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f (y)≥ f (x)+ 1
v ⟨w,x− y⟩,

which implies that −w/v is a subgradient of f at x.

Below we provide some basic subgradient calculus for convex functions. Observe
that many of them mimic the calculus for gradient computation.

a) Scaling: ∂ (a f ) = a∂ f provided a > 0. The condition a > 0 makes function f
remain convex.

b) Addition: ∂ ( f1 + f2) = ∂ ( f1)+∂ ( f2).
c) Affine composition: if g(x) = f (Ax+b), then ∂g(x) = AT ∂ f (Ax+b).
d) Finite pointwise maximum: if f (x) = maxi=1,...,m fi(x), then

∂ f (x) = conv
{
∪i: fi(x)= f (x)∂ fi(x)

}
,

which is the convex hull of union of subdifferentials of all active i : fi(x) = f (x)
functions at x.

e) General pointwise maximum: if f (x) = maxs∈S fs(x), then under some regularity
conditions (on S and fs),

∂ f (x) = cl
{

conv
(
∪s: fs(x)= f (x)∂ fs(x)

)}
.

f) Norms: important special case, f (x) = ∥x∥p. Let q be such that 1/p+1/q = 1,
then

∂ f (x) = {y : ∥y∥q ≤ 1andyT x = max{zT x : ∥z∥q ≤ 1}.
We conclude this section by stating some important results of subgradients without

providing the proof. Let f be convex. Then

a) For every x ∈ dom f , the subdifferential ∂ f (x) is closed convex set.
b) If x ∈ rintdom f , then, for every h ∈ Rn,

∃D f (x)[h]≡ lim
t→+0

f (x+ th)− f (x)
t

= max
g∈∂ f (x)

gT h.

c) Assume that x̄ ∈ dom f is represented as lim
i→∞

xi with xi ∈ dom f and that

f (x̄)≤ lim inf
i→∞

f (xi)

If a sequence gi ∈ ∂ f (xi) converges to certain vector g, then g ∈ ∂ f (x̄).
d) The multi-valued mapping x 7→ ∂ f (x) is locally bounded at every point x̄ ∈

intdom f , that is, whenever x̄ ∈ intdom f , there exist r > 0 and R < ∞ such that

∥x− x̄∥2 ≤ r,g ∈ ∂ f (x)⇒∥g∥2 ≤ R.
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3.10 Exercises

1. Inverse of an increasing convex function. Suppose f : R→ R is increasing and
convex on its domain (a,b). Let g denote its inverse, i.e., the function with
domain ( f (a), f (b)) and g( f (x)) = x for a < x < b. What can you say about
convexity or concavity of g ?

2. [RV73,page15] Show that a continuous function f : Rn→ R is convex if and
only if for every line segment, its average value on the segment is less than or
equal to the average of its values at the endpoints of the segment: For every
x,y ∈ Rn, ∫ 1

0
f (x+λ (y− x))dλ ≤ f (x)+ f (y)

2
3. Running average of a convex function. Suppose f : R→ R is convex, with

R+ ⊆ dom f . Show that its running average F , defined as

F(x) =
1
x

∫ x

0
f (t)dt, domF = R++,

is convex. You can assume f is differentiable.
4. Suppose f : Rn → R is convex with dom f = Rn, and bounded above on Rn.

Show that f is constant.
5. Second-order conditions for convexity on an affine set. Let F ∈ Rn×m, x̂ ∈ Rn.

The restriction of f : Rn→R to the affine set {Fz+ x̂ | z ∈ Rm} is defined as the
function f̃ : Rm→ R with

f̃ (z) = f (Fz+ x̂), dom f̃ = {z | Fz+ x̂ ∈ dom f}

Suppose f is twice differentiable with a convex domain.

a. Show that f̃ is convex if and only if for all z ∈ dom f̃

FT
∇

2 f (Fz+ x̂)F ⪰ 0.

b. Suppose A ∈ Rp×n is a matrix whose nullspace is equal to the range of F ,
i.e., AF = 0 and rankA = n− rankF . Show that f̃ is convex if and only if
for all z ∈ dom f̃ there exists a λ ∈ R such that

∇
2 f (Fz+ x̂)+λAT A⪰ 0.

Hint. Use the following result: If B ∈ Sn and A ∈ Rp×n, then xT Bx≥ 0 for
all x ∈N (A) if and only if there exists a λ such that B+λAT A⪰ 0.

6. An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is
that randomization or dithering hurts, i.e., raises the average value of a convex
function: For f convex and v a zero mean random variable, we have E f (x0 + v)≥
f (x0). This leads to the following conjecture. If f0 is convex, then the larger the
variance of v, the larger E f (x0 + v).
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a. Give a counterexample that shows that this conjecture is false. Find zero
mean random variables v and w, with var(v)> var(w), a convex function
f , and a point x0, such that E f (x0 + v)< E f (x0 +w).

b. The conjecture is true when v and w are scaled versions of each other. Show
that E f (x0 + tv) is monotone increasing in t ≥ 0, when f is convex and v is
zero mean.

7. Monotone mappings. A function ψ : Rn → Rn is called monotone if for all
x,y ∈ domψ ,

(ψ(x)−ψ(y))T (x− y)≥ 0.

Suppose f : Rn→R is a differentiable convex function. Show that its gradient ∇ f
is monotone. Is the converse true, i.e., is every monotone mapping the gradient
of a convex function?

8. Suppose f : Rn→R is convex, g : Rn→R is concave, dom f = domg = Rn, and
for all x,g(x)≤ f (x). Show that there exists an affine function h such that for all x,
g(x)≤ h(x)≤ f (x). In other words, if a concave function g is an underestimator
of a convex function f , then we can fit an affine function between f and g.

9. A family of concave utility functions. For 0 < α ≤ 1 let

uα(x) =
xα −1

α
,

with domuα = R+. We also define u0(x) = logx (with domu0 = R++).

a. Show that for x > 0,u0(x) = limα→0 uα(x).
b. Show that uα are concave, monotone increasing, and all satisfy uα(1) = 0.

These functions are often used in economics to model the benefit or utility of
some quantity of goods or money. Concavity of uα means that the marginal
utility (i.e., the increase in utility obtained for a fixed increase in the goods)
decreases as the amount of goods increases. In other words, concavity models
the effect of satiation.

10. Nonnegative weighted sums and integrals.

a. Show that f (x) = ∑
r
i=1 αix[i] is a convex function of x, where α1 ≥ α2 ≥

·· · ≥ αr ≥ 0, and x[i] denotes the i th largest component of x. (You can use
the fact that f (x) = ∑

k
i=1 x[i] is convex on Rn.)

b. Let T (x,ω) denote the trigonometric polynomial

T (x,ω) = x1 + x2 cosω + x3 cos2ω + · · ·+ xn cos(n−1)ω.

Show that the function

f (x) =−
∫ 2π

0
logT (x,ω)dω

is convex on {x ∈ Rn | T (x,ω)> 0,0≤ ω ≤ 2π}.
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11. Some functions on the probability simplex. Let x be a real-valued random
variable which takes values in {a1, . . . ,an} where a1 < a2 < · · · < an, with
prob(x = ai) = pi, i = 1, . . . ,n. For each of the following functions of p (on the
probability simplex {p ∈ Rn

+ | 1T p = 1
}

), determine if the function is convex,
concave, quasiconvex, or quasiconcave.

a. Ex.
b. prob(x≥ α).
c. prob(α ≤ x≤ β ).
d. ∑

n
i=1 pi log pi, the negative entropy of the distribution.

e. varx = E(x−Ex)2.
f. quartile(x) = inf{β | prob(x≤ β )≥ 0.25}.
g. The cardinality of the smallest set A ⊆ {a1, . . . ,an} with probability≥ 90%.

(By cardinality we mean the number of elements in A .)
h. The minimum width interval that contains 90% of the probability, i.e.,

inf{β −α | prob(α ≤ x≤ β )≥ 0.9}

12. Convex hull or envelope of a function. The convex hull or convex envelope of a
function f : Rn→ R is defined as

g(x) = inf{t | (x, t) ∈ convepi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f .
Show that g is the largest convex underestimator of f . In other words, show that
if h is convex and satisfies h(x)≤ f (x) for all x, then h(x)≤ g(x) for all x.

13. Products and ratios of convex functions. In general the product or ratio of two
convex functions is not convex. However, there are some results that apply to
functions on R. Prove the following.

a. If f and g are convex, both nondecreasing (or nonincreasing), and positive
functions on an interval, then f g is convex.

b. If f ,g are concave, positive, with one nondecreasing and the other nonin-
creasing, then f g is concave.

c. If f is convex, nondecreasing, and positive, and g is concave, nonincreasing,
and positive, then f/g is convex.

14. Representation of piecewise-linear convex functions. A convex function f : Rn→
R, with dom f = Rn, is called piecewise-linear if there exists a partition of Rn as

Rn = X1∪X2∪·· ·∪XL,

where int Xi ̸= /0 and int Xi∩ intX j = /0 for i ̸= j, and a family of affine functions
aT

1 x+b1, . . . ,aT
L x+bL such that f (x) = aT

i x+bi for x ∈ Xi
Show that such a function has the form f (x) = max

{
aT

1 x+b1, . . . ,aT
L x+bL

}
.
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15. More functions of eigenvalues. Let λ1(X) ≥ λ2(X) ≥ ·· · ≥ λn(X) denote the
eigenvalues of a matrix X ∈ Sn. We have already seen several functions of the
eigenvalues that are convex or concave functions of X .

• The maximum eigenvalue λ1(X) is convex. The minimum eigenvalue λn(X)
is concave.

• The sum of the eigenvalues (or trace), trX = λ1(X)+ · · ·+λn(X), is linear.
• The sum of the inverses of the eigenvalues (or trace of the inverse),tr

(
X−1

)
=

∑
n
i=1 1/λi(X), is convex on Sn

++ (exercise 3.18).
• The geometric mean of the eigenvalues, (detX)1/n = (∏n

i=1 λi(X))1/n, and
the logarithm of the product of the eigenvalues, logdetX = ∑

n
i=1 logλi(X),

are concave on X ∈ Sn
++ (exercise 3.18 and page 74).

In this problem we explore some more functions of eigenvalues, by exploiting
variational characterizations.

a. Sum of k largest eigenvalues. Show that ∑
k
i=1 λi(X) is convex on Sn. Hint.

[HJ85, page 191] Use the variational characterization

k

∑
i=1

λi(X) = sup
{

tr
(
V T XV

)
|V ∈ Rn×k,V TV = I

}
b. Geometric mean of k smallest eigenvalues. Show that

(
∏

n
i=n−k+1 λi(X)

)1/k

is concave on Sn
++. Hint. [MO79, page 513] For X ≻ 0, we have(

n

∏
i=n−k+1

λi(X)

)1/k

=
1
k

inf
{

tr
(
V T XV

)
|V ∈ Rn×k,detV TV = 1

}
c. Log of product of k smallest eigenvalues. Show that ∑

n
i=n−k+1 logλi(X) is

concave on Sn
++. Hint. [MO79, page 513] For X ≻ 0,

n

∏
i=n−k+1

λi(X) = inf

{
k

∏
i=1

(
V T XV

)
ii |V ∈ Rn×k,V TV = I

}

16. (Convexity under Composition)
Let C be a nonempty convex subset of ℜn. Let also f = ( f1, . . . , fm), where
fi : C 7→ℜ, i = 1, . . . ,m, are convex functions, and let g : ℜm 7→ℜ be a function
that is convex and monotonically nondecreasing over a convex set that contains
the set { f (x) | x ∈C}, in the sense that for all u, ū in this set such that u≤ ū, we
have g(u)≤ g(ū). Show that the function h defined by h(x) = g( f (x)) is convex
over C. If in addition, m = 1,g is monotonically increasing and f is strictly
convex, then h is strictly convex.

17. (Posynomials)
A posynomial is a function of positive scalar variables y1, . . . ,yn of the form
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g(y1, . . . ,yn) =
m

∑
i=1

βiy
ai1
1 · · ·yain

n

where ai j and βi are scalars, such that βi > 0 for all i. Show the following:

a. A posynomial need not be convex.
b. By a logarithmic change of variables, where we set

f (x) = ln(g(y1, . . . ,yn)) , bi = lnβi,∀i, x j = lny j,∀ j,

we obtain a convex function

f (x) = lnexp(Ax+b), ∀x ∈ℜ
n

where exp(z) = ez1 + · · ·+ ezm for all z ∈ ℜm,A is an m× n matrix with
components ai j, and b ∈ℜm is a vector with components bi.

c. Every function g : ℜn 7→ℜ of the form

g(y) = g1(y)γ1 · · ·gr(y)γr

where gk is a posynomial and γk > 0 for all k, can be transformed by a
logarithmic change of variables into a convex function f given by

f (x) =
r

∑
k=1

γk lnexp(Akx+bk)

with the matrix Ak and the vector bk being associated with the posynomial
gk for each k.

18. (Examples of Convex Functions)
Show that the following functions from ℜn to (−∞,∞] are convex:

a.

f1 (x1, . . . ,xn) =

{
−(x1x2 · · ·xn)

1
n if x1 > 0, · · · ,xn > 0

∞ otherwise

b. f2(x) = ln(ex1 + · · ·+ exn).
c. f3(x) = ∥x∥p with p≥ 1.
d. f4(x) = 1

f (x) , where f is concave and 0 < f (x)< ∞ for all x.
e. f5(x) = α f (x)+β , where f : ℜn 7→ℜ is a convex function, and α and β

are scalars, with α ≥ 0.
f. f6(x) = eβx′Ax, where A is a positive semidefinite symmetric n×n matrix

and β is a positive scalar.
g. f7(x) = f (Ax+b), where f : ℜm 7→ℜ is a convex function, A is an m×n

matrix, and b is a vector in ℜm.

19. (Arithmetic-Geometric Mean Inequality)
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Show that if α1, . . . ,αn are positive scalars with ∑
n
i=1 αi = 1, then for every set

of positive scalars x1, . . . ,xn, we have

xα1
1 xα2

2 · · ·xαn
n ≤ α1x1 +a2x2 + · · ·+αnxn,

with equality if and only if x1 = x2 = · · · = xn. Hint: Show that (− lnx) is a
strictly convex function on (0,∞).

20. (Characterization of Differentiable Convex Functions)
Let f : ℜn 7→ ℜ be a differentiable function. Show that f is convex over a
nonempty convex set C if and only if

(∇ f (x)−∇ f (y))′(x− y)≥ 0, ∀x,y ∈C.

Note: The condition above says that the function f , restricted to the line segment
connecting x and y, has monotonically nondecreasing gradient.

21. Let f : ℜn 7→ (−∞,∞] be a convex function, let γ be a scalar, and let C be a
nonempty convex subset of ℜn.

a. Show that if f (x)< γ for some x, then f (x)< γ for some x ∈ ri(dom( f )).
b. Show that if C⊂ ri(dom( f )) and f (x)< γ for some x∈ cl(C), then f (x)< γ

for some x ∈ ri(C).
c. Show that if C ⊂ dom( f ) and f (x)≥ γ for all x ∈C, then f (x)≥ γ for all

x ∈ cl(C).

22. (Strong Convexity)
Let f : ℜn 7→ ℜ be a function that is continuous over a closed convex set
C ⊂ dom( f ), and let σ > 0. We say that f is strongly convex over C with
coefficient σ if for all x,y ∈C and all α ∈ [0,1], we have

f (αx+(1−α)y)+
σ

2
α(1−α)∥x− y∥2 ≤ α f (x)+(1−α) f (y).

a. Show that if f is strongly convex over C with coefficient σ , then f is strictly
convex over C. Furthermore, there exists a unique x∗ ∈C that minimizes f
over C, and we have

f (x)≥ f (x∗)+
σ

2
∥x− x∗∥2 , ∀x ∈C.

b. Assume that int (C), the interior of C, is nonempty, and that f is continuously
differentiable over int (C). Show that the following are equivalent:

(I) f is strongly convex with coefficient σ over C.
(II) We have

(∇ f (x)−∇ f (y))′(x− y)≥ σ∥x− y∥2, ∀x,y ∈ int(C).

(III) We have
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f (y)≥ f (x)+∇ f (x)′(y− x)+
σ

2
∥x− y∥2, ∀x,y ∈ int(C).

Furthermore, if f is twice continuously differentiable over int (C), the
above three properties are equivalent to:

(IV) The matrix ∇2 f (x)−σ I is positive semidefinite for every x ∈ int(C),
where I is the identity matrix.

23. Maximum of a convex function over a polyhedron. Show that the maximum of
a convex function f over the polyhedron P = conv{v1, . . . ,vk} is achieved at
one of its vertices, i.e.,

sup
x∈P

f (x) = max
i=1,...,k

f (vi) .

(A stronger statement is: the maximum of a convex function over a closed
bounded convex set is achieved at an extreme point, i.e., a point in the set that
is not a convex combination of any other points in the set.) Hint. Assume the
statement is false, and use Jensen’s inequality.

24. A quadratic-over-linear composition theorem. Suppose that f : Rn→ R is non-
negative and convex, and g : Rn → R is positive and concave. Show that the
function f 2/g, with domain dom f ∩domg, is convex.

25. Show that the function

f (x) =
∥Ax−b∥2

2
1− xT x

is convex on {x | ∥x∥2 < 1}.
26. Circularly symmetric convex functions. Suppose f : Rn → R is convex and

symmetric with respect to rotations, i.e., f (x) depends only on ∥x∥2. Show that
f must have the form f (x) = φ (∥x∥2), where φ : R→ R is nondecreasing and
convex, with dom f = R. (Conversely, any function of this form is symmetric
and convex, so this form characterizes such functions.)

27. Infimal convolution. Let f1, . . . , fm be convex functions on Rn. Their infimal
convolution, denoted g = f1 ⋄ · · · ⋄ fm (several other notations are also used), is
defined as

g(x) = inf{ f1 (x1)+ · · ·+ fm (xm) | x1 + · · ·+ xm = x} ,

with the natural domain (i.e., defined by g(x)< ∞). In one simple interpretation,
fi (xi) is the cost for the i th firm to produce a mix of products given by xi;g(x)
is then the optimal cost obtained if the firms can freely exchange products to
produce, all together, the mix given by x. (The name ‘convolution’ presumably
comes from the observation that if we replace the sum above with the product,
and the infimum above with integration, then we obtain the normal convolution.)
Show that g is convex.

28. Suppose λ1, . . . ,λn are positive. Show that the function f : Rn→ R, given by
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f (x) =
n

∏
i=1

(
1− e−xi

)λi

is concave on

dom f =

{
x ∈ Rn

++ |
n

∑
i=1

λie−xi ≤ 1

}
Hint. The Hessian is given by

∇
2 f (x) = f (x)

(
yyT −diag(z)

)
where yi = λie−xi/(1− e−xi) and zi = yi/(1− e−xi)

29. Show that the following functions f : Rn→ R are convex.

a. The difference between the maximum and minimum value of a polynomial
on a given interval, as a function of its coefficients:

f (x)= sup
t∈[a,b]

p(t)− inf
t∈[a,b]

p(t) where p(t)= x1+x2t+x3t2+· · ·+xntn−1.

a,b are real constants with a < b.
b. The ’exponential barrier’ of a set of inequalities:

f (x) =
m

∑
i=1

e−1/ fi(x), dom f = {x | fi(x)< 0, i = 1, . . . ,m} .

The functions fi are convex.
c. The function

f (x) = inf
α>0

g(y+αx)−g(y)
α

if g is convex and y ∈ domg. (It can be shown that this is the directional
derivative of g at y in the direction x.)

30. Show that the following functions f : Rn→ R are convex.

a. f (x) =−exp(−g(x)) where g : Rn→ R has a convex domain and satisfies[
∇2g(x) ∇g(x)
∇g(x)T 1

]
⪰ 0

for x ∈ domg.
b. The function

f (x) = max{∥APx−b∥ | Pis a permutation matrix}

with A ∈ Rm×n,b ∈ Rm.

31. Show that a function f : R→ R is convex if and only if dom f is convex and



3.10 Exercises 75

det

 1 1 1
x y z

f (x) f (y) f (z)

≥ 0

for all x,y,z ∈ dom f with x < y < z.
32. Mark by "c" those of the following functions which are convex on the indicated

domains:

• f (x)≡ 1 on R
• f (x) = x on R
• f (x) = |x| on R
• f (x) =−|x| on R
• f (x) =−|x| on R+ = {x≥ 0}
• exp{x} on R
• exp

{
x2
}

on R
• exp

{
−x2

}
on R

• exp
{
−x2

}
on {x | x≥ 100}

33. Prove that the following functions are convex on the indicated domains:

• x2

y on
{
(x,y) ∈ R2 | y > 0

}
• ln(exp{x}+ exp{y}) on the 2D plane.

34. A function f defined on a convex set Q is called log-convex on Q, if it takes real
positive values on Q and the function ln f is convex on Q. Prove that

• a log-convex on Q function is convex on Q
• the sum (more generally, linear combination with positive coefficients) of two

log-convex functions on Q also is log-convex on the set.
Hint: use the result of the previous Exercise + your knowledge on operations
preserving convexity

35. For n-dimensional vector x, let x̂ =
(
x̂1, . . . , x̂n

)T be the vector obtained from
x by rearranging the coordinates in the non-ascending order. E.g., with x =
(2,1,3,1)T , x̂ = (3,2,1,1)T . Let us fix k,1≤ k ≤ n.

• Is the function x̂k (k-th largest entry in x ) a convex function of x ?
• Is the function sk(x) = x̂1+ . . .+ x̂k (the sum of k largest entries in x ) convex?

36. Consider a Linear Programming program

min
x

{
cT x : Ax≤ b

}
with m×n matrix A, and let x∗ be an optimal solution to the problem. It means
that x∗ is a minimizer of differentiable convex function f (x) = cT x on convex
set Q = {x | Ax≤ b} and therefore, ∇ f (x∗) should belong to the normal cone of
A at x∗ - this is the necessary and sufficient condition for optimality of x∗. What
does this condition mean in terms of the data A,b,c ?
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37. Let f (x) be a convex symmetric function of x ∈ Rn (symmetry means that f
remains unchanged when permuting the coordinates of the argument, as it is the
case with ∑i xi, or maxi xi ). Prove that if π is a double stochastic n×n matrix,
then

f (πx)≤ f (x)∀x
38. Let f (x) be a convex symmetric function on Rn. For a symmetric n×n matrix

X , let λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X) be the eigenvalues of X taken with their
multiplicities and arranged in the nondecreasing order. Prove

1. For every orthogonal n×n matrix U and symmetric n×n matrix X ,

f
(
diag

(
UXUT ))≤ f (λ (X))

where diag(A) stands for the diagonal of square matrix;
2. The function

F(X) = f (λ (X))

of symmetric n×n matrix X is convex.

39. For a 10× 10 symmetric matrix X , what is larger - the sum of two largest
diagonal entries or the sum of two largest eigenvalues?



