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Abstract— Robots could benefit from maps that represent
haptic properties of their surroundings. By touching locations
with tactile sensors, robots can infer haptic properties of their
surroundings, but touching all locations would be prohibitive.
We present an algorithm that uses touch and vision to efficiently
produce a dense haptic map. Our approach assumes that
surfaces near a robot that are visually similar are more likely
to have similar haptic properties. Given an image and sparse
haptic labels, our algorithm uses a dense conditional random
field (CRF) to produce a haptic map with labels for all image
pixels. In an evaluation using images with idealized haptic
labels, our algorithm substantially outperformed a previous
algorithm. It also enabled a real robot to label leaves and trunks
after reaching into artificial foliage. In addition, we show that
our algorithm can use a convolutional neural network (CNN)
for material recognition from Bell et al. [1] that we modified and
fine-tuned. This CNN provides estimated probabilities for haptic
labels using vision alone, which enables the algorithm to infer
haptic labels before the robot makes contact with anything. In
our evaluation, using this CNN further improved performance.

I. INTRODUCTION

Robots could benefit from maps that represent how their
local surroundings feel. For example, a robot might choose
not to slide against a hard, rough surface to avoid damaging
itself, or it might choose to compress a soft material to gain
access to a location. In this paper, we present a method by
which robots can use touch and vision to efficiently produce
a haptic map. We define a haptic map as a set of pairs
associating locations with haptic labels [2], and haptic labels
as labels that represent properties of a location that can be
inferred via tactile sensing.

Because of the inherently local nature of tactile sensing,
a naive approach to haptic mapping would require that the
robot make physical contact with each and every location
of interest. This would be energetically expensive and time
consuming. By using touch and vision, robots have the
potential to haptically map their surroundings with greater
efficiency. Our approach assumes that visible surfaces near a
robot that are visually similar are more likely to have similar
haptic properties. In our previous work [2], we introduced
an iterative algorithm to infer dense haptic labels over a
visible surface using sparse haptic labels. In this work, we
introduce an improved algorithm (See Figure 2) to tackle
the same problem using a dense conditional random field
(CRF) [3]. We also show that our methods give better results
using probabilities generated by a visual material recognition
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Fig. 1: A robot DARCI, equipped with a tactile-sensing
sleeve (blue) and a Kinect, reaching into the cluttered foliage
environment

system before the robot makes contact. The visual mate-
rial recognition system uses a convolutional neural network
(CNN) developed by