Chapter 4
Duality and Optimality Conditions

4.1 Convex Programming

A mathematical optimization problem is

f∗ = min
x

 f (x) :
g(x)≡ (g1(x), ...,gm(x))T ≤ 0
h(x) = (h1(x), ...,hk(x))T = 0

x ∈ X

 (P)

Here x is the design vector. Values of x are called solutions to (P), f (x) is
the objective, g(x) ≡ (g1(x), ...,gm(x))T ≤ 0 are inequality constraints, h(x) =
(h1(x), ...,hk(x))T = 0 are equality constraints, X ⊂ Rn is the domain. We always
assume that the objective and the constraints are well-defined on X .

A solution x is called feasible, if it satisfies all the constraints. Problem which has
feasible solutions is called feasible. If the objective is (below) bounded on the set of
feasible solutions, (P) is called bounded. The optimal value f∗ is

f∗ =

{
inf

x
{ f (x) : x is feasible} , (P) is feasible

+∞, otherwise

f∗ is a real for feasible and bounded problem, is −∞ for feasible unbounded problem,
and is +∞ for infeasible problem. Optimal solution of (P) is a feasible solution x∗
such that f (x∗) = f∗. Problem which has optimal solutions is called solvable.

Problem (P) is called convex, if X is a convex subset of Rn, f (·), g1(·),...,gm(·)
are convex real-valued functions on X , and there are no equality constraints. Note
that we could allow linear equality constraints, but this does not add generality.

77
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4.2 Convex Theorem on Alternative

In this section, we generalize our discussions on how to certify the insolvability of
linear systems in Theorem 3.3. Our present question is how to certify insolvability of
the following nonlinear system:

f (x) < c
g j(x) ≤ 0, j = 1, ...,m

x ∈ X .
(4.2.1)

Assume that there exist nonnegative weights λ j, j = 1, ...,m, such that the inequality

f (x)+
m

∑
j=1

λ jg j(x)< c

has no solutions in X , i.e.,

λ j ≥ 0 : inf
x∈X

[ f (x)+
m

∑
j=1

λ jg j(x)]≥ c. (4.2.2)

Then, clearly (4.2.1) is insolvable.
Much stronger results can be obtained for convex system of inequalities. We say

that system (4.2.1) is convex if

a) X is convex set.
b) f , g1, . . . ,gm are real-valued convex functions on X .

Moreover, system (4.2.1) satisfies the so-called Slater condition if the subsystem

g j(x) < 0, j = 1, ...,m,
x ∈ X

is solvable.

Theorem 4.1. Consider a system of constraints in (4.2.1) along with system of
constraints on λ in (4.2.2).

a) If (4.2.2) is solvable, then (4.2.1) is insolvable.
b) If (4.2.1) is insolvable, convex, and satisfies the Slater condition, then (4.2.2) is

solvable.

In addition, part b) still holds when the Slater condition is replaced with a relaxed
Slater Condition: ∃x̄ ∈ rintX such that gi(x̄)≤ 0 for all i and gi(x̄)< 0 for those i
for which gi(·) are not affine functions.

Proof. We only need to prove b). For simplicity, we prove b) under the slater
condition and leave the one under the relaxed slater condition as an exercise. Assume
that (I) has no solutions. Consider two sets in Rm+1:
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T︷ ︸︸ ︷u ∈ Rm+1 : ∃x ∈ X :

f (x) ≤ u0
g1(x) ≤ u1
..........

gm(x) ≤ um



{
u ∈ Rm+1 : u0 < c,u1 ≤ 0, ...,um ≤ 0

}︸ ︷︷ ︸
S

Observe that S and T are convex and nonempty, S and T do not intersect (otherwise
(4.2.1) would have a solution). Therefore, S and T can be separated:

∃(a0, ...,am) ̸= 0 : inf
u∈T

aT u≥ sup
u∈S

aT u.

Equivalently,
∃(a0, ...,am) ̸= 0 :

inf
x∈X

inf
u0 ≥ f (x)
u1 ≥ g1(x)

...
um ≥ gm(x)

[a0u0 +a1u1 + ...+amum]

≥ sup
u0 < c
u1 ≤ 0

...
um ≤ 0

[a0u0 +a1u1 + ...+amum],

which, in view of a≥ 0, implies that

inf
x∈X

[a0 f (x)+a1g1(x)+ ...+amgm(x)]≥ a0c.

Observe that we must have a0 > 0. Otherwise 0 ̸= (a1, ...,am)≥ 0 and

inf
x∈X

[a1g1(x)+ ...+amgm(x)]≥ 0,

while by the slater condition, there exists x̄ ∈ X : g j(x̄)< 0 for all j. Therefore, we
have

inf
x∈X

[
f (x)+

m

∑
j=1

[
a j

a0

]
︸ ︷︷ ︸
λ j≥0

g j(x)
]
≥ c.
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4.3 Lagrange Duality

Consider the optimization program

Opt(P) = min
{

f (x) : g j(x)≤ 0, j ≤ m, x ∈ X
}
. (4.3.1)

We associate (4.3.1) with the Lagrange function

L(x,λ ) = f (x)+
m

∑
j=1

λ jg j(x)

along with the Lagrange Dual problem

Opt(D) = max
λ≥0

L(λ ), L(λ ) = inf
x∈X

L(x,λ ). (4.3.2)

We intend to show the following important duality theorem for convex program-
ming.

Theorem 4.2. a) [Weak Duality] For every λ ≥ 0, L(λ )≤ Opt(P). In particular,

Opt(D)≤ Opt(P).

b) [Strong Duality] If (P) is convex and below bounded and satisfies Slater condition,
then (D) is solvable, and

Opt(D) = Opt(P).

Proof. a) Weak Duality:“Opt(D) ≤ Opt(P)”. There is nothing to prove when
(P) is infeasible, that is, when Opt(P) = ∞. If x is feasible for (P) and λ ≥ 0, then
L(x,λ )≤ f (x), whence

λ ≥ 0⇒ L(λ ) ≡ inf
x∈X

L(x,λ )

≤ inf
x∈X is feasible

L(x,λ )

≤ inf
x∈X is feasible

f (x)

= Opt(P)
⇒ Opt(D) = sup

λ≥0
L(λ )≤ Opt(P).

b) Strong Duality: “If (P) is convex and below bounded and satisfies Slater
condition, then (D) is solvable and Opt(D) = Opt(P)”. The system

f (x)< Opt(P), g j(x)≤ 0, j = 1, ...,m, x ∈ X

has no solutions, while the system g j(x)< 0, j = 1, ...,m, x ∈ X has a solution. By
Theorem 4.1,

∃λ ∗ ≥ 0 : f (x)+∑
j

λ
∗
j g j(x)≥ Opt(P) ∀x ∈ X ,
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whence
L(λ ∗)≥ Opt(P).

Combined with Weak Duality, we have

Opt(D) = L(λ ∗) = Opt(P).

Note that the Lagrange function “remembers”, up to equivalence, both (P) and
(D). Indeed,

Opt(D) = sup
λ≥0

inf
x∈X

L(x,λ )

is given by the Lagrange function. Now consider the function

L(x) = sup
λ≥0

L(x,λ ) =
{

f (x), g j(x)≤ 0, j ≤ m
+∞, otherwise.

(P) clearly is equivalent to the problem of minimizing L(x) over x ∈ X :

Opt(P) = inf
x∈X

sup
λ≥0

L(x,λ ). (4.3.3)

4.4 Saddle Points

We now consider a more general form of minimax problem than (4.3.3). Let X ⊂ Rn,
Λ ⊂ Rm be nonempty sets, and let F(x,λ ) be a real-valued function on X×Λ . This
function gives rise to two optimization problems

Opt(P′) = inf
x∈X

F(x)︷ ︸︸ ︷
sup
λ∈Λ

F(x,λ ) (P′)

Opt(D′) = sup
λ∈Λ

inf
x∈X

F(x,λ )︸ ︷︷ ︸
F(λ )

(D′)
(4.4.1)

The above problem has a game interpretation. Player I chooses x ∈ X , player II
chooses λ ∈Λ . With choices of the players x,λ , player I pays to player II the sum of
F(x,λ ). So, what should the players do to optimize their wealth?

a) If Player I chooses x first, and Player II knows this choice when choosing λ , Player
II will maximize her profit, and the loss of Player I will be F(x). To minimize his
loss, Player I should solve (P′), thus ensuring himself loss Opt(P′) or less.

b) If Player II chooses λ first, and Player I knows this choice when choosing x, Player
I will minimize his loss, and the profit of Player II will be F(λ ). To maximize her
profit, Player II should solve (D′), thus ensuring herself profit Opt(D′) or more.
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Intuitively, the second situation seems better for Player I, so that it is natural to
guess that his anticipated loss in this situation is ≤ his anticipated loss in the first
situation:

Opt(D′)≡ sup
λ∈Λ

inf
x∈X

F(x,λ )≤ inf
x∈X

sup
λ∈Λ

F(x,λ )≡ Opt(P′).

This indeed is true: assuming Opt(P′)< ∞ (otherwise the inequality is evident),

∀(ε > 0) : ∃xε ∈ X : sup
λ∈Λ

F(xε ,λ )≤ Opt(P′)+ ε

⇒∀λ ∈Λ : F(λ ) = inf
x∈X

F(x,λ )≤ F(xε ,λ )≤ Opt(P′)+ ε

⇒ Opt(D′)≡ sup
λ∈Λ

F(λ )≤ Opt(P′)+ ε

⇒ Opt(D′)≤ Opt(P′).

So, what should the players do when making their choices simultaneously? A
“good case” when we can answer this question happens when F has a saddle point.
We call a point (x∗,λ∗) ∈ X×Λ a saddle point of F , if

F(x,λ∗)≥ F(x∗,λ∗)≥ F(x∗,λ ) ∀(x ∈ X ,λ ∈Λ).

In game terms, a saddle point is an equilibrium, meaning no one of the players can
improve his wealth, provided the adversary keeps his choice unchanged.

Proposition 4.1. F has a saddle point if and only if both (P′) and (D′) are solvable
with equal optimal values. In this case, the saddle points of F are exactly the pairs
(x∗,λ∗), where x∗ is an optimal solution to (P′), and λ∗ is an optimal solution to
(D′).

Proof. ⇒ Assume that (x∗,λ∗) is a saddle point of F , and let us prove that x∗
solves (P′), λ∗ solves (D′), and Opt(P′) = Opt(D′). Indeed, we have

F(x,λ∗)≥ F(x∗,λ∗)≥ F(x∗,λ ) ∀(x ∈ X ,λ ∈Λ),

whence
Opt(P′)≤ F(x∗) = sup

λ∈Λ

F(x∗,λ ) = F(x∗,λ∗)

Opt(D′)≥ F(λ∗) = inf
x∈X

F(x,λ∗) = F(x∗,λ∗).

Since Opt(P′)≥ Opt(D′), we see that all inequalities in the chain

Opt(P′)≤ F(x∗) = F(x∗,λ∗) = F(λ∗)≤ Opt(D′)

are equalities. Thus, x∗ solves (P′), λ∗ solves (D′) and Opt(P′) = Opt(D′).
⇐ Assume that (P′) and (D′) have optimal solutions x∗,λ∗ and Opt(P′) =

Opt(D′), and let us prove that (x∗,λ∗) is a saddle point. We have
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Opt(P′) = F(x∗) = sup
λ∈Λ

F(x∗,λ )≥ F(x∗,λ∗)

Opt(D′) = F(λ∗) = inf
x∈X

F(x,λ∗)≤ F(x∗,λ∗).

Since Opt(P′) = Opt(D′), all inequalities in the above relation are equalities, so that

sup
λ∈Λ

F(x∗,λ ) = F(x∗λ∗) = inf
x∈X

F(x,λ∗).

In view of Proposition 4.1, whenever F has a saddle point, the order of playing
this game does not matter anymore since both (P′) and (D′) have equal optimal
values.

4.5 Saddle Point Form of Optimality Conditions

We now turn out attention to the minimax problem defined in (4.3.3) and discuss the
saddle point form of optimality conditions in convex programming.

Opt(P) = min
x

{
f (x) : g j(x)≤ 0, j ≤ m,x ∈ X

}
(P)

⇓
L(x,λ ) = f (x)+

m
∑
j=1

λ jg j(x)

Theorem 4.3. Let x∗ ∈ X be given.

a) [Sufficient optimality condition] If x∗ can be extended, by a λ ∗ ≥ 0, to a saddle
point of the Lagrange function on X×{λ ≥ 0}:

L(x,λ ∗)≥ L(x∗,λ ∗)≥ L(x∗,λ ) ∀(x ∈ X ,λ ≥ 0),

then x∗ is optimal for (P).
b) [Necessary optimality condition] If x∗ is optimal for (P) and (P) is convex and

satisfies the Slater condition, then x∗ can be extended, by a λ ∗ ≥ 0, to a saddle
point of the Lagrange function on X×{λ ≥ 0}.

Proof.⇒ Clearly, sup
λ≥0

L(x∗,λ ) =
{
+∞, x∗ is infeasible
f (x∗), otherwise

Thus, λ ∗ ≥ 0 & L(x∗,λ ∗)≥ L(x∗,λ ) ∀λ ≥ 0 is equivalent to

g j(x∗)≤ 0∀ j & λ
∗
j g j(x∗) = 0∀ j.

Consequently, L(x∗,λ ∗) = f (x∗), whence

L(x,λ ∗)≥ L(x∗,λ ∗) ∀x ∈ X
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reads as
L(x,λ ∗)≥ f (x∗) ∀x.

Since for λ ≥ 0 one has f (x)≥ L(x,λ ) for all feasible x, it follows from the above
inequality that

x is feasible ⇒ f (x)≥ f (x∗).

⇐ By Lagrange Duality Theorem, ∃λ ∗ ≥ 0:

f (x∗) = L(λ ∗)≡ inf
x∈X

[
f (x)+∑

j
λ
∗
j g j(x)

]
. (4.5.1)

Since x∗ is feasible, we have

inf
x∈X

[
f (x)+∑

j
λ
∗
j g j(x)

]
≤ f (x∗)+∑

j
λ
∗
j g j(x∗)≤ f (x∗).

By (4.5.1), the last ”≤ ” here is ” = ”, which with λ ∗ ≥ 0 is possible iff λ ∗j g j(x∗) =
0∀ j which together with g j(x∗)≤ 0 imply that

f (x∗) = L(x∗,λ ∗)≥ L(x∗,λ ) ∀λ ≥ 0.

Now (4.5.1) reads L(x,λ ∗)≥ f (x∗) = L(x∗,λ ∗). The result then follows by combin-
ing these two inequalities.

4.6 Karush-Kuhn-Tucker Optimality Condition

Suppose that the functions f , g1, . . . ,gm are differentiable at x∗. We call the following
requirement

∃λ ∗ ≥ 0 s.t.

(a)∇ f (x∗)+
m
∑
j=1

λ ∗j ∇g j(x∗) ∈ N∗X (x∗)

(b)λ ∗j g j(x∗) = 0, j ≤ m [complementary slackness]

as the KKT condition.

Theorem 4.4. Let x∗ be a feasible solution of (P), and let the functions f , g1,...,gm
be differentiable at x∗. Then the KKT condition is sufficient for x∗ to be optimal.
Moreover, if (P) satisfies restricted Slater condition, then the KKT is necessary and
sufficient for x∗ to be optimal.

Proof.⇒ Note that part b) (i.e., complementary slackness) in the KKT condition
plus λ ∗ ≥ 0 ensure that

L(x∗,λ ∗)≥ L(x∗,λ ) ∀λ ≥ 0.
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Further, L(x,λ ∗) is convex in x ∈ X and differentiable at x∗ ∈ X , so that part a) in the
KKT condition implies that

L(x,λ ∗)≥ L(x∗,λ ∗) ∀x ∈ X .

Thus, x∗ can be extended to a saddle point of the Lagrange function and therefore is
optimal for (P).
⇐ By the saddle point optimality condition, from optimality of x∗ it follows

that ∃λ ∗ ≥ 0 such that (x∗,λ ∗) is a saddle point of L(x,λ ) on X×{λ ≥ 0}. This is
equivalent to

λ
∗
j g j(x∗) = 0 ∀ j & min

x∈X
L(x,λ ∗) = L(x∗,λ ∗)︸ ︷︷ ︸ (4.6.1)

Since the function L(x,λ ∗) is convex in x ∈ X and differentiable at x∗ ∈ X , part a) in
the KKT condition immediately follows from the second relation in (4.6.1).

Example 4.1. Assuming ai > 0, p≥ 1, let us solve the problem

min
x

{
∑

i

ai

xi
: x > 0,∑

i
xp

i ≤ 1

}

Assuming x∗ > 0 is a solution such that ∑
i
(x∗i )

p = 1, the KKT conditions read

∇x

{
∑
i

ai
xi
+λ (∑

i
xp

i −1)
}

= 0⇔ ai
x2

i
= pλxp−1

i

∑
i

xp
i = 1

whence xi = c(λ )a
1

p+1
i . Since ∑

i
xp

i should be 1, we get

x∗i = a
1

p+1
i /

(
∑

j
a

p
p+1
j

) 1
p

.

This point is feasible, problem is convex, KKT at the point is satisfied, and thus must
be optimal.

4.7 Convex-Cancave Saddle Points*

In this section, we consider the general saddle point problem in (4.4.1) and establish
the conditions that guarantee the existence of saddle points.

Theorem 4.5. [Sion-Kakutani] Let X ⊂Rn, Λ ⊂Rm be nonempty convex closed sets
and F(x,λ ) : X ×Λ → R be a continuous function which is convex in x ∈ X and
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concave in λ ∈Λ . Assume that X is compact, and that there exists x̄ ∈ X such that
all the sets

Λa := {λ ∈Λ : F(x̄,λ )≥ a}
are bounded (e.g., Λ is bounded). Then F possesses a saddle point on X×Λ .

The proof of the above Sion-Kakutani theorem requires us to show the following
MiniMax lemma.

Lemma 4.1. Let fi(x), i = 1, ...,m, be convex continuous functions on a convex
compact set X ⊂ Rn. Then there exists µ∗ ≥ 0 with ∑

i
µ∗i = 1 such that

min
x∈X

max
1≤i≤m

fi(x) = min
x∈X ∑

i
µ
∗
i fi(x)

Proof. Consider the optimization program

min
t,x
{t : fi(x)− t ≤ 0, i≤ m,(t,x) ∈ X+} ,

X+ = {(t,x) : x ∈ X}
(P)

The optimal value in this problem clearly is

t∗ = min
x∈X

max
i

fi(x).

The program clearly is convex, solvable and satisfies the Slater condition, whence
there exists λ ∗ ≥ 0 and an optimal solution (x∗, t∗) to (P) such that (x∗, t∗;λ ∗) is the
saddle point of the Lagrange function on X+×{λ ≥ 0}:

min
x∈X ,t

{
t +∑

i
λ ∗i ( fi(x)− t)

}
= t∗+∑

i
λ ∗i ( fi(x∗)− t∗) (a)

max
λ≥0

{
t∗+∑

i
λi( fi(x∗)− t∗)

}
= t∗+∑

i
λ ∗i ( fi(x∗)− t∗) (b)

(b) implies that t∗+∑
i

λ ∗i ( fi(x∗)− t∗) = t∗ (o.w., the LHS is unbounded).

(a) implies that ∑
i

λ ∗i = 1 (o.w., the LHS is unbounded). Thus, λ ∗ ≥ 0,∑i λ ∗i = 1 and

min
x∈X

∑
i

λ ∗i fi(x) = min
x∈X ,t

{
t +∑

i
λ ∗i ( fi(x)− t)

}
= t∗+∑

i
λ ∗i ( fi(x∗)− t∗) = t∗ = min

x∈X
max

i
fi(x).

We are now ready to prove Theorem 4.5.
Proof of Sion-Kakutani Theorem: We should prove that problems
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Opt(P) = inf
x∈X

F(x)︷ ︸︸ ︷
sup
λ∈Λ

F(x,λ ) (P)

Opt(D) = sup
λ∈Λ

inf
x∈X

F(x,λ )︸ ︷︷ ︸
F(λ )

(D)

are solvable with equal optimal values.
10. Since X is compact and F(x,λ ) is continuous on X ×λ , the function F(λ ) is
continuous on Λ . Besides this, the sets

Λ
a = {λ ∈Λ : F(λ )≥ a}

are contained in the sets

Λa = {λ ∈Λ : F(x̄,λ )≥ a}

and therefore are bounded. Finally, Λ is closed, so that the continuous function
F(·) with bounded level sets Λ a attains it maximum on a closed set Λ . Thus, (D) is
solvable; let λ ∗ be an optimal solution to (D).

20. Consider the sets

X(λ ) = {x ∈ X : F(x,λ )≤ Opt(D)}.

These are closed convex subsets of a compact set X . Let us prove that every finite
collection of these sets has a nonempty intersection. Indeed, assume that

X(λ 1)∩ ...∩X(λ N) = /0.

so that
max

j=1,...,N
F(x,λ j)> Opt(D).

By MinMax Lemma, there exist weights µ j ≥ 0,∑
j

µ j = 1, such that

min
x∈X ∑

j
µ jF(x,λ j)︸ ︷︷ ︸

≤F(x,∑
j

µ jλ
j

︸ ︷︷ ︸
λ̄

)

> Opt(D)

which is impossible by the definition of Opt(D).
30. Since every finite collection of closed convex subsets X(λ ) of a compact set

has a nonempty intersection, all those sets have a nonempty intersection:

∃x∗ ∈ X : F(x∗,λ )≤ Opt(D) ∀λ .
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Due to Opt(P) ≥ Opt(D), this is possible iff x∗ is optimal for (P) and Opt(P) =
Opt(D).

4.8 First-order Optimality Conditions

We are given a Mathematical Programming problem

min
x

 f (x) :
(g1(x),g2(x), ...,gm(x))≤ 0

(h1(x), ...,hk(x)) = 0
x ∈ X

 .

Assume that we are given a feasible solution x∗ to (P). What are the conditions
(necessary, sufficient, necessary and sufficient) for x∗ to be optimal?

Except for convex programs, there are no verifiable local sufficient conditions for
global optimality. There exist, however,

a) verifiable local necessary conditions for local (and thus – for global) optimality.
b) verifiable local sufficient conditions for local optimality.

By definition, x∗ being local optima means that there exists r > 0 such that for
every feasible x with ∥x− x∗∥ ≤ r one has

f (x)≥ f (x∗).

Note that existing conditions for local optimality assume that x∗ ∈ intX , which, from
the viewpoint of local optimality of x∗, is exactly the same as to say that X = Rn.
Therefore, from now on, we drop this domain constraint and consider

min
x

{
f (x) :

(g1(x),g2(x), ...,gm(x))≤ 0
(h1(x), ...,hk(x)) = 0

}
. (4.8.1)

Moreover, we assume that the objective and all the constraints are continuously
differentiable in a neighborhood of x∗. We will study first-order optimality conditions
that are expressed via values and gradients of the objective and the constraints at x∗.
Except for convex case, only necessary first-order conditions are known.

The basic idea for our development is to approximate (4.8.1) around x∗ by a linear
programming problem

min
x

f (x∗)+(x− x∗)T f ′(x∗)

s.t.
0︷ ︸︸ ︷

g j(x∗)+(x− x∗)T g′j(x∗)≤ 0, j ∈ J(x∗)
hi(x∗)︸ ︷︷ ︸

0

+(x− x∗)T h′i(x∗) = 0, 1≤ i≤ k

[J(x∗) = { j : g j(x∗) = 0}]
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Since all g j(·) are continuous at x∗, the non-active at x∗ inequality constraints (those
with g j(x∗) < 0) do not affect local optimality of x∗ and do not participate in the
above problem. After removing some constant terms, we have

min
x

(x− x∗)T f ′(x∗) :

(x− x∗)T g′j(x∗)≤ 0,
j ∈ J(x∗)
(x− x∗)T h′i(x∗) = 0,
i = 1, ...,k

 (LP)

J(x∗) = { j : g j(x∗) = 0}

It is natural to guess that if x∗ is locally optimal for (4.8.1), then x∗ is locally optimal
for (LP) as well. LP is a convex program with affine constraints, whence the KKT
conditions are necessary and sufficient for optimality:

x∗ is optimal for (LP)
⇕

∃(λ ∗j ≥ 0, j ∈ J(x∗),µi) :

f ′(x∗)+ ∑
j∈J(x∗)

λ ∗j g′j(x∗)+
k
∑

i=1
µih′i(x∗) = 0

⇕
∃(λ ∗j ≥ 0,µ∗i ) :

f ′(x∗)+∑
j

λ ∗j g′j(x∗)+∑
i

µ∗i h′i(x∗) = 0

λ ∗j g j(x∗) = 0, j = 1, ...,m

We then have the following intermediate result.

Proposition 4.2. Let x∗ be a locally optimal solution of (4.8.1). Assume that x∗
remains locally optimal when passing from (4.8.1) to the linearized problem in (LP).
Then at x∗ the KKT condition holds:

∃(λ ∗j ≥ 0,µ∗i ) :
f ′(x∗)+∑

j
λ ∗j g′j(x∗)+∑

i
µ∗i h′i(x∗) = 0

λ ∗j g j(x∗) = 0, j = 1, ...,m.

To make the above proposition useful, we need a verifiable sufficient condition
for “x∗ remains locally optimal when passing from (P) to (LP)”. The most natural
form of such a condition is regularity, meaning that the gradients, taken at x∗, of all
constraints active at x∗ are linearly independent. Of course, all equality constraints
by definition are active at every feasible solution. The motivation of this regularity
condition comes from the well-known implicit function theorem.

Recall a special form of Implicit Function Theorem as follows.

Theorem 4.6. Let x∗ ∈ Rn and let pℓ(x), ℓ= 1, ...,L, be real-valued functions such
that

a) pℓ are κ ≥ 1 times continuously differentiable in a neighborhood of x∗;
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b) pℓ(x∗) = 0;
c) vectors ∇pℓ(x∗), ℓ= 1, ...,L, are linearly independent.

Then there exists substitution of variables

y 7→ x = Φ(y)

defined in a neighborhood V of the origin and mapping V , in a one-to-one manner,
onto a neighborhood B of x∗, such that

a) x∗ = Φ(0);
b) both Φ : V → B and its inverse mapping Φ−1 : B→V are κ times continuously

differentiable;
c) in coordinates y, the functions pℓ become just the coordinates:

y ∈V ⇒ pℓ(Φ(y))≡ yℓ, ℓ= 1, ...,L.

We are now ready to state the first-order optimality condition.

Proposition 4.3. Let x∗ be a locally optimal regular solution of (4.8.1). Then x∗ is
optimal for (LP) and, consequently, the KKT conditions take place at x∗.

Proof. Let x∗ be a regular locally optimal solution to (P). Assume, on the contrary
to what should be proven, that x∗ is not an optimal solution to (LP), and let us lead
this to contradiction.
10. Since x = x∗ is not an optimal solution to (LP), there exists a feasible solution

x′ = x∗+d

to the problem with
(x′− x∗)T f ′(x∗) = dT f ′(x∗)< 0,

so that
dT f ′(x∗)< 0, dT h′i(x∗) = 0︸ ︷︷ ︸

∀i

, dT g′j(x∗)≤ 0︸ ︷︷ ︸
∀ j∈J(x∗)

20. W.l.o.g., assume that J(x∗) = {1, ..., ℓ}. By Theorem 4.6, there exist continuously
differentiable local substitution of argument

x = Φ(y) [Φ(0) = x∗]

with a continuously differentiable in a neighborhood of x∗ inverse y =Ψ(x) such
that in a neighborhood of origin one has

hi(Φ(y))≡ yi, g j(Φ(y)) = yk+ j, j = 1, ..., ℓ.

Since Ψ(Φ(y))≡ y, we have

Ψ
′(x∗)Φ ′(0) = I,
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whence Φ ′(0) is invertible and

∃e : Φ
′(0)e = d.

30. Now we have found a smooth local substitution of argument x = Φ(y) (y = 0
corresponds to x = x∗) and a direction e such that in a neighborhood of y = 0 one has

(a) hi(Φ(y)) ≡ yi, i≤ k
(b) g j(Φ(y)) ≡ yk+ j, j ≤ ℓ

[J(x∗) = {1, ..., ℓ}]
(c) [Φ ′(0)e]T h′i(x∗) = 0, i≤ k
(d) [Φ ′(0)e]T g′j(x∗) ≤ 0, j ≤ ℓ

(e) [Φ ′(0)e]T f ′(x∗) < 0

Consider the differentiable curve

x(t) = Φ(te).

We have, by taking derivatives w.r.t. t,

tei ≡ hi(Φ(te))⇒ ei = [Φ ′(0)e]T h′i(x∗) = 0
tek+ j ≡ g j(Φ(te))⇒ ek+ j = [Φ ′(0)e]T g′j(x∗)≤ 0
⇒ hi(x(t)) = tei = 0︸ ︷︷ ︸

∀i

, g j(x(t)) = tek+ j ≤ 0︸ ︷︷ ︸
∀ j∈J(x∗)

Thus, x(t) is feasible for all small t ≥ 0. But:

d
dt

∣∣
t=0 f (x(t)) = [Φ ′(0)e]T f ′(x∗)< 0,

whence f (x(t))< f (x(0))= f (x∗) for all small enough t > 0, which is a contradiction
with local optimality of x∗.

Observe that the regularity of x∗ is important for the KKT condition to be necessary
for local optimality. For example, x∗ = 0 is the only feasible solution to the problem
min{ f (x) := x : h(x) := x2 = 0} and therefore is even globally optimal. The KKT
condition would say that there exists µ∗ such that 0 = ∇ f (x∗)+µ∗∇h(x∗) = 1+µ∗ ·
0, which is impossible. The source of the difficulty is that ∇h(x∗) = 0, that is, x∗ = 0
is not a regular locally optimal solution.

4.9 Second-order Condition for Unconstrained Problems

In the case of unconstrained minimization problem
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min
x

f (x) (4.9.1)

with continuously differentiable objective, the KKT conditions reduce to the Fermat
Rule: If x∗ is locally optimal for (4.9.1), then ∇ f (x∗) = 0.

Fermat Rule is the “first order” part of Second Order Necessary Optimality
Condition in unconstrained minimization: If x∗ is locally optimal for (4.9.1) and f is
twice differentiable in a neighborhood of x∗, then

∇ f (x∗) = 0 & ∇
2 f (x∗)⪰ 0⇔ dT

∇
2 f (x∗)d ≥ 0∀d

Indeed, let x∗ be locally optimal for (4.9.1); then for appropriate rd > 0

0≤ t ≤ rd
⇒ 0≤ f (x∗+ td)− f (x∗)
= t dT

∇ f (x∗)︸ ︷︷ ︸
=0

+ 1
2 t2dT ∇2 f (x∗)d + t2 Rd(t)︸ ︷︷ ︸

→0,
t→0

⇒ 1
2 dT ∇2 f (x∗)d +Rd(t)≥ 0⇒ dT ∇2 f (x∗)d ≥ 0

The second-order necessary optimality condition can be strengthened to a second-
order sufficient optimality condition for unconstrained minimization as shown below.

Theorem 4.7. Let f be twice differentiable in a neighborhood of x∗. If

∇ f (x∗) = 0,∇2 f (x∗)≻ 0⇔ dT
∇

2 f (x∗)d > 0∀d ̸= 0

then x∗ is locally optimal for (4.9.1).

Proof. Since dT ∇2 f (x∗)d > 0 for all d > 0, then there exists α > 0 such that
dT ∇2 f (x∗)d ≥ αdT d for all d. By differentiability, for every ε > 0 there exists
rε > 0 such that

∥d∥2 ≤ rε

⇒ f (x∗+d)− f (x∗)≥ dT
∇ f (x∗)︸ ︷︷ ︸
=0

+ 1
2 dT

∇
2 f (x∗)d︸ ︷︷ ︸
≥αdT d

− ε

2 dT d

⇒ f (x∗+d)− f (x∗)≥ 1
2 (α− ε)dT d

Setting ε = α

2 , we see that x∗ is a local minimizer of f .

4.10 Second-order Necessary Condition for Constrained Problems

We now consider a constrained mathematical programming problem

min
x

{
f (x) :

(g1(x),g2(x), ...,gm(x))≤ 0
(h1(x), ...,hk(x)) = 0

}
(4.10.1)



4.10 Second-order Necessary Condition for Constrained Problems 93

In the optimality conditions for a constrained problem, the role of ∇2 f (x∗) is
played by the Hessian of the Lagrange function:

L(x;λ ,µ) = f (x)+∑
j

λ jg j(x)+∑
i

µihi(x).

We now establish the second-order necessary optimality condition for prob-
lem (4.10.1).

Theorem 4.8. Let x∗ be a regular feasible solution of (4.10.1) such that the functions
f ,g j,hi are twice continuously differentiable in a neighborhood of x∗. If x∗ is locally
optimal, then

a) There exist uniquely defined Lagrange multipliers λ ∗j ≥ 0, µ∗i such that the KKT
conditions hold:

∇xL(x∗;λ ∗,µ∗) = 0
λ ∗j g j(x∗) = 0, j = 1, ...,m.

b) For every d orthogonal to the gradients, taken at x∗, of all equality constraints
and all active at x∗ inequality constraints, one has

dT
∇

2
xL(x∗;λ

∗,µ∗)d ≥ 0.

Proof. 10. Constraints which are non-active at x∗ clearly do not affect neither local
optimality of x∗, nor the conclusion to be proven. Removing these constraints, we
reduce the situation to one where all constraints in the problem (4.10.1) are active at
x∗.

20. Applying Implicit Function Theorem, we can find a local change of variables

x = Φ(y)⇔ y =Ψ(x) [Φ(0) = x∗,Ψ(x∗) = 0]

with locally twice continuously differentiable Φ and Ψ such that

g j(Φ(y))≡ y j, j ≤ m,hi(Φ(y))≡ ym+i, i≤ k.

In variables y, problem (4.10.1) becomes

min
y

{
f (Φ(y))︸ ︷︷ ︸

φ(y)

: y j ≤ 0, j ≤ m,ym+i = 0, i≤ k
}
. (4.10.2)

Our plan is as follows. Since Φ is a smooth one-to-one mapping of a neighborhood
of x∗ onto a neighborhood of y∗ = 0, x∗ is locally optimal for (4.10.1) iff y∗ = 0 is
locally optimal for (4.10.2). So we intend to build necessary/sufficient conditions
for y∗ = 0 to be locally optimal for (4.10.2). Then “translated” to x-variables, these
conditions will imply necessary/sufficient conditions for local optimality of x∗ for
(4.10.1).
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30. Since x∗ = Φ(0) is locally optimal for (4.10.1), y∗ = 0 is locally optimal for
(4.10.2). In particular, if ei is i-th basic orth, then for appropriate ε > 0:

j ≤ m ⇒ y(t) =−te j is feasible for (4.10.2) when
ε ≥ t ≥ 0⇒ − ∂φ(0)

∂y j
= d

dt

∣∣
t=0φ(y(t))≥ 0

⇒ λ ∗j ≡− ∂φ(0)
∂y j
≥ 0

and
s > m+ k ⇒ y(t) = tes is feasible for (4.10.2) when

ε ≥ t ≥−ε ⇒ ∂φ(0)
∂ys

= d
dt

∣∣
t=0φ(y(t)) = 0

⇒ µ∗i ≡− ∂φ(0)
∂ym+i

= 0, i = 1, ...,k.

Therefore, ∃λ ∗ ≥ 0,µ∗:

0 =
∂M(0;λ ∗,µ∗)

∂yℓ
≡


∂φ(0)

∂yℓ
+λ ∗ℓ , ℓ≤ m,(active inequality constraints)

∂φ(0)
∂yℓ

+µ∗ℓ−m, m < ℓ≤ m+ k,(equality constraints)
∂φ(0)

∂yℓ
, ℓ > m+ k(inactive inequality constraints)

(KKT)

Note that the condition ∇yM(0;λ ∗,µ∗) = 0 defines λ ∗, µ∗ in a unique fashion.
40. We have seen that for (4.10.2), the first order part of the second-order necessary
optimality condition holds true. Let us prove the second order part of the condition,
which reads

∀(d : dT ∇yyℓ = 0, ℓ≤ m+ k) :
dT ∇2

yM(0;λ ∗,µ∗)d ≥ 0. (4.10.3)

This is evident since M(y;λ ∗,µ∗) = φ(y)+
m
∑
j=1

λ ∗j y j +
k
∑

i=1
µ∗i ym+i, we have

∇
2
yM(0;λ

∗,µ∗) = ∇
2
φ(0).

The claim in (4.10.3) therefore states that dT ∇2φ(0)d ≥ 0 for every vector d from
the linear subspace L = {d : d1 = ...= dm+k = 0}. But this subspace is feasible for
(4.10.2), so that φ , restricted onto L, should attain unconstrained local minimum at
the origin. By the second-order necessary optimality condition for unconstrained
minimization,

dT
∇

2
φ(0)d ≥ 0 ∀d ∈ L.

50. We have seen that if x∗ is locally optimal for (4.10.1), then there exist uniquely
defined λ ∗ ≥ 0, µ∗ such that

∇yM(0;λ
∗,µ∗) = 0,

and one has
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dT
∇yyℓ = 0, ℓ≤ m+ k⇒ dT

∇
2
yM(0;λ

∗,µ∗)d ≥ 0.

Let us prove that
∇xL(x∗;λ

∗,µ∗) = 0 (4.10.4)

and
eT g′j(x∗) = 0, j ≤ m
eT h′i(x∗) = 0, i≤ k

}
⇒ eT

∇
2
xL(x∗);λ

∗,µ∗)e≥ 0. (4.10.5)

First, setting L (x) = L(x;λ ∗,µ∗), M (y) = M(y;λ ∗,µ∗), we have

L (x) = M (Ψ(x))
⇒ ∇xL (x∗) = [Ψ ′(x∗)]T ∇yM (y∗) = 0,

as required in (4.10.4).
Second, let e satisfy the premise in (4.10.5), and let d = [Φ ′(0)]−1e. Then

d
dt

∣∣
t=0

td j︷ ︸︸ ︷
d
dt

∣∣∣∣
t=0

g j(Φ(td)) = [g′j(x∗)]
T

e︷ ︸︸ ︷
[Φ ′(0)]d

⇒ d j = eT g′j(x∗) = 0, j ≤ m
d
dt

∣∣∣∣
t=0

hi(Φ(td))︸ ︷︷ ︸
d
dt

∣∣
t=0

tdm+i

= [h′i(x∗)]
T [Φ ′(0)]d︸ ︷︷ ︸

e

⇒ dm+i = eT h′i(x∗) = 0, i≤ k.

We have

eT ∇2L (x∗)e = d2

dt2

∣∣∣∣
t=0

L (x∗+ te) = d2

dt2

∣∣∣∣
t=0

M (Ψ(x∗+ te))

= d
dt

∣∣∣∣
t=0

[
eT [Ψ ′(x∗+ te)]T ∇M (Ψ(x∗+ te))

]
= eT [Ψ ′(x∗)]T ∇2M (0)

=[Φ ′(0)]−1e=d︷ ︸︸ ︷
[Ψ ′(x∗)e]

+eT [ d
dt

∣∣
t=0Ψ

′(x∗+ te)]T ∇M (0)︸ ︷︷ ︸
=0

= dT ∇2M d ≥ 0 due to d j = 0, 1≤ j ≤ m+ k.

Thus, whenever e is orthogonal to the gradients of all constraints active at x∗, we
have eT ∇2L e≥ 0.
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4.11 Second-order Sufficient Condition for Constrained Problems

Below we state the second-order sufficient conditions for achieving local optimality
of (4.10.1).

Theorem 4.9. Let x∗ be a regular feasible solution of (4.10.1) such that the functions
f ,g j,hi are twice continuously differentiable in a neighborhood of x∗. If there exist
Lagrange multipliers λ ∗j ≥ 0, µ∗i such that

a) the KKT conditions hold:

∇xL(x∗;λ ∗,µ∗) = 0
λ ∗j g j(x∗) = 0, j = 1, ...,m.

b) For every d ̸= 0 orthogonal to the gradients, taken at x∗, of all equality constraints
and those active at x∗ inequality constraints for which λ ∗j > 0, one has

dT
∇

2
xL(x∗;λ

∗,µ∗)d > 0,

then x∗ is locally optimal for (4.10.1).

Proof. 10. As in the case of Second Order Necessary Optimality Condition, we
can reduce the situation to one where all inequality constraints are active at x∗ and
The problem is of the special form

min
y

{
φ(y) :

y j ≤ 0, j ≤ m
ym+i = 0, i≤ k

}
. (4.11.1)

20. In the case of (4.11.1), the second-order sufficient condition reads: ∃λ ∗ ≥ 0,µ∗:

∇y
∣∣
y=0

{
φ(y)+

m
∑
j=1

λ ∗j y j +
k
∑

i=1
µ∗i ym+i

}
= 0

d j = 0, j ∈ J,d ̸= 0⇒ dT ∇2φ(0)d > 0[
J = { j ≤ m : λ ∗j > 0}∪{m+1, ...,m+ k}

] (4.11.2)

Assuming w.l.o.g. { j : λ ∗j > 0}= {1, ...,q}. Then (4.11.2) reads:

∂φ(0)
∂yℓ

< 0, ℓ= 1, ...,q(inequality constraints with λ ∗l > 0)
∂φ(0)

∂yℓ
= 0, ℓ= q+1, ...,m(inequality constraints with λ ∗l = 0)

∂φ(0)
∂yℓ

= 0, ℓ= m+ k+1, ...,n(inactive constraints)
0 ̸= d ∈ T+ = {d : dℓ = 0, ℓ ∈ {1, ...,q,m+1, ...,m+ k}} :

⇒ dT ∇2φ(0)d > 0

(4.11.3)

Our goal is to derive from this assumption the local optimality of y∗ = 0 for (4.11.1).
Note that the feasible set of (4.11.1) is the closed cone
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K = {d : dℓ ≤ 0, ℓ= 1, ...,m,dℓ = 0, ℓ= m+1, ...,m+ k} (4.11.4)

We need to use the following result.

Claim. For 0 ̸= d ∈ K one has dT ∇φ(0) ≥ 0. Moreover, if dT ∇φ(0) = 0, then
dT ∇2φ(0)d > 0.
Proof of the Claim: For d ∈ K, we have

dT
∇φ(0) =

n

∑
ℓ=1

∂φ(0)
∂yℓ

dℓ

By (4.11.3) and (4.11.4), the first q terms in this sum are nonnegative, and the
remaining are 0. Thus, the sum always is ≥ 0. For d ̸= 0, the only possibility for the
sum to vanish is to have d ∈ T+, and in this case dT φ ′′(0)d > 0.
30. To summarize the situation, problem (4.11.1) is equivalent to

min
y∈K

φ(y), (4.11.5)

where K is a closed cone, φ is twice continuously differentiable in a neighborhood
of the origin and is such that

d ∈ K⇒ dT ∇φ(0)≥ 0
d ∈ K\{0},dT ∇φ(0) = 0⇒ dT ∇2φ(0)d > 0

Claim: 0 is a locally optimal solution to (4.11.5).
Proof of the Claim: Let M = {d ∈K : ∥d∥2 = 1}, and let M0 = {d ∈M : dT ∇φ(0) =
0}. Since K is closed, both M and M0 are compact sets.
We know that dT ∇2φ(0)d > 0 for d ∈M0. Since M0 is a compact set, there exists a
neighborhood V of M0 and α > 0 such that

d ∈V ⇒ dT
∇

2
φ(0)d ≥ α.

The set V1 = M\V is compact and dT ∇φ(0) > 0 when d ∈ V1; thus, there exists
β > 0 such that

d ∈V1⇒ dT
∇φ(0)≥ β .

Note that K is a cone, and the set M = {d ∈ K : ∥d∥2 = 1} is partitioned into two
subsets V0 =V ∩M and V1 in such a way that

d ∈V0 ⇒ dT ∇φ(0)≥ 0,dT ∇2φ(0)d ≥ α > 0
d ∈V1 → dT ∇φ(0)≥ β > 0

Our goal is to prove that 0 is local minimizer of φ on K, or, which is the same, that

∃r > 0 :
φ(0) ≤ φ(td) ∀(d ∈M,0≤ t ≤ r).
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Let d ∈M, t ≥ 0. When d ∈V0, we have

φ(td)−φ(0) ≥ tdT ∇φ(0)+ 1
2 t2dT ∇2φ(0)d− t2 R(t)︸︷︷︸

→0,
t→+0

≥ 1
2 t2(α−2R(t))

⇒∃r0 > 0 : φ(td)−φ(0)≥ 1
4 t2α ≥ 0∀t ≤ r0.

When d ∈V1, we have

φ(td)−φ(0) ≥ tdT ∇φ(0)+ 1
2 t2dT ∇2φ(0)d− t2 R(t)︸︷︷︸

→0,
t→+0

≥ β t−Ct2− t2R(t)
⇒∃r1 > 0 : φ(td)−φ(0)≥ β

2 t ≥ 0∀t ≤ r1.

Thus, φ(td)−φ(0)≥ 0 for all t ≤min[r0,r1], d ∈M.

Note that the difference between sufficient and necessary optimality conditions is
in their “second order” parts and has twofold.

The first one is a minor difference. The necessary condition states positive
semidefiniteness of ∇2

xL(x∗;λ ∗,µ∗) along linear subspace:

∀d ∈ T = {d :

∀i≤k︷ ︸︸ ︷
dT h′i(x∗) = 0,

∀ j∈J(x∗)︷ ︸︸ ︷
dT g′j(x∗) = 0} :

dT ∇2
xL(x∗;λ ∗,µ∗)d ≥ 0

while Sufficient condition requires positive definiteness of ∇2
xL(x∗;λ ∗,µ∗) along

linear subspace:

∀0 ̸= d ∈ T+ = {d :

∀i≤k︷ ︸︸ ︷
dT h′i(x∗) = 0,

∀ j:λ ∗j >0︷ ︸︸ ︷
dT g′j(x∗) = 0} :

dT ∇2
xL(x∗;λ ∗,µ∗)d > 0

The second one is a major difference. The linear subspaces in question are differ-
ent, and T ⊂ T+; the subspaces are equal to each other iff all active at x∗ inequality
constraints have positive Lagrange multipliers λ ∗j . Observe that this “gap” is essential,
as is shown by example

min
x1,x2

{
f (x) = x2

2− x2
1 : g1(x)≡ x1 ≤ 0

}
[x∗ = (0,0)T ]

Here the second-order necessary optimality condition is satisfied “strictly”:

L(x;λ ) = x2
2− x2

1 +λx1,

whence
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λ ∗ = 0⇒ ∇xL(x∗;λ ∗) = 0,
T = {d : dT g′1(0) = 0}= {d : d1 = 0},

0 ̸= d ∈ T ⇒ dT ∇2
xL(x∗;λ ∗)d = d2

2 > 0}
while x∗ is not a local solution.

4.12 Applications: Eigenvalue Decomposition and S-Lemma

In this section, we discuss two important applications of optimality conditions.

Example 4.2. Consider optimization problem

Opt = min
x∈Rn

{
f (x) = xT Ax : h(x) = 1− xT x = 0

}
(P)

where A = AT is an n× n matrix. The problem clearly is solvable. Let x∗ be its
optimal solution.

What can we say about x∗? We first observe that x∗ is a regular solution. Indeed,
we should prove that the gradients of active at x∗ constraints are linearly independent.
There is only one constraint, and its gradient at the feasible set is nonzero.

Since x∗ is a regular globally (and therefore locally) optimal solution, at x∗ the
second-order necessary optimality condition should hold: ∃µ∗:

∇x

L(x;µ∗)︷ ︸︸ ︷[
xT Ax+µ

∗(1− xT x)
]
= 0⇔ 2(A−µ∗I)x∗ = 0

dT
∇xh(x∗) = 0︸ ︷︷ ︸
⇔dT x∗=0

⇒ dT
∇

2
xL(x∗; µ

∗)d ≥ 0︸ ︷︷ ︸
⇔dT (A−µ∗I)d≥0

Therefore, if x∗ is optimal, then ∃µ∗:

Ax∗ = µ∗x∗ (A)
dT x∗ = 0⇒ dT (A−µ∗I)d ≥ 0 (B)

• (A) says that x∗ ̸= 0 is an eigenvector of A with eigenvalue µ∗; in particular, we
see that a symmetric matrix always has a real eigenvector

• (B) along with (A) says that yT (A−µ∗I)y≥ 0 for all y. Indeed, every y ∈ Rn can
be represented as y = tx∗+d with dT x∗ = 0. We now have

yT [A−µ∗I]y = (tx∗+d)T [A−µ∗I](tx∗+d)
= t2xT

∗ [A−µ
∗I]x∗︸ ︷︷ ︸

=0

+2tdT dT [A−µ
∗I]x∗︸ ︷︷ ︸

=0
+dT [A−µ

∗I]d︸ ︷︷ ︸
≥0

≥ 0
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Observe that in the case in question, the second-order necessary optimality conditions
can be rewritten equivalently as ∃µ∗:

[A−µ∗I]x∗ = 0
yT [A−µ∗I]y≥ 0∀y. (∗)

In fact, these conditions are not only necessary, but also sufficient for feasible
solution x∗ to be globally optimal. To prove sufficiency, let x∗ be feasible, and µ∗ be
such that (∗) holds true. For every feasible solution x, one has

0≤ xT [A−µ
∗I]x = xT Ax−µ

∗xT x = xT Ax−µ
∗,

whence xT Ax≥ µ∗. For x = x∗, we have

0 = xT
∗ [A−µ

∗I]x∗ = xT
∗ Ax∗−µ

∗xT
∗ x∗ = xT

∗ Ax∗−µ
∗,

whence xT
∗ Ax∗ = µ∗. Thus, x∗ is globally optimal for (P), and µ∗ is the optimal value

in (P).

Example 4.3. Extension: S-Lemma. Let A,B be symmetric matrices, and let B be
such that

∃x̄ : x̄T Bx̄ > 0. (∗)
Then the inequality

xT Ax≥ 0 (A)

is a consequence of the inequality

xT Bx≥ 0 (B)

if and only if (A) is a “linear consequence” of (B): there exists λ ≥ 0 such that

xT [A−λB]x≥ 0∀x (C)

that is, (A) is a weighted sum of (B) (weight λ ≥ 0) and identically true inequality
(C).

We provide a sketch of the proof of this important result. Note that the only
nontrivial statement is that “If (A) is a consequence of (B), then t e exists λ ≥ 0 such
that ...”. To prove this statement, assume that (A) is a consequence of (B), i.e.,

∃x̄ : x̄T Bx̄ > 0; xT Bx≥ 0︸ ︷︷ ︸
(B)

⇒ xT Ax≥ 0︸ ︷︷ ︸
(A)

Consider optimization problem

Opt = min
x

{
xT Ax : h(x)≡ 1− xT Bx = 0

}
.

This problem is feasible by (∗), and Opt ≥ 0. Assume that an optimal solution x∗
exists. Then, same as above, x∗ is regular, and at x∗ the Second Order Necessary
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condition holds true: ∃µ∗:

∇x
∣∣
x=x∗

[
xT Ax+µ∗[1− xT Bx]

]
= 0⇔ [A−µ∗B]x∗ = 0

dT
∇x
∣∣
x=x∗

h(x) = 0︸ ︷︷ ︸
⇔dT Bx∗=0

⇒ dT [A−µ∗B]d ≥ 0

We have 0 = xT
∗ [A−µ∗B]x∗, that is, µ∗ = Opt ≥ 0. Representing y∈Rn as tx∗+d

with dT Bx∗ = 0 (that is, t = xT
∗ By), we get

yT [A−µ∗B]y = t2xT
∗ [A−µ

∗B]x∗︸ ︷︷ ︸
=0

+2tdT [A−µ
∗B]x∗︸ ︷︷ ︸

=0

+dT [A−µ
∗B]d︸ ︷︷ ︸

≥0

≥ 0,

Thus, µ∗ ≥ 0 and yT [A−µ∗B]y≥ 0 for all y,

4.13 Exercises

1. Consider the optimization problem

minimize f0 (x1,x2)
subject to 2x1 + x2 ≥ 1

x1 +3x2 ≥ 1
x1 ≥ 0, x2 ≥ 0.

Make a sketch of the feasible set. For each of the following objective functions,
give the optimal set and the optimal value.

(a) f0 (x1,x2) = x1 + x2.
(b) f0 (x1,x2) =−x1− x2.
(c) f0 (x1,x2) = x1.
(d) f0 (x1,x2) = max{x1,x2}.
(e) f0 (x1,x2) = x2

1 +9x2
2.

2. Prove that x⋆ = (1,1/2,−1) is optimal for the optimization problem

minimize (1/2)xT Px+qT x+ r
subject to −1≤ xi ≤ 1, i = 1,2,3,

where

P =

 13 12 −2
12 17 6
−2 6 12

 , q =

−22.0
−14.5

13.0

 , r = 1.



102 4 Duality and Optimality Conditions

3. A simple example. Consider the optimization problem

minimize x2 +1
subject to (x−2)(x−4)≤ 0

with variable x ∈ R.

(a) Analysis of primal problem. Give the feasible set, the optimal value, and the
optimal solution.

(b) Lagrangian and dual function. Plot the objective x2+1 versus x. On the same
plot, show the feasible set, optimal point and value, and plot the Lagrangian
L(x,λ ) versus x for a few positive values of λ . Verify the lower bound
property (p⋆ ≥ infx L(x,λ ) for λ ≥ 0 ). Derive and sketch the Lagrange dual
function g.

(c) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution
λ ⋆. Does strong duality hold?

(d) Sensitivity analysis. Let p⋆(u) denote the optimal value of the problem

minimize x2 +1
subject to (x−2)(x−4)≤ u,

as a function of the parameter u. Plot p⋆(u). Verify that d p⋆(0)/du =−λ ⋆.

4. Weak duality for unbounded and infeasible problems. The weak duality inequal-
ity, d⋆ ≤ p⋆, clearly holds when d⋆ =−∞ or p⋆ = ∞. Show that it holds in the
other two cases as well: If p⋆ =−∞, then we must have d⋆ =−∞, and also, if
d⋆ = ∞, then we must have p⋆ = ∞.

5. Problems with one inequality constraint. Express the dual problem of

minimize cT x
subject to f (x)≤ 0

with c ̸= 0, in terms of the conjugate f ∗. Explain why the problem you give is
convex. We do not assume f is convex.

6. Interpretation of LP dual via relaxed problems. Consider the inequality form LP

minimize cT x
subject to Ax⪯ b

with A ∈ Rm×n,b ∈ Rm. In this exercise we develop a simple geometric interpre-
tation of the dual LP (5.22).
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Let w ∈ Rm
+. If x is feasible for the LP, i.e., satisfies Ax⪯ b, then it also satisfies

the inequality
wT Ax≤ wT b.

Geometrically, for any w⪰ 0, the halfspace Hw =
{

x | wT Ax≤ wT b
}

contains
the feasible set for the LP. Therefore if we minimize the objective cT x over the
halfspace Hw we get a lower bound on p⋆.

(a) Derive an expression for the minimum value of cT x over the halfspace Hw
(which will depend on the choice of w⪰ 0).

(b) Formulate the problem of finding the best such bound, by maximizing the
lower bound over w⪰ 0.

(c) Relate the results of (a) and (b) to the Lagrange dual of the LP.

7. Dual of general LP. Find the dual function of the LP

minimize cT x
subject to Gx⪯ h

Ax = b.

Give the dual problem, and make the implicit equality constraints explicit.

8. Piecewise-linear minimization. We consider the convex piecewise-linear mini-
mization problem

minimize max
i=1,··· ,m

(
aT

i x+bi
)

(1)

with variable x ∈ Rn.

(a) Derive a dual problem, based on the Lagrange dual of the equivalent problem

minimize maxi=1,··· ,m yi
subject to aT

i x+bi = yi, i = 1, · · · ,m,

with variables x ∈ Rn,y ∈ Rm.
(b) Formulate the piecewise-linear minimization problem (1) as an LP, and form

the dual of the LP. Relate the LP dual to the dual obtained in part (a).
(c) Suppose we approximate the objective function in (1) by the smooth function

f0(x) = log

(
m

∑
i=1

exp
(
aT

i x+bi
))

,

and solve the unconstrained geometric program

minimize log

(
m

∑
i=1

exp
(
aT

i x+bi
))

. (2)
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A dual of this problem is given by (2). Let p⋆pw1 and p⋆gp be the optimal
values of (1) and (2), respectively. Show that

0≤ p⋆gp− p⋆pwl ≤ logm

(d) Derive similar bounds for the difference between p⋆pwl and the optimal value
of

minimize(1/γ) log

(
m

∑
i=1

exp
(
γ
(
aT

i x+bi
)))

where γ > 0 is a parameter. What happens as we increase γ ?

9. Derive a dual problem for

minimize
N

∑
i=1
∥Aix+bi∥2 +(1/2)∥x− x0∥2

2 .

The problem data are Ai ∈ Rmi×n,bi ∈ Rmi , and x0 ∈ Rn. First introduce new
variables yi ∈ Rmi and equality constraints yi = Aix+bi.

10. Analytic centering. Derive a dual problem for

minimize −
m

∑
i=1

log
(
bi−aT

i x
)

with domain
{

x | aT
i x < bi, i = 1, · · · ,m

}
. First introduce new variables yi and

equality constraints yi = bi−aT
i x.

11. A penalty method for equality constraints. We consider the problem

minimize f0(x) (1)
subject to Ax = b

where f0 : Rn→ R is convex and differentiable, and A ∈ Rm×n with rankA = m.
In a quadratic penalty method, we form an auxiliary function

φ(x) = f (x)+α∥Ax−b∥2
2,

where α > 0 is a parameter. This auxiliary function consists of the objective
plus the penalty term α∥Ax−b∥2

2. The idea is that a minimizer of the auxiliary
function, x̃, should be an approximate solution of the original problem. Intuition
suggests that the larger the penalty weight α , the better the approximation x̃ to a
solution of the original problem. Suppose x̃ is a minimizer of φ . Show how to
find, from x̃, a dual feasible point for (1). Find the corresponding lower bound
on the optimal value of (1).
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12. Consider the problem

minimize f0(x) (1)
subject to fi(x)≤ 0, i = 1, · · · ,m,

where the functions fi : Rn→ R are differentiable and convex. Let h1, · · · ,hm :
R→ R be increasing differentiable convex functions. Show that

φ(x) = f0(x)+
m

∑
i=1

hi ( fi(x))

is convex. Suppose x̃ minimizes φ . Show how to find from x̃ a feasible point for
the dual of (1). Find the corresponding lower bound on the optimal value of (1).

13. A convex problem in which strong duality fails. Consider the optimization
problem

minimize e−x

subject to x2/y≤ 0

with variables x and y, and domain D = {(x,y) | y > 0}.
(a) Verify that this is a convex optimization problem. Find the optimal value.
(b) Give the Lagrange dual problem, and find the optimal solution λ ⋆ and

optimal value d⋆ of the dual problem. What is the optimal duality gap?
(c) Does Slater’s condition hold for this problem?
(d) What is the optimal value p⋆(u) of the perturbed problem

minimize e−x

subject to x2/y≤ u

as a function of u ? Verify that the global sensitivity inequality

p⋆(u)≥ p⋆(0)−λ
⋆u

does not hold.

14. Convex-concave functions and the saddle-point property. We derive conditions
under which the saddle-point property

sup
z∈Z

inf
w∈W

f (w,z) = inf
w∈W

sup
z∈Z

f (w,z) (1)

holds, where f : Rn×Rm→ R,W ×Z ⊆ dom f , and W and Z are nonempty. We
will assume that the function

gz(w) =

{
f (w,z) w ∈W
∞ otherwise
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is closed and convex for all z ∈ Z, and the function

hw(z) =

{
− f (w,z) z ∈ Z
∞ otherwise

is closed and convex for all w ∈W .

(a) The righthand side of (1) can be expressed as p(0), where

p(u) = inf
w∈W

sup
z∈Z

(
f (w,z)+uT z

)
.

Show that p is a convex function.
(b) Show that the conjugate of p is given by

p∗(v) =

{
− infw∈W f (w,v) v ∈ Z
∞ otherwise.

(c) Show that the conjugate of p∗ is given by

p∗∗(u) = sup
z∈Z

inf
w∈W

(
f (w,z)+uT z

)
.

Combining this with (a), we can express the max-min equality (1) as
p∗∗(0) = p(0)

(d) We know that p∗∗(0) = p(0) if 0 ∈ int domp. Conclude that this is the case
if W and Z are bounded.

(e) As another consequence of exercises 3.28 and 3.39, we have p∗∗(0) = p(0)
if 0 ∈ dom p and p is closed. Show that p is closed if the sublevel sets of gz
are bounded.

15. Consider the QCQP

minimize x2
1 + x2

2
subject to (x1−1)2 +(x2−1)2 ≤ 1

(x1−1)2 +(x2 +1)2 ≤ 1

with variable x ∈ R2.

(a) Sketch the feasible set and level sets of the objective. Find the optimal point
x⋆ and optimal value p⋆.

(b) Give the KKT conditions. Do there exist Lagrange multipliers λ ⋆
1 and λ ⋆

2
that prove that x⋆ is optimal?

(c) Derive and solve the Lagrange dual problem. Does strong duality hold?

16. Find the minimizer of a linear function
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f (x) = cT x

on the set

Vp =

{
x ∈ Rn :

n

∑
i=1
|xi|p ≤ 1

}
;

here p,1 < p < ∞, is a parameter. What happens with the solution when the
parameter becomes 0.5 ?

17. Let a1, · · · ,an > 0,α,β > 0. Solve the optimization problem

min
x

{
n

∑
i=1

ai

xα
i

: x > 0,∑
i

xβ

i ≤ 1

}

18. Consider the optimization problem

max
x,t

{
ξ

T x+ τt + ln
(
t2− xT x

)
: (t,x) ∈ X =

{
t >
√

xT x
}}

where ξ ∈ Rn,τ ∈ R are parameters. Is the problem convex 5) ? What is the
domain in space of parameters where the problem is solvable? What is the
optimal value? Is it convex in the parameters?

19. Consider the optimization problem

max
x,y
{ f (x,y) = ax+by+ ln(lny− x)+ ln(y) : (x,y) ∈ X = {y > exp{x}}},

where a,b ∈ R are parameters. Is the problem convex? What is the domain in
space of parameters where the problem is solvable? What is the optimal value?
Is it convex in the parameters?

20. Consider the problem of minimizing the linear form

f (x) = x2 +0.1x1

on the 2D plane over the triangle with the vertices (1,0),(0,1),(0,1/2) (draw
the picture!).
1) Verify that the problem has unique optimal solution x∗ = (1,0) Solution: clear
from the picture, or from computing the values of the objective at the 3 vertices
of the triangle (a linear function on a polytope attains its extrema at vertices).
2) Verify that the problem can be posed as the LP program
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min
x
{x2 +0.1x1 : x1 + x2 ≤ 1,x1 +2x2 ≥ 1,x1,x2 ≥ 0} .

21. Consider the following elementary problem:

min
x

{
f (x1,x2) = x2

1− x2 : h(x)≡ x2 = 0
}

with the evident unique optimal solution (0,0). Is the KKT condition satisfied at
this solution? Solution: x∗ = (0,0) is regular and locally optimal, the data are
smooth, so that the KKT is satisfied at x∗.
Rewrite the problem equivalently as

min
x

{
f (x1,x2) = x2

1− x2 : h(x)≡ x2
2 = 0

}
.

What about the KKT condition in this equivalent problem?

22. Consider an inequality constrained optimization problem

min
x
{ f (x) : gi(x)≤ 0, i = 1, · · · ,m} .

Assume that x∗ is locally optimal solution, f ,gi are continuously differentiable in
a neighbourhood of x∗ and the constraints gi are concave in this neighbourhood.
Prove that x∗ is locally optimal solution to the linearized problem

min
x

{
f (x∗)+(x− x∗)

T
∇ f (x∗) : (x− x∗)

T
∇g j (x∗) = 0, j ∈ J (x∗) =

{
j : g j (x∗) = 0

}}
.

Is x∗ a KKT point of the problem?

23. Let a1, · · · ,an be positive reals, and let 0 < s < r be two reals. Find maximum
and minimum of the function

n

∑
i=1

ai |xi|r

on the surface
n

∑
i=1
|xi|s = 1

24. Recall S-Lemma: If A,B are two symmetric n×n matrices such that

x̄T Bx̄ > 0

for certain x̄, then the implication

xT Bx≥ 0⇒ xT Ax≥ 0 (*)
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holds true iff there exists λ ≥ 0 such that A−λB⪰ 0
(P⪰ 0 means that P is symmetric positive semidefinite: P = PT and xT Px≥ 0
for all x ∈ Rn) The proof given in Lecture on optimality conditions (see Trans-
parencies) was incomplete - it was taken for granted that certain optimization
problem has an optimal solution. Fill the gap in the proof or find an alternative
proof.
Fact: Let A = AT be a symmetric n×n matrix, and let B,C be m×n matrices,
C ̸= 0. Then all matrices

A+BT
∆C+CT

∆
T B

corresponding to m×m matrices ∆ with ∥∆∥ ≤ 16) are positive semidefinite iff
there exists λ ≥ 0 such that the matrix[

A−λCTC −BT

−B λ Im

]
is positive semidefinite.

25. An Example of Lagrangian Duality
Consider the problem

minimize f (x) (1)
subject to x ∈ X , e′ix = di, i = 1, · · · ,m,

where f : ℜn 7→ℜ is a convex function, X is a nonempty convex set, and ei and
di are given vectors and scalars, respectively. Consider the min common/max
crossing framework where M is the subset of ℜm+1 given by

M =
{(

e′1x−d1, · · · ,e′mx−dm, f (x)
)
| x ∈ X

}
and assume that w∗ < ∞.

(a) Show that w∗ is equal to the optimal value of problem (1), and that the max
crossing problem is to maximize q(µ) given by

q(µ) = inf
x∈X

{
f (x)+

m

∑
i=1

µi
(
e′ix−di

)}

(b) Show that the corresponding set M̄ is convex.
(c) Show that if X is compact, then q∗ = w∗.
(d) Show that if there exists a vector x̄ ∈ ri(X) such that e′ix̄ = di for all i =

1, · · · ,m, then q∗ =w∗ and the max crossing problem has an optimal solution.

26. Lagrangian Duality and Compactness of the Constraint Set
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Consider the problem of Exercise 25, but assume that f is linear and X is compact
(instead of f and X being convex). Show that q∗ is equal to the minimal value of
f (x) subject to x ∈ conv(X) and e′ix = di, i = 1, · · · ,m. Hint: Show that

conv(M) =
{(

e′1x−d1, · · · ,e′mx−dm, f (x)
)
| x ∈ conv(X)

}
and use Exercise 25(c)

27. Monotone transformation of the objective. Consider the optimization problem

minimize f0(x) (1)
subject to fi(x)≤ 0, i = 1, · · · ,m.

where fi : Rn→R for i= 0,1, · · · ,m are convex. Suppose φ : R→R is increasing
and convex. Then the problem

minimize f̃0(x) = φ ( f0(x)) (2)
subject to fi(x)≤ 0, i = 1, · · · ,m

is convex and equivalent to it; in fact, it has the same optimal set as (1).
In this problem we explore the connections between the duals of the two problems
(1) and (2). We assume fi are differentiable, and to make things specific, we take
φ(a) = expa.

a. Suppose λ is feasible for the dual of (1), and x̄ minimizes

f0(x)+
m

∑
i=1

λi fi(x).

Show that x̄ also minimizes

exp f0(x)+
m

∑
i=1

λ̃i fi(x)

for appropriate choice of λ̃ . Thus, λ̃ is dual feasible for (2).
b. Let p⋆ denote the optimal value of (1) (so the optimal value of (2) is expp⋆

). From λ we obtain the bound

p⋆ ≥ g(λ ),

where g is the dual function for (1). From λ̃ we obtain the bound expp⋆ ≥
g̃(λ̃ ), where g̃ is the dual function for (2). This can be expressed as

p⋆ ≥ log g̃(λ̃ ).

How do these bounds compare? Are they the same, or is one better than the
other?



Chapter 5
Optimization Methods

5.1 Introduction

Our goal is to find approximate numerically solutions to Mathematical Programming
(MP) problems

min
x

{
f (x) :

g j(x)≤ 0, j = 1, ...,m
hi(x) = 0, i = 1, ...,k

}
(5.1.1)

Most MP algorithms to be considered in the Chapter do not assume the analytic
structure of (5.1.1) to be known in advance (and do not know how to use the structure
when it is known). These algorithms are black-box-oriented: when solving (5.1.1),
method generates a sequence of iterates x1, x2,... in such a way that xt+1 depends
solely on local information of (5.1.1) gathered along the preceding iterates x1, ...,xt .
Information on (5.1.1) obtained at xt usually is comprised of the values and the first
and the second derivatives of the objective and the constraints at xt .

In some cases, local information, available to black-box-oriented algorithms, is
really poor, so that approximating global solution to the problem becomes seeking
needle in multidimensional haystack. Let us look at a 3D haystack with 2 m edges,
and let a needle be a cylinder of height 20 mm and radius of cross-section 1 mm (see
Figure 5.1).

So how difficult it is to find the needle in the haystack? In the optimization setting:
We want to minimize a smooth function f which is zero “outside of the needle” and
negative inside it. When only local information on the function is available, we get
trivial information unless the sequence of iterates we are generating hits the needle.
As a result, it is easy to show that the number of iterations needed to hit the needle
with a reasonable confidence cannot be much smaller than when generating the
iterates at random. In this case, the probability for an iterate to hit a needle is as small
as 7.8×10−9, that is, to find the needle with a reasonable confidence, we need to
generate hundreds of millions of iterates. Moreover, as the dimension of the problem
grows, the indicated difficulties are dramatically amplified. For example, preserving
the linear sizes of the haystack and the needle and increasing the dimension of the

111
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Fig. 5.1: Haystack and the needle

haystack from 3 to 20, the probability for an iterate to hit the needle becomes as
small as 8.9×10−67 !

In the “needle in the haystack” problem it is easy to find a locally optimal solution.
However, slightly modifying the problem, we can make the latter task disastrously
difficult as well. In unconstrained minimization, it is not too difficult to find a point
where the gradient of the objective becomes small, i.e., where the first-order necessary
optimality condition is “nearly” satisfied. On the other hand, in constrained minimiza-
tion, it could be disastrously difficult to find just a feasible solution. However, the
classical algorithms of continuous optimization, while providing no meaningful guar-
antees in the worst case, are capable to process quite efficiently typical optimization
problems arising in applications.

In optimization, there exist algorithms which do exploit problem’s structure and
allow to approximate the global solution in a reasonable time. Traditional methods of
this type – Simplex method and its variations – do not go beyond Linear Programming
and Linearly Constrained Convex Quadratic Programming. In 1990’s, new efficient
ways to exploit problem’s structure were discovered (Interior Point methods). The
resulting algorithms, however, do not go beyond Convex Programming. Except
for very specific and relatively simple problem classes, like Linear Programming
or Linearly Constrained Quadratic Programming, optimization algorithms cannot
guarantee finding exact solution – local or global – in finite time. The best we can
expect from these algorithms is convergence of approximate solutions generated by
algorithms to the exact solutions. Even in the case when “finite” solution methods do
exist (Simplex method in Linear Programming), no reasonable complexity bounds
for these methods are known, therefore in reality the ability of a method to generate
the exact solution in finitely many steps is neither necessary, nor sufficient to justify
the method.

Aside of convex programming, traditional optimization methods are unable to
guarantee convergence to a globally optimal solution. Indeed, in the non-convex
case there is no way to conclude from local information whether a given point
is/is not globally optimal. In order to guarantee approximating global solution, it
seems unavoidable to “scan” a dense set of the values of x in order to be sure that



5.2 Rate of Convergence 113

the globally optimal solution is not missed. Theoretically, such a possibility exists;
however, the complexity of “exhaustive search” methods blows up exponentially
with the dimension of the decision vector, which makes these methods completely
impractical.

Traditional optimization methods do not incorporate exhaustive search and, as a
result, cannot guarantee convergence to a global solution. A typical theoretical result
on a traditional optimization method as applied to a general (not necessary convex)
problem sounds like:

Assume that problem (5.1.1) possesses the following properties:
...
...
Then the sequence of approximate solutions generated by method X is bounded, and all its
limiting points are KKT points of the problem.

or

Assume that x∗ is a nondegenerate local solution to (5.1.1). Then method X, started close
enough to x∗, converges to x∗.

There are two major traditional classifications of MP algorithms. The first one is
to classify algorithms by application fields primarily into

a) algorithms for unconstrained optimization,
b) algorithms for constrained optimization.

The second one is to classify algorithms by information used, primarily into

a) zeroth-order methods which use only the values of the objective and the con-
straints,

b) first-order methods (use both values and first order derivatives),
c) second order methods (use values, first- and second order derivatives).

5.2 Rate of Convergence

There is a necessity to quantify the convergence properties of MP algorithms. Tradi-
tionally, this is done via asymptotical rate of convergence defined as follows.

First, we introduce an appropriate error measure – a nonnegative function
ErrorP(x) of approximate solution and of the problem we are solving which is
zero exactly at the set X∗ of solutions to (5.1.1) we intend to approximate. Below are
a few examples of error measure.

a) Distance to the set X∗:

ErrorP(x) = inf
x∗∈X∗

∥x− x∗∥2

.
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b) Residual in terms of the objective and the constraints

ErrorP(x) = max
[

f (x)−Opt(P),

[g1(x)]+, ..., [gm(x)]+,

|h1(x)|, ..., |hk(x)|
]

Second, assume that we have established convergence of our method, that is,
we know that if x∗t are approximate solutions generated by method as applied to a
problem (5.1.1) from a given family, then

ErrorP(t)≡ ErrorP(x∗t )→ 0, t→ ∞

We then roughly quantify the rate at which the sequence ErrorP(t) of nonnegative
reals converges to 0. Specifically, we say that

a) the method converges sublinearly, if the error goes to zero less rapidly than a
geometric progression, e.g., as 1/t or 1/t2.

b) the method converges linearly, if there exist C < ∞ and q ∈ (0,1) such that

Error(P)(t)≤Cqt .

Here q is called the convergence ratio. E.g.,

ErrorP(t)≍ e−at

exhibits linear convergence with ratio e−a. A sufficient condition for linear con-
vergence with ratio q ∈ (0,1) is that

lim
t→∞

ErrorP(t +1)
ErrorP(t)

< q

c) the method converges superlinearly, if the sequence of errors converges to 0 faster
than every geometric progression:

∀q ∈ (0,1)∃C : ErrorP(t)≤Cqt

For example,
ErrorP(t)≍ e−at2

corresponds to superlinear convergence. A sufficient condition for superlinear
convergence is

lim
t→∞

ErrorP(t +1)
ErrorP(t)

= 0.

d) the method exhibits convergence of order p > 1, if

∃C : ErrorP(t +1)≤C (ErrorP(t))
p
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Convergence of order 2 is called quadratic. For example,

ErrorP(t) = e−apt

converges to 0 with order p.

We can provide informal explanation for the above convergence rates. When
the method converges, ErrorP(t) goes to 0 as t→ ∞, that is, eventually the decimal
representation of ErrorP(t) has zero before the decimal dot and more and more zeros
after the dot; the number of zeros following the decimal dot is called the number of
accuracy digits in the corresponding approximate solution. Traditional classification
of rates of convergence is based on how many steps, asymptotically, is required to
add a new accuracy digit to the existing ones.

a) With sublinear convergence, the “price” of accuracy digit grows with the position
of the digit. For example, with rate of convergence O(1/t) every new accuracy
digit is 10 times more expensive, in terms of # of steps, than its predecessor.

b) With linear convergence, every accuracy digit has the same price, proportional to
ln−1 (1/convergence ratio). Equivalently: every step of the method adds a fixed
number r of accuracy digits (for q not too close to 0, r ≈ 1−q).

c) With superlinear convergence, every subsequent accuracy digit eventually be-
comes cheaper than its predecessor – the price of accuracy digit goes to 0 as the
position of the digit grows. Equivalently, every additional step adds more and
more accuracy digits.

d) With convergence of order p > 1, the price of accuracy digit not only goes to 0 as
the position k of the digit grows, but does it rapidly enough – in a geometric pro-
gression. Equivalently, eventually every additional step of the method multiplies
by p the number of accuracy digits.

With the traditional approach, the convergence properties of a method are the
better the higher is the “rank” of the method in the above classification. Given a
family of problems, traditionally it is thought that linearly converging on every
problem of the family method is faster than a sublinearly converging, superlinearly
converging method is faster than a linearly converging one, etc.

Observe that usually we are able to prove existence of parameters C and q quanti-
fying linear convergence:

ErrorP(t)≤Cqt

or convergence of order p > 1:

ErrorP(t +1)≤C(ErrorP(t))p,

but are unable to find numerical values of these parameters – they may depend on
“unobservable” characteristics of a particular problem we are solving. As a result,
traditional “quantification” of convergence properties is qualitative and asymptotical.

We have seen that as applied to general MP programs, optimization methods have
a number of severe theoretical limitations, including the following major ones:
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a) Unless exhaustive search (completely unrealistic in high-dimensional optimiza-
tion) is used, there are no guarantees of approaching global solution.

c) Quantification of convergence properties is of asymptotical and qualitative charac-
ter. As a result, the most natural questions like:

We should solve problems of such and such structure with such and such sizes and the
data varying in such and such ranges. How many steps of method X are sufficient to
solve problems within such and such accuracy?

usually do not admit theoretically valid answers. This latter question is called
complexity analysis in modern terms.

In spite of their theoretical limitations, in reality traditional MP algorithms allow
to solve many, if not all, MP problems of real-world origin, including those with many
thousands variables and constraints. Moreover, there exists a “solvable case” when
practical efficiency admits solid theoretical guarantees – the complexity analysis of
convex programming. More recently, the complexity analysis has been generalized
to finding stationary points for nonconvex optimization.

5.3 Gradient Descent Method

Smooth Functions

We first introduce some notation for differentiable functions. Let Q ⊆ Rn. We say
f ∈ Ck(Q) if f : Q ∈ R is k times continuously differentiable and f ∈ Ck,p

L (Q) if
f : Q ∈ R is k times continuously differentiable on Q and its pth derivative satisfies

∥ f (p)(x)− f (p)(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Q.

The most important class is C1,1
L (Rn) and for f ∈C1,1

L (Rn), we have

∥ f ′(x)− f ′(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn.

Some examples are given by (a) f (x) = a0 + ⟨a,x⟩, (b) f (x) = a0 + ⟨a,x⟩+ 1
2 ⟨Ax,x⟩,

and (c) f (x) =
√

1+ x2.
Below are some important properties of C1,1

L (Rn).

Lemma 5.1. Let f ∈C2(Rn). f ∈C(1,1)
L iff ∥ f ′′(x)∥ ≤ L, ∀x ∈ Rn.

Proof. For any x,y ∈ Rn, we have f ′(y) = f ′(x)+
∫ 1

0 f ′′(x+ τ(y− x))(y− x)dτ .
Therefore,

∥ f ′(y)− f ′(x)∥= ∥∫ 1
0 f ′′(x+ τ(y− x))(y− x)dτ∥

≤ ∥∫ 1
0 f ′′(x+ τ(y− x))dτ∥∥y− x∥

≤ ∫ 1
0 ∥ f ′′(x+ τ(y− x))∥dτ∥y− x∥ ≤ L∥y− x∥.
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On the other hand, if ∥ f ′(y)− f ′(x)∥ ≤ L∥y− x∥,∀x,y ∈ Rn,

∥
(∫

α

0 f ′′(x+ τs)dτ
)

s∥= ∥ f ′(x+αs)− f ′(x)∥ ≤ aL∥s∥.

Dividing both sides by α and tending α → 0, we have ∥ f ′′(x)∥ ≤ L.

Lemma 5.2. Let f ∈ C1,1
L (Rn). Then ∀x,y ∈ Rn, | f (y)− f (x)− ⟨ f ′(x),y− x⟩| ≤

L
2∥y− x∥2.

Proof. For any x,y ∈ Rn, we have

f (y) = f (x)+
∫ 1

0 ⟨ f ′(x+ τ(y− x),y− x⟩dτ

= f (x)+ ⟨ f ′(x),y− x⟩+ ∫ 1
0 ⟨ f ′(x+ τ(y− x))− f ′(x),y− x⟩dτ.

Hence,
| f (y)− f (x)−⟨ f ′(x),y− x⟩|
≤ |∫ 1

0 ⟨ f ′(x+ τ(y− x))− f ′(x),y− x⟩dτ|
≤ ∫ 1

0 |⟨ f ′(x+ τ(y− x))− f ′(x),y− x⟩|dτ

≤ ∫ 1
0 Lτ∥y− x∥2 = L

2∥y− x∥2.

Similarly, we have the following results.

Lemma 5.3. Let f ∈C2,2
L (Rn).

∥ f ′(y)− f ′(x)− f ′′(x)(y− x)∥ ≤ L
2∥y− x∥2

| f (y)− f (x)−⟨ f ′(x),y− x⟩− 1
2 ⟨ f ′′(x)(y− x),y− x⟩| ≤ L

6∥y− x∥3.

Proof. Indeed,

∥ f ′(y)− f ′(x)− f ′′(x)(y− x)∥= ∥
∫ 1

0
[ f ′′(x+ τ(y− x))− f ′′(x)](y− x)dτ∥

≤ L∥y− x∥2
∫ 1

0
τdτ = 1

2 L∥y− x∥2.

Therefore,

| f (y)− f (x)−⟨ f ′(x),y− x⟩− 1
2 ⟨ f ′′(x)(y− x),y− x⟩|

= |
∫ 1

0
⟨ f ′(x+λ (y− x))− f ′(x)−λ f ′′(x)(y− x),y− x⟩dλ |

≤ 1
2 L∥y− x∥3

∫ 1

0
λ

2dλ = L
6∥y− x∥3.

Corollary 5.1. Let f ∈ C2,2
M (Rn) and ∥y− x∥ = r. Then f ′′(x)−MrIn ⪯ f ′′(y) ⪯

f ′′(x)+MrIn, where In is the identity matrix.

Proof. Denote G = f ′′(y)− f ′′(x). Since f ∈C2,2
M (Rn), ∥G∥ ≤Mr, i.e., |λi(G)| ≤

Mr, i = 1, . . . ,n. Hence −MrIn ⪯ G⪯MrIn.
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Gradient Descent for Nonconvex Problems

In this section, our goal is to find an approximate solution to

min
x∈Rn

f (x), (5.3.1)

where f ∈ C1,1
L (Rn). First observe that the direction − f ′(x̄) (antigradient) is the

direction of the fastest local decrease of f at point x̄. Indeed, let s ∈ Rn and ∥s∥= 1.
Consider the local decrease of f (x) along s:

∆(s) = limα→0
1
α
[ f (x̄+αs)− f (x̄)] = ⟨ f ′(x̄),s⟩.

We have ⟨ f ′(x̄),s⟩ ≥ −∥ f ′(x̄)∥∥s∥ = −∥ f ′(x̄)∥ and the equality holds when s =
− f ′(x̄)/∥ f ′(x)∥. In view of this discussion, we can define the gradient descent
method as follows.

Gradient Descent (GD): Choose x0 ∈ Rn and set

xk+1 = xk−hk f ′(xk),k = 0,1, . . . .

The key issue in GD is how to choose stepsize hk. There exist a few different ways
to specify this algorithmic parameter.

a) Constant: hk = h > 0,k = 0,1.
b) Full relaxation: hk = argminh≥0 f (xk−h f ′(xk)).
c) Armijo Rule: Choose hk s.t.

α⟨ f ′(xk),xk− xk+1⟩ ≤ f (xk)− f (xk+1)
β ⟨ f ′(xk),xk− xk+1⟩ ≥ f (xk)− f (xk+1),

where 0 < α < β < 1 are some fixed parameters.

Theorem 5.1. For any one of the stepsize policy, each iteration of the GD method
satisfies

f (xk+1)≤ f (xk)− w
2 ∥ f ′(xk)∥2, (5.3.2)

for some w > 0. As a consequence, we have limk→+∞ ∥ f ′(xk)∥→ 0 and

min
0≤k≤N

∥ f ′(xk)∥ ≤ 1√
N+1

[ L
w ( f (x0)− f ∗)

]1/2
. (5.3.3)

Proof. Let y = x−h f ′(x).

f (y)≤ f (x)+ ⟨ f ′(x),y− x⟩+ L
2∥y− x∥2

≤ f (x)−h∥ f ′(x)∥2 + Lh2

2 ∥ f ′(x)∥2

≤ f (x)−h(1− Lh
2 )∥ f ′(x)∥2.

We can now consider the following cases.
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a) Constant stepsize. xk+1 = xk−h f ′(xk),

f (xk+1)≤ f (xk)−h(1− Lh
2 )∥ f ′(xk)∥2.

Need h < 2/L to guarantee the descreasing of f . Let h = 2α/L, α ∈ (0,1),

f (xk+1)≤ f (xk)− 2
L α(1−α)∥ f ′(xk)∥2.

The optimal choices: α = 1
2 , hk =

1
L .

b) Full relaxation. hk = argminh≥0 f (xk−h f ′(xk)). We must have

f (xk+1)≤ f (xk)− 1
2L∥ f ′(xk)∥2. (Why?)

c) Armijo rule.

f (xk)+β ⟨ f ′(xk),xk+1− xk⟩ ≤ f (xk+1)≤ f (xk)+α⟨ f ′(xk),xk+1− xk⟩

Or equivalently,

f (xk)−βhk∥ f ′(xk)∥2 ≤ f (xk+1)≤ f (xk)−αhk∥ f ′(xk)∥2

In view of f (xk+1)≤ f (xk)−hk(1− hk
2 L)∥ f ′(xk)∥2, we have −βhk ≤−hk(1− hk

2 L)
and thus hk ≥ 2

L (1−β ). Moreover,

f (xk+1)≤ f (xk)−αhk∥ f ′(xk)∥2 ≤ f (xk)− 2
L α(1−β )∥ f ′(xk)∥2.

Therefore, we show that (5.3.2) holds for all these stepsize policies. Summing up
(5.3.2) for k = 0,1, . . . ,N,

f (xN+1)≤ f (x0)− w
L ∑

N
k=0 ∥ f ′(xk)∥2.

Since f (xN+1 ≥ f ∗,

w
L ∑

N
k=0 ∥ f ′(xk)∥2 ≤ f (x0)− f (xN+1)≤ f (x0)− f ∗,

from which the results immediately follow.

In view of Theorem 5.1, for solving the problem minx f (x) with f ∈C1,1
L (Rn) and

bounded below. Using the first-order black box oracle and the termination criterion
∥ f ′(x̄)∥ ≤ ε , the number of iterations (or iteration complexity) of the GD method
can be bounded by O( L

wε2 ( f (x0)− f ∗).

Example 5.1. This example shows that GD converges to a stationary point instead
of a local minimum. Let f (x) = 1

2 (x1)
2 + 1

4 (x2)
4− 1

2 (x2)
2. One can easily see that

f ′(x) = (x1;x3
2−x2) and f ′′(x) = Diag(1,3x2

2−1). Hence (0,0) is a stationary point,
and (0,−1),(0,1) are local minimum. Starting from (1,0), any point along the
trajectory will have x2 = 0. Hence the sequence must converge to a stationary point.
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In the sequel, we study the local convergence behavior of GD. To this end, we
make the following assumptions: (a) f ∈C2,2

M (Rn), (b) ∃ nondegernate local minimum
x∗ ( f ′′(x∗)≻ 0), and (c) ∃0 < l ≤ L < ∞: lIn ⪯ f ′′(x∗)⪯ LIn. Moreover, we assume
that x0 close enough to x∗. We first state a simple technical result.

Lemma 5.4. If pk+1 ≤ (1−q)pk + p2
k , then q

pk+1
−1≥ (1+q)( q

pk
−1).

Proof. Noting that

pk+1 ≤ (1−q)pk + p2
k = pk[1+(pk−q)] = pk[1−(pk−q)2]

1−(pk−q) ≤ pk
1+q−pk

,

we have 1
pk+1
≥ 1+q

pk
−1 or q

pk+1
−1≥ q(1+q)

pk
−q−1 = (1+q)( q

pk
−1).

We now establish the locally linear rate of convergence for GD.

Theorem 5.2. Let x0 be close enough to a local minimum, i.e., r0 = ∥x0− x∗∥< r̄ =
2l
M . Then the GD method satisfies

∥xk− x∗∥ ≤ 2lr0
M(r̄−r0)

( 1
1+q )

k,

where q = 2l/(L+ l).

Proof. Denote Gk =
∫ 1

0 f ′′(x∗+τ(xk−x∗))dτ . We have f ′(xk) = f ′(xk)− f ′(x∗) =
Gk(xk− x∗). Hence,

xk+1− x∗ = xk− x∗−hkGk(xk− x∗) = (I−hkGk)(xk− x∗),

which implies that ∥xk+1− x∗∥ ≤ ∥I− hkGk∥∥xk− x∗∥. We intend to bound ∥I−
hkGk∥ Denote rk = ∥xk− x∗∥. It follows from Corollary 5.1 that

f ′′(x∗)− τMrkIn ⪯ f ′′(x∗+ τ(xk− x∗))⪯ f ′′(x∗)+ τMrkIn,

implying that (l− rk
2 M)In ⪯ Gk ⪯ (L+ rk

2 M)In and hence that

(1−hk(L+ rk
2 M))In ⪯ In−hkGk ⪯ (1−hk(l− rk

2 M))In.

Therefore, we obtain ∥In−hkGk∥ ≤max{ak(hk),bk(hk)}, with

ak(h) := 1−h(l− rk
2 M),bk(h) := h(L+ rk

2 M)−1.

Observe that if rk ≤ r̄ ≡ 2l
M , we can ensure ∥Ik− hkGk∥ ≤ 1 for small enough hk.

Moreover, an “Optimal” selection of hk is given by

min
h

max{ak(h),bk(h)}.

In particular, setting ak(h) = bk(h), we obtain the optimal selection h∗k =
2

L+l . Hence,
we have
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ak(h∗k) = 1−h∗k(l− rk
2 M) = L−l

L+l +
rkM
L+l .

which, in view of rk+1 ≤ ak(h∗k)rk, implies rk+1 ≤ L−l
L+l rk +

M
L+l r2

k or equivalently,

Mrk+1
L+l ≤ L−l

L+l
Mrk
L+l +(Mrk

L+l )
2.

Applying Lemma 5.4 with pk =
Mrk
L+l and q = 2l

L+l , we have

q
pk
−1≥ (1+q)k( q

p0
−1) = (1+q)k( 2l

Mr0
−1),

which, in view of r̄ = 2l/M, implies that

pk ≤ q

1+(1+q)k(
2l

Mr0
−1)
≤ qr0

r̄−r0
( 1

1+q )
k.

Gradient Descent for Convex Problems

We now consider the case when f ∈ C1,1
L (Rn) is convex, and denote this class

of functions by F 1,1
L (Rn). We also consider a restriction of F 1,1

L (Rn), strongly
convex functions denoted by S 1,1

µ,L(Rn) s.t. ∃µ > 0 s.t. for any x,y ∈ X , f (y) ≥
f (x)+ ⟨ f ′(x),y− x⟩+ 1

2 µ∥y− x∥2.

Lemma 5.5. Let f ∈F 1,1
L (Rn). For any x,y ∈ Rn, we have

(a) f (x)+ ⟨ f ′(x),y− x⟩+ 1
2L∥ f ′(x)− f ′(y)∥2 ≤ f (y).

(b) 1
L∥ f ′(x)− f ′(y)∥2 ≤ ⟨ f ′(x)− f ′(y),x− y⟩.

Proof. Let φ(y) = f (y)−⟨ f ′(x),y⟩ for a given x ∈ Rn. Clearly φ ∈F 1,1
L (Rn),

φ ′(x) = 0, and hence x is a minimizer of φ(y).

φ(x)≤ φ(y− 1
L φ ′(y))

≤ φ(y)+ ⟨φ ′(y),− 1
L φ ′(y)⟩+ L

2∥ 1
L φ ′(y)∥2

= φ(y)− 1
2L∥φ ′(y)∥2.

Therefore, we have f (x)−⟨ f ′(x),x⟩ ≤ f (y)−⟨ f ′(x),y⟩− 1
2L∥ f ′(y)− f ′(x)∥2, imply-

ing that
f (x)+ ⟨ f ′(x),y− x⟩+ 1

2L∥ f ′(y)− f ′(x)∥2 ≤ f (y).

Similarly,
f (y)+ ⟨ f ′(y),x− y⟩+ 1

2L∥ f ′(y)− f ′(x)∥2 ≤ f (x).

Adding up these two inequalities, we obtain the result in (a). (b) follows from (a) by
adding two inequalities with x and y interchanged.
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We analyze the simplest variant of GD with hk = h > 0. Denote by x∗ the optimal
solution of our problem and f ∗ = f (x∗).

Lemma 5.6. The sequence generated by the gradient descent method with h ∈ (0, 2
L )

satisfies f (xk+1)≤ f (xk).

Proof. We have

f (xk+1)≤ f (xk)+ ⟨ f ′(xk),xk+1− xk⟩+ L
2∥xk+1− xk∥2

≤ f (xk)−h∥ f ′(xk)∥2 + L
2 h2∥ f ′(xk)∥2

≤ f (xk)−h(1− L
2 h)∥ f ′(xk)∥2 ≤ f (xk).

Theorem 5.3. Let f ∈F 1,1
L (Rn) and h ∈ (0, 2

L ]. Then the sequence {xk} generated
by the gradient descent method satisfies

f (xk)− f ∗ ≤ ∥x0−x∗∥2
kh(2−Lh) .

Proof. Denote rk = ∥xk− x∗∥. Then

r2
k+1 = ∥xk− x∗−h f ′(xk)∥2 = r2

k −2h⟨ f ′(xk),xk− x∗⟩+h2∥ f ′(xk)∥2

≤ r2
k −2h⟨ f ′(xk),xk− x∗⟩+Lh2⟨ f ′(xk),xk− x∗⟩

= r2
k −h(2−Lh)⟨ f ′(xk),xk− x∗⟩.

Noting that f (xk)− f ∗ ≤ ⟨ f ′(xk),xk− x∗⟩, we have

h(2−Lh)[ f (xk)− f ∗]≤ r2
k − r2

k+1.

Summing up these inequalities, we have h(2− Lh)∑k
t=1[ f (xt)− f ∗] ≤ r2

0 − r2
k+1.

Using f (x0)≥ f (x1)≥ . . .≥ f (xk), we have

h(2−Lh)k[ f (xk)− f ∗]≤ r2
0− r2

k+1.

Note that the optimal selection of stepsize is given by of h = 1/L.
We now study the convergence of GD for strongly convex problems.

Lemma 5.7. If f ∈ S1,1
µ,L(Rn), then for any x,y ∈ Rn, we have

⟨ f ′(y)− f ′(x),y− x⟩ ≥ µL
µ+L∥x− y∥2 + 1

µ+L∥ f ′(x)− f ′(y)∥2.

Proof. Denote φ(x) = f (x)− 1
2 µ∥x∥2. Then φ ′(x) = f ′(x)− µx. Hence φ(x) ∈

F 1,1
L−µ

(Rn) (It can be easily checked that ⟨φ ′(x)−φ ′(y),x− y⟩ ≤ (L−µ)∥x− y∥2).
If µ = L, then the result follows from the facts that

⟨ f ′(y)− f ′(x),y− x⟩ ≥ µ∥x− y∥2
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and
⟨ f ′(y)− f ′(x),y− x⟩ ≥ 1

L∥ f ′(x)− f ′(y)∥2.

If µ < L, we have

⟨φ ′(y)−φ
′(x),y− x⟩ ≥ 1

L−µ
∥φ ′(y)−φ

′(x)∥2

which is exactly the result.

Theorem 5.4. If f ∈S 1,1
µ,L(Rn) and h ∈ (0, 2

µ+L ], then the gradient descent method
generates a sequence {xk} s.t.

∥xk− x∗∥2 ≤ (1− 2hµL
µ+L )

k∥x0− x∗∥2.

If h = 2
µ+L , then

∥xk− x∗∥ ≤ (
Q f−1
Q f +1 )

k∥x0− x∗∥, (5.3.4)

f (xk)− f ∗ ≤ L
2 (

Q f−1
Q f +1 )

2k∥x0− x∗∥2, (5.3.5)

where Q f = L/µ .

Proof. Denote rk = ∥xk− x∗∥. Then

r2
k+1 = ∥xk− x∗−h f ′(xk)∥2 = r2

k −2h⟨ f ′(xk),xk− x∗⟩+h2∥ f ′(xk)∥2

= (1− 2hµL
µ+L )r

2
k +h(h− 2

L+µ
)∥ f ′(xk)∥2.

We now derive the complexity of GD for strongly convex problems. Using the
fact ln(1− t)≤ t for t ∈ (0,1),

f (xk)− f ∗ ≤ L
2 (1− 2

Q f +1 )
2k∥x0− x∗∥2 ≤ L

2 exp(− 4k
Q f +1 )∥x0− x∗∥2.

If
k ≥ Q f +1

4 log L∥x0−x∗∥2
2ε

,

then f (xk)− f ∗ ≤ ε .

5.4 Conjugate Gradient Method

Conjugate Gradient Method was initially designed for quadratic programming:

min f (x) = 1
2 xT Ax+bT x, (5.4.1)

where A = AT ≻ 0. Clearly, the optimal solution is x∗ =−A−1b and hence
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f (x) = 1
2 xT Ax− (x∗)T Ax = 1

2 (x− x∗)T A(x− x∗)− 1
2 (x
∗)T Ax∗,

f ′(x) = A(x− x∗), f ∗ =− 1
2 ⟨Ax∗,x∗⟩.

Given a starting point x0, consider the linear Krylov subspaces

Lk = lin{A(x0− x∗), . . . ,Ak(x0− x∗)},k ≥ 1.

Observe that L1 ⊆ L2 ⊆ L3 ⊆ . . .. Moreover, let t be the largest value of k such that
A(x0− x∗), . . . ,At(x0− x∗) are linearly independent, then

Lk ⊂ Lk+1,∀k < t−1
Lk = Lk+1,∀k ≥ t.

The classic CG method computes the iterate xk according to

xk = argminx∈x0+Lk
f (x),k ≥ 1.

Note that this is for theoretical analysis only, and we will see a more algorithmic
form later.

Lemma 5.8. If the algorithm does not terminates, for any k ≥ 1 we have

Lk = lin{ f ′(x0), . . . , f ′(xk−1)}.
Moreover, for any k, i≥ 0, k ̸= i, we have

f ′(xk)
T f ′(xi) = 0.

Proof. For k = 1, the statements are true since f ′(x0) = A(x0− x∗). Suppose they
are true for some k ≥ 1. Since xk ∈ x0 +Lk, xk = x0 +∑

k
i=1λiAi(x0− x∗) for some

λi ∈ R. Therefore,

f ′(xk) = A(xk− x∗) = A(x0− x∗)+∑
k
i=1λiAi+1(x0− x∗)

= A(x0− x∗)+∑
k−1
i=1 λiAi+1(x0− x∗)︸ ︷︷ ︸
y∈Lk

+λkAk+1(x0− x∗)

= y+λkAk+1(x0− x∗).

Thus,

Lk+1 = lin{Lk,Ak+1(x0− x∗)} ⊇ lin{Lk, f ′(xk)}= lin{ f ′(x0), . . . , f ′(xk)}.
(5.4.2)

Now let k > i consider the function φ(x) = f (x0 +∑
k
j=1µ j f ′(x j−1). By inductive

hypothesis (Lk = lin{ f ′(x0), . . . , f ′(xk−1)}), we have

xk = x0 +∑
k
j=1µ

∗
j f ′(x j−1).

Moreover, by definition, xk = argminx∈x0+Lk
f (x). Therefore φ ′(µ∗) = 0 and
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∂φ(µ∗)
∂ µi

= f ′(xi)
T f ′(xk) = 0.

Hence the dimension of {Lk, f ′(xk)} is k+1, which implies that (5.4.2) holds with
equality.

Corollary 5.2. The sequence generated by the CG method for QP is finite.

Proof. The number of orthogonal directions in Rn cannot exceed n.

Lemma 5.9. Denote δi ≡ xi+1− xi, i≥ 0. If the algorithm does not terminate, then

Lk = lin{δ0, . . . ,δk−1}
⟨Aδk,δk⟩= 0,∀i < k.

Proof. By definition of x1, we have x1− x0 = µ0 f ′(x0) for some µ0 ∈ R. Now
assume the results hold for some k ≥ 0. Note that by definition of xk+1, we have
xk+1− x0 ∈ Lk+1. Since

δk = xk+1− xk = xk+1− x0− (xk− x0) = xk+1− x0 +∑
k−1
i=0 δi

and δi ∈ Lk ⊆ Lk+1 for i≤ k−1 by inductive hypothesis. We must have δk ∈ Lk+1
and

lin{δ0, . . . ,δk} ⊆ Lk+1. (5.4.3)

Note that, since δi = xi+1− xi ∈ Li+1 ⊆ Lk,

⟨Aδk,δi⟩= ⟨A(xk+1− xk),δi⟩
= ⟨ f ′(xk+1)− f ′(xk),δi⟩= 0,

Therefore the vectors δ0, . . . ,δk are A-orthogonal and thus are linearly independent 1,
which implies (5.4.3) holds with equality.

We now state the conjugate gradient method in an algorithmic form. Let
Lk+1 = lin{Lk, f ′(xk)} and Lk = lin{δ0, . . . ,δk−1} nad δk = xk+1− xk ∈ Lk+1.
We can write xk+1 as

xk+1 = xk−hk f ′(xk)+∑
k−1
j=0λ jδ j

or
δk =−hk f ′(xk)+∑

k−1
j=0λ jδ j. (5.4.4)

To compute hk,λ0, . . . ,λk−1, multiplying (5.4.4) by A and δi, 0 ≤ i ≤ k− 1, we
have

0 = ⟨Aδk,δi⟩=−hk⟨A f ′(xk),δi⟩+∑
k−1
j=0λ j⟨Aδ j,δi⟩

=−hk⟨A f ′(xk),δi⟩+λi⟨Aδi,δi⟩
=−hk⟨ f ′(xk),Aδi⟩+λi⟨Aδi,δi⟩
=−hk⟨ f ′(xk), f ′(xi+1)− f ′(xi)⟩+λi⟨Aδi,δi⟩.

1 We need to show ∑
k
i=1λiδi = 0⇒ λi = 0. Indeed, multiplying these equations by δ T

i A and using
δ T

i Aδ j = 0,∀i ̸= j, we see that ∑
k
i=1λiδ

T
i Aδi = 0, implying λi = 0 due to A≻ 0.
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Hence, for i < k−1, we must have λi = 0. For i = k−1, we have

λk−1 =
hk∥ f ′(xk)∥2
⟨Aδk−1,δk−1

= hk∥ f ′(xk)∥2
⟨ f ′(xk)− f ′(xk−1),δk−1⟩ .

Thus xk+1 = xk−hk pk (i.e., δk =−hk pk), where

pk = f ′(xk)− ∥ f ′(xk)∥2δk−1
⟨ f ′(xk)− f ′(xk−1,δk−1⟩

= f ′(xk)− ∥ f ′(xk)∥2 pk−1
⟨ f ′(xk)− f ′(xk−1,pk−1⟩

and hk can be obtained using line search.

One remaining question about the conjugate gradient method is rate of con-
vergence. Will it be faster than gradient descent method? This problem has been
well-under stood for the convex quadratic case. We state this result without proof
and direct interesting readers to the original development by Nemirovksi and Yudin.
However, we will show a similar result obtained by the accelerated gradient method
later.

Theorem 5.5. One has

f (xk)−min
x

f (x)≤ 4
[√

Q f−1√
Q f +1

]2k

[ f (x0)−min
x

f (x)], (5.4.5)

where Q f is the condition number of f , i.e., the ratio the ratio of the largest and the
smallest eigenvalues of A.

In view of the above result, every
√

Q f new iterations decrease the right hand
side in (5.4.5) by absolute constant factor. For Steepest decent similar improvement
requires Q f new iterations.

We now generalize the conjugate Gradient method for general NLP as follows.
Let x0 ∈ Rn. Compute f (x0), f ′(x0). Set p0 = f ′(x0). In the kth iteration (k ≥ 0), we
perform the following steps.

1. Find xk+1 = xk−hk pk (hk by line search).
2. Compute f (xk+1) and f ′(xk+1).
3. Compute the coefficient βk.
4. Set pk+1 = f ′(xk+1)+βk pk.

We have not specified βk. In fact, there are many different formulas.

βk =
∥ f ′(xk+1)∥2

⟨ f ′(xk+1)− f ′(xk),pk⟩ , (5.4.6)

βk =− ∥ f ′(xk+1∥2
∥ f ′(xk)∥2

, (5.4.7)

βk =− ⟨ f
′(xk+1, f ′(xk+1)− f ′(xk)⟩

∥ f ′(xk)∥2
. (5.4.8)
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All of them give the same result on quadratic functions. But in a general NLP they
generate different results. Recall in the quadratic case, CG terminates in n iterations
or less (pn+1 = 0). However, in a nonlinear case that is not true. After n iterations,
this direction lose any interpretation. In practice, there exists a restarting strategy,
usually after every n iterations set βk = 0. This ensures global convergence (since
we have a usual gradient descent step just after the restart and all other iterations
decrease the function value). In a neighborhood of a strict minimum, CG has a local
n-step quadratic convergence

∥xn+1− x∗∥ ≤C∥x0− x∗∥2

5.5 Projected gradient method

Gradient descent applies only to unconstrained problems. For the constrained case
when X ̸=Rn, the search point xt+1 defined by xt+1 = xt−γt∇ f (xt), t = 1,2, . . ., may
fall outside the feasible set X . Hence, it is necessary to “push” xt+1 back to X by
using projection. Incorporating these enhancements, we update xt according to

xt+1 := argminx∈X∥x− (xt − γtg(xt))∥2, t = 1,2, . . . , (5.5.1)

for some g(xt) ∈ ∇ f (xt) and γt > 0.
The projected gradient iteration in (5.5.1) admits some natural explanation from

the proximity control point of view. Indeed, (5.5.1) can be written equivalently as

xt+1 = argminy∈X
1
2∥x− (xt − γtg(xt))∥2

2

= argminx∈X γt⟨g(xt),x− xt⟩+ 1
2∥x− xt∥2

2

= argminx∈X γt [ f (xt)+ ⟨g(xt),x− xt⟩]+ 1
2∥x− xt∥2

2

= argminx∈X γt⟨g(xt),x⟩+ 1
2∥x− xt∥2

2. (5.5.2)

This implies that we would like to minimize the linear approximation f (xt) +
⟨g(xt),x− xt⟩ of f (x) over X , without moving too far away from xt so as to have
∥x−xt∥2

2 small. The parameter γt > 0 balances these two terms, and its selection will
depend on the properties of the objective function f .

The following lemma provides an important characterization for xt+1 by using
the representation in (5.5.2).

Lemma 5.10. Let xt+1 be defined in (5.5.1). For any y ∈ X, we have

γt⟨g(xt),xt+1− x⟩+ 1
2∥xt+1− xt∥2

2 ≤ 1
2∥x− xt∥2

2− 1
2∥x− xt+1∥2

2.

Proof. Denote φ(x) = γt⟨g(xt),x⟩+ 1
2∥x− xt∥2

2. By the strong convexity of φ , we
have

φ(x)≥ φ(xt+1)+ ⟨φ ′(xt+1),x− xt+1⟩+ 1
2∥x− xt+1∥2

2.
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Moreover, by the first-order optimality condition of (5.5.2), we have ⟨φ ′(xt+1),x−
xt+1⟩ ≥ 0 for any x ∈ X . The result immediately follows by combining these two
inequalities.

Our next result shows that the function values at the iterates xt , t ≥ 1, are mono-
tonically non-increasing.

Lemma 5.11. Let {xt} be generated by (5.5.1). If

γt ≤ 2
L , (5.5.3)

then
f (xt+1)≤ f (xt), ∀t ≥ 1.

Proof. By the optimality condition of (5.5.1), we have

⟨γtg(xt)+ xt+1− xt ,x− xt+1⟩ ≥ 0, ∀x ∈ X .

Letting x = xt in the above relation, we obtain

γt⟨g(xt),xt+1− xt⟩ ≤ −∥xt+1− xt∥2
2. (5.5.4)

It then follows from the smoothness of f and the above relation that

f (xt+1)≤ f (xt)+ ⟨g(xt),xt+1− xt⟩+ L
2∥xt+1− xt∥2

2

≤ f (xt)−
(

1
γt
− L

2

)
∥xt+1− xt∥2

2 ≤ f (xt).

We are now ready to establish the main convergence properties for the projected
gradient method applied to smooth convex optimization problems.

Theorem 5.6. Let {xt} be generated by (5.5.1). If

γt = γ ≤ 1
L ,∀t ≥ 1, (5.5.5)

then
f (xk+1)− f (x)≤ 1

2γk∥x− x1∥2
2, ∀x ∈ X .

Proof. By the smoothness of f , we have

f (xt+1)≤ f (xt)+ ⟨g(xt),xt+1− xt⟩+ L
2∥xt+1− xt∥2

2

≤ f (xt)+ ⟨g(xt),x− xt⟩+ ⟨g(xt),xt+1− x⟩+ L
2∥xt+1− xt∥2

2. (5.5.6)

It then follows from the above inequality, the convexity of f and Lemma 5.10 that

f (xt+1)≤ f (x)+ 1
2γt

(
∥x− xt∥2

2−∥x− xt+1∥2
2−∥xt − xt+1∥2

2
)
+ L

2∥xt+1− xt∥2
2

≤ f (x)+ 1
2γ

(
∥x− xt∥2

2−∥x− xt+1∥2
2
)
,
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where the last inequality follows from (5.5.5). Summing up the above inequalities
from t = 1 to k, and using Lemma 5.11, we have

k[ f (xk+1)− f (x)]≤ ∑
k
t=1[ f (xt+1)− f (x)]≤ 1

2γ
∥x− x1∥2

2.

In view of Theorem 5.6, one may choose γ = 1/L and then the rate of convergence
of the projected gradient method becomes f (xk+1)− f ∗ ≤ L/(2k).

We now discuss the convergence properties of the projected gradient method when
the objective function f is smooth and strongly convex.

Theorem 5.7. Let {xt} be generated by (5.5.1). Suppose that f is smooth with L-
Lipschitz gradients and strongly convex with modulus µ . If γt = γ = 1/L, t = 1, . . . ,k,
then

∥x− xk+1∥2
2 ≤ (1− µ

L )
k∥x− x1∥2

2. (5.5.7)

Proof. It follows from (5.5.6), the strong convexity of f and Lemma 5.10 that

f (xt+1)≤ f (x)− µ

2 ∥x− xt∥2
2 +

1
2γt

(
∥x− xt∥2

2−∥x− xt+1∥2
2−∥xt − xt+1∥2

2
)

+ L
2∥xt+1− xt∥2

2

≤ f (x)+ 1−µγ

2γ
∥x− xt∥2

2− 1
2γ
∥x− xt+1∥2

2.

Using the above relation, the facts γ = 1/L and f (xt)− f (x∗)≥ 0, we have

∥xt+1− x∗∥2
2 ≤ (1− µ

L )∥xt − x∗∥2
2,

which clearly implies (5.5.7).

In order to find a solution x̄ ∈ X such that ∥x̄− x∗∥2 ≤ ε , it suffices to have

(1− µ

L )
k∥x− x1∥2

2 ≤ ε ⇐⇒ k log(1− µ

L )≤ log ε

∥x−x1∥22

⇐⇒ k ≥ 1
− log(1− µ

L )
log ∥x−x1∥22

ε

⇐= k ≥ L
µ

log ∥x−x1∥22
ε

, (5.5.8)

where the last inequality follows from the fact that − log(1−α) ≥ α for any α ∈
[0,1).

We can also extend the analysis of the projected gradient method to the nonconvex
setting. For that purpose, we need to define a termination criterion: PX (x,g,γ) =
1
γ
(x− x+), where x+ = argmin

u∈X

{
⟨g,u⟩+ 1

γ
V (u,x)+h(u)

}
. It is not difficult to show

that one can find a point x̄ ∈ X s.t. ∥PX (x̄,∇ f (x̄),γ)∥2 ≤ ε in O(1/ε) iterations with
γ ∈ (0,1/L].
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5.6 Accelerated Gradient Descent Method

In this section, we consider the problem of minx∈X f (x), where X ⊆Rn is closed and
convex, and f ∈F 1,1

L (Rn). The basic version of the accelerated gradient descent
(AGD) method is stated as follows.

0) Choose x̄0 = x0 ∈ X .
1) Set xk = (1−αk)x̄k−1 +αkxk−1.
2) Compute f ′(xk) and set
xk = argminx∈X{αk⟨ f ′(xk),x⟩

+ βk
2 ∥x− xk−1∥2},

x̄k = (1−αk)x̄k−1 +αkxk.
3) Set k← k+1 and go to step 1).

Note that we have not specified αk and βk yet. We will show how to select them
after establishing some general convergence properties of AGD.

Lemma 5.12. Let v : X → R be a convex function, c > 0 and x̄ ∈ X be given. Also
let x̂ = argminx∈X{v(x)+ c

2∥x− x̄∥2}. Then for any x ∈ X,

v(x̂)+ c
2∥x̂− x̄∥2 ≤ v(x)+ c

2∥x− x̄∥2− c
2∥x− x̂∥2.

Proof. Define φ(x) = v(x)+ c
2∥x− x̄∥2. φ is strongly convex with modulus ≥ c.

Hence,
φ(x)≥ φ(x̂)+ ⟨φ ′(x̂),x− x̂⟩+ c

2∥x− x̂∥2

≥ φ(x̂)+ c
2∥x− x̂∥2,

where the last inequality follows from ⟨φ ′(x̂),x− x̂⟩ ≥ 0,∀x ∈ X .

Lemma 5.13. Let (xk,xk, x̄k) be generated by the AGD method. If βk ≥ Lα2
k , then

∀x ∈ X,

f (x̄k)− f (x)+ βk
2 ∥x− xk∥2 ≤ (1−αk)[ f (x̄k−1)− f (x)]+ βk

2 ∥x− xk−1∥2.

Proof. Note that x̄k− xk = αk(xk− xk−1).

f (x̄k)≤ f (xk)+ ⟨ f ′(xk), x̄k− xk⟩+ L
2∥x̄k− xk∥2

= (1−αk)[ f (xk)+ ⟨ f ′(xk), x̄k−1− xk⟩]+αk[ f (xk)+ ⟨ f ′(xk),xk− xk⟩]+
Lα2

k
2 ∥xk− xk−1∥2

≤ (1−αk)[ f (xk)+ ⟨ f ′(xk), x̄k−1− xk⟩]+αk[ f (xk)+ ⟨ f ′(xk),xk− xk⟩]+ βk
2 ∥xk− xk−1∥2.

Noting that

αk⟨ f ′(xk),xk−xk⟩+ βk
2 ∥xk−xk−1∥2≤αk⟨ f ′(xk),x−xk⟩+ βk

2 ∥x−xk∥2− βk
2 ∥x−xk∥2,

we obtain

f (x̄k)≤ (1−αk) f (x̄k−1)+αk[ f (xk)+ ⟨ f ′(xk),x− xk⟩]+ βk
2 ∥x− xk−1∥2− βk

2 ∥x− xk∥2.
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Subtracting f (x) from both sides and re-arranging the terms, we obtain the result.

We are now ready to establish the convergence of the AGD method.

Theorem 5.8. If βk ≥ Lα2
k and βk = (1−αk)βk−1 for k ≥ 1, then

f (x̄k)− f (x)≤ 1−α1
β1

[ f (x̄0)− f (x)]

+βk
2 ∥x− x0∥2, ∀x ∈ X .

Proof. By Lemma 5.13,

1
βk
[ f (x̄k)− f (x)]+ 1

2∥x− xk∥2 ≤ 1
βk−1

[ f (x̄k−1)− f (x)]+ 1
2∥x− xk−1∥2

for any k ≥ 2. Moreover, for k = 1, we have

1
β1
[ f (x̄1)− f (x)]+ 1

2∥x− x1∥2 ≤ 1−α1
β1

[ f (x̄0)− f (x)]+ 1
2∥x− x0∥2.

The result follows by summing up these inequalities.
The following corollary shows the complexity of AGD

Corollary 5.3. If αk = 2/(k+1) and βk = 4L/[k(k+1)], then

f (x̄k)− f (x∗)≤ 2L
k(k+1)∥x0− x∗∥2.

Proof. The result follows from the previous theorem (with x = x∗) by using the
parameters αk and βk stated in the premise.

In order to fine an ε-solution, i.e., a point x̄ ∈ X s.t. f (x̄)− f ∗ ≤ ε , the number of

iterations is bounded by
√

2L∥x0−x∗∥2
ε

.

We now discuss AGD for strongly convex problems. Suppose f ∈S 1,1
µ,L(Rn. We

describe a mulit-phase algorithm by restarting the AGD method every

N ≡
⌈√

8L
µ

⌉
iterations.

Input: p0 ∈ X .
Phase t = 1,2, . . .:
Set pt = x̄N , where x̄N is obtained from the AGD method with x0 = pt−1.

We are now ready to

Theorem 5.9. For any t ≥ 1, we have

∥pt − x∗∥2 ≤ ( 1
2 )

t∥p0− x∗∥2.

Proof. Note that f (pt)− f ∗ ≤ 2L∥pt−1− x∗∥2/N2. Using the strong convexity
and the definition of N, we have
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∥pt − x∗∥2 ≤ 4L
µN2 ∥pt−1− x∗∥2 ≤ 1

2∥pt−1− x∗∥2.

To have ∥pt − x∗∥2 ≤ ε , the total number of iterations is bounded by⌈√
8L
µ

⌉
log ∥p0−x∗∥2

ε
.

5.7 Lower Complexity Bound

In this section, we first establish the Lower complexity bound for F 1,1
L (Rn).

We make the following assumption about the algorithms.
Assumption. An iterative method M generates a sequence of test points {xk}

such that
xk ∈ x0 + lin{ f ′(x0), . . . , f ′(xk−1)},k ≥ 1.

This assumption is not absolutely necessary and it can be avoided by a more
sophisticated reasoning in the original development by Nemirovski and Yudin. We
want to point out the “worst function in the world (F 1,1

L (Rn))”. This function appears
to be difficult for all iterative methods satisfying this assumption.

Let us fix some constant L > 0. Consider the family of quadratic functions

fk(x) = L
4

{
1
2

[
(x(1))2 +∑

k−1
i=1 (x

(i)− x(i+1))2 +(x(k))2
]
− x(1)

}
.

It can be seen that
f (x) = L

8 xT Ax− L
4 e1

where

Ak =


2 −1 0 . . . 0 0 |0
−1 2 −1 . . . 0 0 |0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 −1 |0
0 0 0 . . . −1 2 |0
0 0 0 . . . 0 0 |0


and e1 = (1,0, . . . ,0)T . Hence, f ′k(x) =

L
4 [Akx− e1], f ′′k (x) =

L
4 Ak, and 0⪯ f ′′k (x)⪯

LIn. (using (x− y)2 ≤ 2x2 +2y2).
Setting f ′(x̄) = L(Akx̄− e1)/4 = 0, we have the following unique solution of fk:

x̄(i)k =

{
1− i

k+1 , i = 1, . . . ,k,
0, k+1≤ i≤ n.

Hence the optimal value is given by

f ∗k = L
4

[ 1
2 ⟨Akx̄k, x̄k⟩−⟨e1, x̄k⟩

]
=−L

8 ⟨e1, x̄k⟩= L
8 (−1+ 1

k+1 ).
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Therefore,
∥x̄k∥2 = ∑

n
i=1(x̄

(i)
k )2 = ∑

k
i=1(1− i

k+1 )
2

= k− 2
k+1 ∑

k
i=1i+ 1

(k+1)2 ∑
k
i=1i2

≤ k− 2
k+1

k(k+1)
2 + 1

(k+1)2
(k+1)3

3

= 1
3 (k+1).

Denote Rk,n ≡ {x ∈ Rn|x(i) = 0,k+1≤ i≤ n}. Only the first k components can
differ from 0. From the analytical form of fk, it is easy to see that for all x ∈Rk,n, we
have

fp(x) = fk(x), p = k, . . . ,n, ∀x ∈ Rk,n.

Let us fix some p, 1≤ p≤ n.

Lemma 5.14. Let x0 = 0. Then for any sequence {xk}p
k=0 satisfying

xk ∈ Lk ≡ lin{ f ′p(x0), . . . , f ′p(xk−1)},

we have Lk ⊆ Rk,n.

Proof. Since x0 = 0, we have f ′p(x0) = −L/4e1 ∈ R1,n. Thus L1 ≡ R1,n. Let
Lk ⊆ Rk,n for some k < p. Since Ap is tri-diagonal, for any x ∈ Rk,n, we have
f ′p(x)∈Rk+1,n. Therefore Lk+1 ⊆Rk+1,n and we can complete the proof by induction.

Corollary 5.4. For any sequence {xk}p
k=0 s.t. x0 = 0 and xk ∈ Lk, we have fp(xk)≥

f ∗k .

Proof. xk ∈ Lk ⊆ Rk,n and therefore fp(xk) = fk(xk)≥ f ∗k .

Theorem 5.10. For any k, 1≤ k ≤ 1
2 (n−1) and any x0 ∈ Rn, there exists a function

f ∈F 1,1
L (Rn) s.t. for any first-order method M satisfying our assumption, we have

f (xk)− f ∗ ≥ 3L∥x0−x∗∥2
32(k+1)2 ,

where x∗ is the minimum of f (x) and f ∗ = f (x∗).

Proof. It is clear that the methods are invariant w.r.t. a shift of variables. The
sequence of iterates of f (x) starting from x0 is just a shift of the sequence generated
for f̄ (x) = f (x+ x0) starting from the origin. Therefore we can assume x0 = 0.

Now fix k and apply M to minimize f (x) = f2k+1(x). Then x∗ = x̄2k+1 and f ∗ =
f ∗2k+1. Using Corollary 5.4, f (xk) = f2k+1(xk) = fk(xk) ≥ f ∗k . Hence, by using the
expressions for f ∗k and f ∗2k+1, the bound on ∥x̄k∥2, the fact x0 = 0, we have

f (xk)− f ∗

∥x0−x∗∥2 ≥
L
8

(
−1+ 1

k+1+1− 1
2k+2

)
1
3 (2k+2)

= 3
8 L 1

4(k+1)2 .
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We add a few remarks on the above lower complexity bound. First, the above
theorem is valid only under the assumption k ≤ 1

2 (n−1). Hence, they are valid for
very large problems, in which we cannot wait even for n iterates of the methods.
Second, for problems with a moderate dimension, it describes the performance of
numerical methods on the initial stage. Third, it warns us that without a direct use of
finite dimensional arguments, we cannot get better complexity.

Observe that the result states a lower bound on the convergence in terms of
function values, which is rather optimistic. However, the result on the behavior of
{xk} is quite disappointing. It can be shown that ∥xk− x∗∥2 ≥ 1

8∥x0− x∗∥2 for any
k ≤ 1

2 (n−1). Hence, the convergence to the optimal solution can be arbitrarily slow.
The only thing we can do is to try to find problem classes in which the situation could
be better, e.g., strongly convex problems.

We now establish a Lower complexity for S 1,1
µ,L(Rn). Note that we do not say

anything about the dimension n and n could be ∞. We are going to give an example
of some bad functions defined in infinite-dimensional space. We could do that also in
a finite dimension, but the corresponding reasoning is more complicated.

Consider R∞ ≡ L2, the space of all sequences x = {x(i)}∞
i=1 with finite norm

∥x∥2 = ∑
∞
i=1(x

(i))2 < ∞. Let us choose some parameters µ > 0 and Q f > 1 and
define

fµ,Q f (x) =
µ(Q f−1)

8

{
(x(1))2 +∑

∞
i=1(x

(i)− x(i+1))2−2x(1)
}
+ µ

2 ∥x∥2.

Denote

A =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
0 0 0 . . . . . .


and e1 = (1,0, . . . ,0)T . Hence, f ′

µ,Q f
(x) = µ(Q f−1)

4 Ax+µx− µ(Q f−1)
4 e1, f ′′

µ,Q f
(x) =

µ(Q f−1)
4 A+ µI, and µI ⪯ f ′′k (x) ⪯ (µ(Q f − 1)+ µ)I = µQ f I by using (x− y)2 ≤

2x2 +2y2.
Setting f ′

µ,Q f
(x) = 0 we have (A+ 4

Q f−1 )x = e1. The coordinate form is given by

2 Q f +1
Q f−1 x(1)− x(2) = 1

x(k+1)−2 Q f +1
Q f−1 x(k)+ x(k−1) = 0,k = 2, . . .

Let q be the smallest root of the equation

q2−2 Q f +1
Q f−1 q+1 = 0.

That is q =

√
Q f−1√
Q f +1

. Then the sequence (x∗)(k) = qk, k = 1,2, . . ., satisfies the system.
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Theorem 5.11. For any x0, there exists a function f ∈S 1,1
µ,µQ f

(R∞) s.t. for any first-
order methods

∥xk− x∗∥2 ≥
(√

Q f−1√
Q f +1

)2k

∥x0− x∗∥2,

f (xk)− f ∗ ≥ µ

2

(√
Q f−1√
Q f +1

)2k

∥x0− x∗∥2,

where x∗ is the minimum of f and f ∗ = f (x∗).

Proof. Choose x0 = 0. Bound ∥x0− x∗∥2 and ∥xk− x∗∥2.

∥x0− x∗∥2 = ∥x∗∥2 = ∑
∞
i=1q2i = q2

1−q2 .

Note that xk ∈ Rn,k hence

∥xk− x∗∥2 ≥ ∑
∞
i=k+1q2i = q2(k+1)

1−q2 = q2k∥x0− x∗∥2.

The second bound follow from the first one and f (xk)− f ∗ ≥ µ∥xk− x∗∥2/2.
It then follows that

∥xk− x∗∥2 ≤
(√

Q f−1√
Q f +1

)2k

∥x0− x∗∥2

=

(
1− 2√

Q f +1

)2k

∥x0− x∗∥2 ≤ exp
(
− 4k√

Q f +1

)
∥x0− x∗∥2.

Hence, to have ∥xk − x ∗ ∥2 ≤ ε , the number of iterations will be at least k ≥√
Q f +1
4 log ∥x0−x∗∥2

ε
.

5.8 Conditional gradient method

In this section, we consider the problem of

min
x∈X

f (x), (5.8.1)

where X ⊆ Rn is a closed convex set and f ∈C1,1.
The classic CndG method is one of the earliest iterative algorithms to solve

problem (5.8.1). The basic scheme of this algorithm is stated as follows.
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Algorithm 5.1 The Conditional Gradient (CndG) Method
Let x0 ∈ X be given. Set y0 = x0.
for k = 1, . . . do

Compute xk ∈ Argminx∈X ⟨ f ′(yk−1),x⟩.
Set yk = (1−αk)yk−1 +αkxk for some αk ∈ [0,1].

end for

In order to guarantee the convergence of the classic CndG method, we need to
properly specify the stepsizes αk used in the definition of yk. There are two popular
options for selecting αk: one is to set

αk =
2

k+1 , k = 1,2, . . . , (5.8.2)

and the other is to compute αk by solving a one-dimensional minimization problem:

αk = argminα∈[0,1] f ((1−α)yk−1 +αxk), k = 1,2, . . . . (5.8.3)

We now formally describe the convergence properties of the above classic CndG
method. Observe that we state explicitly in Theorem 5.12 how the rate of convergence
associated with this algorithm depends on distance between the previous iterate yk−1
and xk, i.e., ∥xk− yk−1∥. Also observe that, given a candidate solution x̄ ∈ X , we use
the function optimality gap f (x̄)− f ∗ as a termination criterion for the algorithm.
It is also possible to show that the CndG method also exhibit the same rate of
convergence in terms of a stronger termination criterion, i.e., the Wolfe gap given by
maxx∈X ⟨ f ′(x̄), x̄− x⟩. The following quanitity will be used our convergence analysis.

Γk :=
{

1, k = 1,
(1− γk)Γk−1, k ≥ 2. (5.8.4)

Theorem 5.12. Let {xk} be the sequence generated by the classic CndG method
applied to problem (5.8.1) with the stepsize policy in (5.8.2) or (5.8.3). Then for any
k = 1,2, . . .,

f (yk)− f ∗ ≤ 2L
k(k+1)∑

k
i=1∥xi− yi−1∥2. (5.8.5)

Proof. Let Γk be defined in (5.8.4) with

γk := 2
k+1 . (5.8.6)

It is easy to check that

Γk =
2

k(k+1) and γ2
k

Γk
≤ 2, k = 1,2, . . . . (5.8.7)

Denoting ỹk = (1− γk)yk−1 + γkxk, we conclude from from (5.8.2) (or (5.8.3)) and
the definition of yk in Algorithm 5.1 that f (yk) ≤ f (ỹk). It also follows from the
definition of ỹk that ỹk−yk−1 = γk(xk−yk−1). Letting l f (x;y) = f (x)+⟨∇ f (x),y−x⟩
and using these two observations, the smoothness of f , the definition of xk and the
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convexity of f (·), we have

f (yk) ≤ f (ỹk)≤ l f (yk−1; ỹk)+
L
2∥yk− yk−1∥2

= (1− γk) f (yk−1)+ γkl f (yk−1;xk)+
L
2 γ

2
k ∥xk− yk−1∥2

≤ (1− γk) f (yk−1)+ γkl f (yk−1;x)+ L
2 γ

2
k ∥xk− yk−1∥2,

≤ (1− γk) f (yk−1)+ γk f (x)+ L
2 γ

2
k ∥xk− yk−1∥2, ∀x ∈ X . (5.8.8)

Subtracting f (x) from both sides of the above inequality, we obtain

f (yk)− f (x)≤ (1− γk)[ f (yk−1)− f (x)]+ L
2 γ

2
k ∥xk− yk−1∥2, (5.8.9)

which then implies that

f (yk)− f (x) ≤ Γk(1− γ1)[ f (y0)− f (x)]+ ΓkL
2 ∑

k
i=1

γ2
i

Γi
∥xi− yi−1∥2

≤ 2L
k(k+1)∑

k
i=1∥xi− yi−1∥2, k = 1,2, . . . , (5.8.10)

where the last inequality follows from the fact that γ1 = 1 and (5.8.7).

We now add a few remarks about the results obtained in Theorem 5.12. Let us
denote

D̄X ≡ D̄X ,∥·∥ := max
x,y∈X
∥x− y∥. (5.8.11)

Firstly, note that by (5.8.5) and (5.8.11), we have, for any k = 1, . . .,

f (yk)− f ∗ ≤ 2L
k+1 D̄2

X .

Hence, the number of iterations required by the classic CndG method to find an
ε-solution of problem (5.8.1) is bounded by

O(1)LD̄2
X

ε
. (5.8.12)

Secondly, although the CndG method does not require the selection of the norm
∥ · ∥, the iteration complexity of this algorithm, as stated in (5.8.12), does depend on
∥ · ∥ as the two constants, i.e., L≡ L∥·∥ and D̄X ≡ D̄X ,∥·∥, depend on ∥ · ∥ . However,
since the result in (5.8.12) holds for an arbitrary ∥ · ∥, the iteration complexity of the
classic CndG method to solve problem (5.8.1) can actually be bounded by

O(1) inf
∥·∥

{
L∥·∥D̄2

X ,∥·∥
ε

}
. (5.8.13)

For example, if X is a simplex, a widely-accepted strategy to accelerate gradient
type methods is to set ∥ ·∥= ∥ ·∥1 and d(x) = ∑

n
i=1xi logxi as the distance generating

function, in order to obtain (nearly) dimension-independent complexity results, which
only grow mildly with the increase of the dimension of the problem. On the other
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hand, the classic CndG method does automatically adjust to the geometry of the
feasible set X in order to obtain such scalability to high-dimensional problems.

We can also extend the analysis of the CndG method to the nonconvex setting.
For this purpose, we need to define a new termination criterion given by Q(x̄) :=
maxx∈X ⟨∇ f (x̄), x̄− x⟩. We often call Q(x̄) the Wolfe-gap at x̄. We can show that
the number of iterations required by the CndG method to find a solution x̄ ∈ X s.t.
Q(x̄)≤ ε can be bounded by O(1/ε2) for the nonconvex setting when f is smooth
but not necessarily convex.

5.9 Ellipsoid methods for convex optimization

The basic idea is to use approximate localization sets.
Let H be a positive definite symmetric n×n matrix. Consider the ellipsoid

E(H, x̄) = {x ∈ Rn|⟨H−1(x− x̄),x− x̄⟩ ≤ 1}.

Choose a direction g ∈ Rn and define

E+ = {x ∈ E(H, x̄)|⟨g, x̄− x⟩ ≥ 0}.

We need to show that E+ belongs to another ellipsoid, whose volume is strictly
smaller than that of E(H, x̄).

Lemma 5.15. Denote

x̄+ = x̄− 1
n+1

Hg

⟨Hg,g⟩
1
2

H+ = n2

n2−1

(
H− 2

n+1
HggT H
⟨Hg,g⟩

)
.

Then E+ ⊂ E(H+, x̄+) and

VolnE(H+, x̄+)≤
(

1− 1
(n+1)2

) n
2

VolnE(H, x̄).

Proof. Denote G = H−1 and G+ = H−1
+ . It is clear that

G+ = n2−1
n2

(
G+ 2

n−1
ggT

⟨Hg,g⟩

)
.

W.L.O.G., we assume x̄ = 0 and ⟨Hg,g⟩= 1. Suppose that x ∈ E+. Note that x̄+ =
− 1

n+1 Hg. Therefore,
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∥x− x̄+∥2
G+

= n2−1
n2

(
∥x− x̄+∥2

G + 2
n−1 ⟨g,x− x̄+⟩2

)
,

∥x− x̄+∥2
G = ∥x∥2

G + 2
n+1 ⟨g,x⟩+ 1

(n+1)2 ,

⟨g,x− x̄+⟩2 = ⟨g,x⟩2 + 2
n+1 ⟨g,x⟩+ 1

(n+1)2 .

Putting all these terms together, we obtain

∥x− x̄+∥2
G+ = n2−1

n2

(
∥x∥2

G+
2

n−1 ⟨g,x⟩2 + 2
n−1 ⟨g,x⟩+ 1

n2−1

)
.

Note that ⟨g,x⟩ ≤ 0 and ∥x∥G ≤ 1. Hence, |⟨g,x⟩| ≤ ∥g∥H∥x∥G ≤ 1 and

⟨g,x⟩2 + ⟨g,x⟩= ⟨g,x⟩(1+ ⟨g,x⟩)≤ 0,

which implies that

∥x− x̄+∥2
G+ ≤ n2−1

n2

(
∥x∥2

G + 1
n2−1

)
≤ 1.

Thus, we have E+ ⊂ E(H+, x̄+). Using the matrix determinatnt lemma that det(A+
UV T ) = (1+V T A−1U)det(A), we can estimate the volume of E(H+, x̄+):

VolnE(H+,x̄+)
VolnE(H,x̄) =

(
detH+
detH

) 1
2
=
[(

n2

n2−1

)n
n−1
n+1

] 1
2

=

[
n2

n2−1

(
1− 2

n+1

) 1
n

] n
2

≤
[

n2

n2−1

(
1− 2

n(n+1)

)] n
2

=
[

n2(n2+n−2)
n(n−1)(n+1)2

] n
2

=
[
1− 1

(n+1)2

] n
2
,

where the inequality follows from the concavity of (1− x)
1
n .

Geometrically, E(H+, x̄+) is the ellipsoid of the minimal volume containing the
half of the initial ellipsoid E+. We now formally describe the Ellipsoid method.
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Algorithm 5.2 The Ellipsoid Method

Choose y0 ∈ Rn and R > 0 such that B2(y0,R)⊇ Q. Set H0 = R2In.
for k = 1, . . . do

gk =

{
g(yk), ifyk ∈ Q,

ḡ(yk), ifyk /∈ Q.

yk+1 = yk− 1
n+1

Hkgk

⟨Hkgk ,gk⟩
1
2

Hk+1 =
n2

n2−1

(
Hk− 2

n+1
HkgkgT

k Hk
⟨Hkgk ,gk⟩

)
.

end for

This method is a particular implementation of the general cutting plane scheme
by setting

Ek = {x ∈ Rn|⟨H−1
k (x− yk),x− yk⟩ ≤ 1}

and yk being the center of this ellipsoid.
Denote Y = {yk}∞

k=0, X = Y ∩Q, and f ∗k = min0≤ j≤k f (x j).

Theorem 5.13. Let f be Lipschitz continuous on B2(x∗,R) with constant M. Then
for i(k)> 0, we have

f ∗i(k)− f ∗ ≤MR
(

1− 1
(n+1)2

) k
2
[

VolnB2(x0,R)
VolnQ

] 1
n
.

We now discuss the complexity of the Ellipsoid method, We need some additional
assumption to guarantee X ̸= /0.

Assume ∃ρ > 0 and x̄ ∈ Q s.t. B2(x̄,ρ)⊆ Q. Then(
VolnEk
VolnQ

) 1
n ≤

(
1− 1

(n+1)2

) k
2
(

VolnB2(x0,R)
VolnQ

) 1
n

≤ 1
ρ

e
− k

2(n+1)2 R.

This implies i(k) > 0 for all k ≥ 2(n + 1)2 ln R
ρ

. If i(k) > 0, then f ∗i(k) − f ∗ ≤
1
ρ

MR2e
− k

2(n+1)2 . This implies that the complexity of the Ellipsoid method is bounded

by 2(n+1)2 ln MR2

ρε
.

Polynomial dependence on ln 1
ε

and a polynomial dependence on logarithms of
the class parameters M, R and ρ . Several methods that work with localization sets in
the form of a polytope:

• Ek = {x ∈ Rn|⟨a j,x⟩ ≤ b j, j = 1, . . . ,mk}.
• Inscribed Ellipsoid method. The point yk is chosen as yk = center of the maximal ellipsoid Wk⊂

Ek.
• Analytic center method. yk is chosen as the minimum of the analytic barrier:

Fk(x) =−∑
mk
j=1 ln(b j−⟨a j,x⟩).
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• Volumetric center method. This is also a barrier-type scheme. yk is chosen as
the minimum of the volumetric barrier Vk(x) = lndetF ′′k (x), where Fk(x) is the
analytic barrier of Ek.

All these methods are in O(n lnp 1
ε
) with p = 1 or 2, but higher cost per iteration.

5.10 Newton’s Method

Newton method intends to find the root of a function φ(t) : R→ R s.t.

φ(t∗) = 0.

Assume t is close to t∗ and consider

φ(t +∆ t) = φ(t)+φ
′(t)∆ t +o(|∆ t|).

Setting φ(t+∆ t)= 0, or approximately φ(t)+φ ′(t)∆ t = 0, we have ∆t =−φ(t)/φ ′(t).
Hence, we can derive the iterative scheme as

tk+1 = tk− 1
φ ′(tk)

φ(tk).

In order solve a system of nonlinear equations: F(x) = 0 with F : Rn → Rn, we
approximate it by F(x) +F ′(x)∆x = 0, or ∆x = −[F ′(x)]−1F(x), and define the
iterative scheme:

xk+1 = xk− [F ′(xk)]
−1F(xk).

For solving unconstrained minimization:

min
x∈Rn

f (x),

we apply Newton’s method to solve f ′(x) = 0 and obtain

xk+1 = xk− [ f ′′(xk)]
−1 f ′(xk).

There also exists a different way to derive the iterative scheme. Set the gradient of

φ(x) = f (xk)+ ⟨ f ′(xk),x− xk⟩+ 1
2 ⟨ f ′′(xk)(x− xk),x− xk⟩. (5.10.1)

to be zero, we have

φ
′(xk+1) = f ′(xk)+ f ′′(xk)(xk+1− xk) = 0.

Newton’s method can converge very fast in a neighborhood of a strict local minima.
However, it can break down if f ′′(xk) is degenerate and can can diverge if x0 is far
away from x∗.
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Example 5.2. Find the root of φ(t) = t√
1+t2

(t∗ = 0).

φ ′(t) = 1
(1+t2)3/2 .

tk+1 = tk− φ(t)
φ ′(t)

= tk− (1+ t2
k )tk =−t3

k .

If |t0|< 1, convergence is extremely fast. If |t0|= 1, oscillation. If |t0|> 1, diverge.

In order to address this divergence issue, one often resort to the Damped Newton’s
method.

xk+1 = xk−hk[ f ′′(xk)]
−1 f ′(xk),

where hk > 0 is a stepsize (hk < 1 in the beginning, hk = 1 in the final stage).
We now establish the locally quadratic convergence for Newton’s method under

the following assumptions.

a) f ∈C2,2
M (Rn).

b) f ′′(x∗)⪰ lIn, l > 0.
c) Starting point x0 is close to x∗.

Theorem 5.14. If ∥x0− x∗∥ ≤ 2l/3M, then

∥xk+1− x∗∥ ≤ M∥xk−x∗∥2
2(l−M∥xk−x∗∥) ≤

3M∥xk−x∗∥2
2l .

Proof. By xk+1 = xk− [ f ′′(xk)]
−1 f ′(xk),

xk+1− x∗ = xk− x∗− [ f ′′(xk)]
−1 ∫ 1

0 f ′′(x∗+ τ(xk− x∗)(xk− x∗)dτ

= [ f ′′(xk)]
−1 ∫ 1

0 [ f
′′(xk)− f ′′(x∗+ τ(xk− x∗)](xk− x∗)dτ

= [ f ′′(xk)]
−1Gk(xk− x∗),

where Gk =
∫ 1

0 [ f
′′(xk)− f ′′(x∗+ τ(xk− x∗)]dτ . Denote rk = ∥xk− x∗∥. We have

∥Gk∥ ≤
∫ 1

0
τrkMdτ = 1

2 Mrk.

Moreover,
f ′′(xk)⪰ f ′′(x∗)−MrkIn ⪰ (l−Mrk)In.

Thus if l/M > rk, then f ′′(xk) ≻ 0 and ∥[ f ′′(xk)]
−1∥ ≤ (l−Mrk)

−1. Hence rk+1 ≤
Mr2

k
2(l−Mrk)

. It can be shown inductively that if rk ≤ 2l/3M then rk+1 ≤ rk ≤ 2l
3M . The

result now follows by combining these two inequalities.
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5.11 Quasi-Newton (Variable Metric) method

By choosing different objective functions in (5.10.1), we can develop different
optimization methods.

• φ1(x) = f (x̄)+ ⟨ f ′(x̄),x− x̄⟩+ 1
2h∥x− x̄∥2 yields gradient descent method.

• φ2(x) = f (x̄)+ ⟨ f ′(x̄),x− x̄⟩+ 1
2 ⟨ f ′′(x̄)(x− x̄),x− x̄⟩ yields Newton’s method.

Quasi-Newton method is something in between these two methods by seting

φG(x) = f (x̄)+ ⟨ f ′(x̄),x− x̄⟩+ 1
2 ⟨G(x− x̄),x− x̄⟩

for some G ≻ 0. φ ′G(x
∗
G) = 0 yields x∗G = x̄−G−1 f ′(x̄). The basic idea of Quasi-

Newton method is to form a sequence of matrices {Gk} : Gk → f ′′(x∗), or {Hk =
G−1

k }→ [ f ′′(x∗)]−1. These methods are also called variable metric methods.
The variable metric method is named for the following reasons. Note that the

gradient and Hessian are defined w.r.t. a standard Euclidean inner product ⟨x,y⟩=
∑

n
i=1 x(i)y(i) and ∥x∥= ⟨x,x⟩ 1

2 . Now consider a new inner product: let A≻ 0 be given
and define ⟨x,y⟩A = ⟨Ax,y⟩ and ∥x∥A = ⟨Ax,x⟩ 1

2 . Topologically, the new metric is
equivalent to the old one:

λn(A)
1
2 ∥x∥ ≤ ∥x∥A ≤ λ1(A)

1
2 ∥x∥.

However, the gradient and Hessian will change:

f (x+h) = f (x)+ ⟨ f ′(x),h⟩+ 1
2 ⟨ f ′′(x)h,h⟩+o(∥h∥)

= f (x)+ ⟨A−1 f ′(x),h⟩A + 1
2 ⟨A−1 f ′′(x)h,h⟩A +o(∥h∥A).

With this new gradient: A−1 f ′(x) and new Hessian: A−1 f ′′(x), Newton’s method is
equivalent to gradient method using A = f ′′(x).

We now state the algorithmic form of Quasi-Newton Method

0. Choose x0, set H0 = In and compute f (x0), f ′(x0).
1. kth iteration:

a) Set pk = Hk f ′(xk).
b) Find xk+1 = xk−hk pk.
c) Compute f (xk+1) and f ′(xk+1).
d) Update Hk : Hk→ Hk+1.

One important question for Quasi-Newton method is how to update Hk. Consider
the quadratic function f (x) = α + ⟨a,x⟩+ 1

2 ⟨Ax,x⟩. f ′(x) = Ax+α and f ′(x)−
f ′(y) = A(x− y). The classic selection rule of Quasi-Newton method is set Hk+1 s.t.

Hk+1[ f ′(xk+1)− f ′(xk)] = xk+1− xk.
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Denote ∆Hk = Hk+1−Hk, rk = f ′(xk+1)− f ′(xk), δk = xk+1−xk. We list the follow-
ing widely used variants of Quasi-Newton methods.

• Rank-one correction
∆Hk =

(δk−Hkrk)(δk−Hkrk)
T

⟨δk−Hkrk,rk⟩ .

• Davidon-Fletcher-Powell Scheme (DFP)

∆Hk =
δkδ T

k
⟨rk,δk⟩ −

HkrkrT
k Hk

⟨Hkrk,rk⟩ .

• Broyden-Fletcher-Goldfarb-Shanno Scheme (BFGS)

∆Hk =
Hkrkδ T

k +δkrT
k Hk

⟨Hkrk,rk⟩ −βk
HkrkrT

k Hk
⟨Hkrk,rk⟩ ,

where βk = 1+ ⟨rk,δk⟩/⟨Hkrk,rk⟩.
Quasi-Newton method usually terminates in n iterations. It also exhibits locally
superlinear convergence rate, i.e., ∃ N s.t. for all k ≥ N,

∥xk+1− x∗∥ ≤C∥xk− x∗∥∥xk−n− x∗∥.

However, its global convergence is not better than the gradient method.

5.12 Cubic Regularization*

In cubic-regularized Newton’s method, we start from an arbitrary initial point x0 and
update the iteration xk, k = 0,1, . . . according to

sk+1 = argmins∈Rn∇ f (xk)
T s+ 1

2 sT
∇

2 f (xk)s+ M
6 ∥s∥3, (5.12.1)

xk+1 = xk + sk+1, (5.12.2)

where M > 0. Our main goal is to show that this method converges to a second-order
stationary point x s.t. ∇ f (x) = 0 and ∇2 f (x)⪰ 0, and establish its rate of convergence.
We will also show how to solve the subproblem in (5.12.1).

We assume that the objective function f satisfies the following assumptions.

a) f is twice-continuously differentiable and bounded below, i.e., f ∗ := infx∈bbrn f (x)>
−∞;

b) The Hessian ∇2 f is L-Lipschitz continuous.

We need the following technical result. We use S n×n to denote the set of sym-
metric matrices.

Lemma 5.16. Let M > 0, g ∈ Rn, H ∈S n×n, and

s = argminu∈RngT u+ 1
2 uT Hu+ M

6 ∥u∥3. (5.12.3)
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Then the following statements hold:

g+Hs+ M
2 ∥s∥s = 0, (5.12.4)

H + M
2 ∥s∥I ⪰ 0, (5.12.5)

gT s+ 1
2 sT Hs+ M

6 ∥s∥3 ≤−M
12∥s∥3. (5.12.6)

Proof. First (5.12.4) follows from the first-order necessary optimality condition of
(5.12.3). The proof (5.12.5) is given by Proposition 1 of Nesterov and Polyak 06. We
now (5.12.6).

gT s+ 1
2 sT Hs+ M

6 ∥s∥3

= (−Hs− M
2 ∥s∥s)T s+ 1

2 sT Hs+ M
6 ∥s∥3

=− 1
2 sT (H + M

2 ∥s∥I)s− M
12∥s∥3

≤−M
12∥s∥3,

where the first identity follows from (5.12.4) and the last inequality follows from
(5.12.5).

To further explain, (5.12.4) corresponds to the first-order necessary optimality
condition, (5.12.5) corresponds to the second-order necessary optimality condition
but with a tighter form due to the specific form of this optimization problem, and
(5.12.5) guarantees a sufficient decrease at this minimizer.

Theorem 5.15. After k iterations, the sequence {xi}i≥1 generated by the cubic regu-
larization method contains a point x̃ such that

∥∇ f (x̃)∥ ≤ C1
(k−1)2/3 and ∇

2 f (x̃)⪰− C2
(k−1)1/3 ,

where k > 1, and C1 and C2 are universal constants.

Proof. Observe that

f (xk+1)− f (xk)≤ ∇ f (xk)
T sk+1 +

1
2 sT

k+1∇ f (xk)sk+1 +
L
6∥sk+1∥3

≤− 3M−2L
12 ∥sk+1∥3.

Summing up the above relation from 0 to k−1, we have

f (xk)− f (x0)≤− 3M−2L
12 ∑

k
i=1∥si∥3.

Let m = argmini∈{1,...,k}∥si∥3. We have

∥sm∥3 ≤ 12( f (x0)− f ∗)
(3M−2L)k .

Observe that
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∥∇ f (xm)∥= ∥∇ f (xm)− (∇ f (xm−1)+∇
2 f (xm−1)sm + M

2 ∥sm∥sm∥
≤ ∥∇ f (xm)− (∇ f (xm−1)+∇

2 f (xm−1)sm∥+ M
2 ∥sm∥2

≤ L+M
2 ∥sm∥2.

Moreover, by (5.12.5),

∇
2 f (xm)⪰−M

2 ∥sm∥I.

The results then follow by combining these three observations.

5.13 Methods for function constraints

In this section, we provide an overview of different types of methods for solving
nonlinear optimization problems given by

min f (x)
s.t. g j(x)≤ 0, j = 1, . . . ,m

hi(x) = 0, i = 1, . . . ,k.
(5.13.1)

Primal methods

These methods mimics unconstrained approaches, traveling along the feasible set in
a way to ensure progress in objective at every step. The complexity of these methods
have been studied for convex optimization. In particular, the following two directions
in primal methods have been explored.

a) Polyak’s alternative projection method. This algorithm alternatively moves along
either the (sub)gradient direction of the objective or constraints, and project back
to the feasible set X . This algorithm has been designed for general nonsmooth
convex optimization and its compexity is bounded by O(1/ε2).

b) Lemaréchal, Nesterov and Nemirovski’s root-finding technique. For a given level
estimate l ∈ R, let us define

φ(l) := min
x∈X

max{ f (x)− l,g1(x), . . . ,gm(x)}

= min
x∈X

max
(γ,z)∈Z

γ[ f (x)− l]+
m

∑
i=1

zigi(x). (5.13.2)

Here Z := {(γ,z)∈Rm+1 : γ +∑
m
i=1 zi = 1,γ,zi ≥ 0} denotes the standard simplex.

We can easily verify that: (a) φ(l) is monotonically non-increasing and convex
w.r.t. l; (b) φ( f ∗) = 0;
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Lagrange Multiplier methods

These methods utilizes dual information of (5.13.1). Some dual methods (e.g., aug-
mented Lagrangian method) reduce (5.13.1) to a sequence of unconstrained problems.
Other primal-dual methods update the primal and dual variables at each iteration.
Recently accelerated primal-dual methods that can achieve fast convergence for
function constrained optimization have been studied by Digvijay, Deng and Lan
(2019) and Zhang and Lan (2022). Some of these methods, especially those based
on primal-dual approaches have been extended to nonconvex optimization with con-
vex function constraints or even nonconvex optimization with nonconvex function
constraints.

Penalty/Barrier methods

These methods reduce constrained minimization to a sequence of unconstrained
problems

Sequential quadratic programming

These methods directly solves the KKT system associated with (P) by a kind of
Newton method.

5.14 Excercises

Exercise 5.1. Suppose f is strongly convex with mI ⪯ ∇2 f (x) ⪯ MI. Let d be a
descent direction at x. Show that the Inexact line search condition

f (x+ td)≤ f (x)+αt∇ f (x)T d, α ∈ (0,0.5),

holds for some

0 < t ≤−∇ f (x)T d
M∥d∥2 .

Exercise 5.2. Let f ∈C2,2
L (Rn). Show that

∥ f ′(y)− f ′(x)− f ′′(x)(y− x)∥ ≤ M
2 ∥y− x∥2

| f (y)− f (x)−⟨ f ′(x),y− x⟩− 1
2 ⟨ f ′′(x)(y− x),y− x⟩| ≤ M

6 ∥y− x∥3.

Exercise 5.3. Consider the optimization problem
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max
x∈Rn

f (x),

where f is differentiable and its gradient satisfies

∥∇ f (x)−∇ f (y)∥ ≤ L∥x− y∥ν , ∀x,y ∈ Rn

for some L > 0 and ν ∈ (0,1]. Given x0 ∈ Rn, we intend to solve this problem by
using the gradient descent method

xk+1 = xk− γk∇ f (xk), k ≥ 0.

Please specify an appropriate selection of the stepsizes {γk} which can guarantee
the convergence of this algorithm to a stationary point. Also please show the rate of
convergence of this method.

Exercise 5.4. Explain how to find a steepest descent direction in the l∞-norm, and
give a simple interpretation.

Exercise 5.5. The pure Newton’s method with fixed stepsize 1 can diverge if the
initial point is not close to x∗. In this problem we consider two examples.

a) f (x) = log(ex+e−x) has a unique minimizer x∗ = 0. Run the pure Newton method
starting at x0 = 1 and at x0 = 1.1.

b) f (x) =− logx+ x has a unique minimizer x∗ = 1. Run the pure Newton method,
starting at x0 = 3.

Plot f and ∇ f , and show the first few iterates.

Exercise 5.6. Suppose φ :R→R is increasing and convex, and f :Rn→R is convex,
so g(x) = φ( f (x)) is convex. (We assume that f and g are twice differentiable.) The
problems of minimizing f and minimizing g are clearly equivalent. Compare the
gradient method and Newton’s method, applied to f and g. How are the search
directions related? How are the methods related if an exact line search is used?

Exercise 5.7. Minimizing a quadratic function. Consider the problem of minimizing
a quadratic function:

minimize f (x) = (1/2)xT Px+qT x+ r,

where P ∈ Sn (but we do not assume P⪰ 0).

(a) Show that if P ⪰̸ 0, i.e., the objective function f is not convex, then the problem
is unbounded below.

(b) Now suppose that P⪰ 0 (so the objective function is convex), but the optimality
condition Px⋆ =−q does not have a solution. Show that the problem is unbounded
below.

Exercise 5.8. Minimizing a quadratic-over-linear fractional function. Consider the
problem of minimizing the function f : Rn→ R, defined as
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f (x) =
∥Ax−b∥2

2
cT x+d

, dom f =
{

x | cT x+d > 0
}
.

We assume rankA = n and b /∈R(A).

(a) Show that f is closed.
(b) Show that the minimizer x∗ of f is given by

x⋆ = x1 + tx2

where x1 =
(
AT A

)−1 AT b,x2 =
(
AT A

)−1 c, and t ∈R can be calculated by solving
a quadratic equation.

Exercise 5.9. Initial point and sublevel set condition. Consider the function f (x) =
x2

1 + x2
2 with domain dom f = {(x1,x2) | x1 > 1}.

(a) What is p⋆ ?
(b) Draw the sublevel set S =

{
x | f (x)≤ f

(
x(0)
)}

for x(0) = (2,2). Is the sublevel
set S closed? Is f strongly convex on S ?

(c) What happens if we apply the gradient method with backtracking line search,
starting at x(0)? Does f

(
x(k)
)

converge to p⋆ ?

Exercise 5.10. Do you agree with the following argument? The ℓ1-norm of a vector
x ∈ Rm can be expressed as

∥x∥1 = (1/2) inf
y≻0

(
m

∑
i=1

x2
i /yi +1T y

)
.

Therefore the ℓ1-norm approximation problem

minimize ∥Ax−b∥1

is equivalent to the minimization problem

minimize f (x,y) =
m

∑
i=1

(
aT

i x−bi
)2
/yi +1T y, (5.14.3)

with dom f = {(x,y) ∈ Rn×Rm | y≻ 0}, where aT
i is the i th row of A. Since f is

twice differentiable and convex, we can solve the ℓ1-norm approximation problem
by applying Newton’s method.

Exercise 5.11. Backtracking line search. Suppose f is strongly convex with mI ⪯
∇2 f (x)⪯MI. Let ∆x be a descent direction at x. Show that the backtracking stopping
condition holds for

0 < t ≤−∇ f (x)T ∆x
M∥∆x∥2

2
.

Use this to give an upper bound on the number of backtracking iterations.
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Exercise 5.12. Let f : ℜn 7→ℜ be a given function.

(a) Consider a vector x∗ such that f is convex over a sphere centered at x∗. Show that
x∗ is a local minimum of f if and only if it is a local minimum of f along every
line passing through x∗ [i.e., for all d ∈ℜn, the function g : ℜ 7→ℜ, defined by
g(α) = f (x∗+αd), has α∗ = 0 as its local minimum].

(b) Assume that f is not convex. Show that a vector x∗ need not be a local minimum
of f if it is a local minimum of f along every line passing through x∗. Hint: Use
the function f : ℜ2 7→ℜ given by

f (x1,x2) =
(
x2− px2

1
)(

x2−qx2
1
)
,

where p and q are scalars with 0 < p < q, and x∗ = (0,0). Show that f
(
y,my2

)
<

0 for y ̸= 0 and m satisfying p < m < q, while f (0,0) = 0.

Exercise 5.13. (Exact Penalty Functions)
Let f : Y 7→ ℜ be a function defined on a subset Y of ℜn. Assume that f is

Lipschitz continuous with constant L, i.e.,

| f (x)− f (y)| ≤ L∥x− y∥, ∀x,y ∈ Y.

Let also X be a nonempty closed subset of Y , and c be a scalar with c > L.

(a) Show that if x∗ minimizes f over X , then x∗ minimizes

Fc(x) = f (x)+ c inf
y∈X
∥y− x∥

over Y .
(b) Show that if x∗ minimizes Fc(x) over Y , then x∗ ∈ X , so that x∗ minimizes f over

X .

Exercise 5.14. (Approximate Minima of Convex Functions)
Let X be a closed convex subset of ℜn, and let f : ℜn 7→ (−∞,∞] be a closed

convex function such that X ∩dom( f ) ̸=∅. Assume that f and X have no common
nonzero direction of recession. Let X∗ be the set of global minima of f over X (which
is nonempty and compact), and let f ∗ = infx∈X f (x). Show that:

(a) For every ε > 0 there exists a δ > 0 such that every vector x ∈ X with f (x) ≤
f ∗+δ satisfies minx∗∈X∗ ∥x− x∗∥ ≤ ε .

(b) If f is real-valued, for every δ > 0 there exists a ε > 0 such that every vector
x ∈ X with minx∗∈X∗ ∥x− x∗∥ ≤ ε satisfies f (x)≤ f ∗+δ .

(c) Every sequence {xk} ⊂ X satisfying f (xk)→ f ∗ is bounded and all its limit
points belong to X∗.

Exercise 5.15. Gradient descent and nondifferentiable functions.

(a) Let γ > 1. Show that the function
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f (x1,x2) =


√

x2
1 + γx2

2 |x2| ≤ x1

x1 + γ |x2|√
1+ γ

otherwise

is convex. You can do this, for example, by verifying that

f (x1,x2) = sup
{

x1y1 +
√

γx2y2 | y2
1 + y2

2 ≤ 1,y1 ≥ 1/
√

1+ γ

}
.

Note that f is unbounded below. (Take x2 = 0 and let x1 go to −∞.)
(b) Consider the gradient descent algorithm applied to f , with starting point x(0) =

(γ,1) and an exact line search. Show that the iterates are

x(k)1 = γ

(
γ−1
γ +1

)k

, x(k)2 =

(
−γ−1

γ +1

)k

.

Therefore x(k) converges to (0,0). However, this is not the optimum, since f is
unbounded below.

Exercise 5.16. Prove the lower complexity bound for strongly convex problems
using the following worst case example.

f (x) = µ(Q−1)
4

[ 1
2 ⟨Ax,x⟩−⟨e1,x⟩

]
, (5.14.4)

where e1 := (1,0, . . . ,0) and A is a symmetric matrix in Rn×n given by

A =


2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 κ

 with κ =
√

Q+3√
Q+1 . (5.14.5)
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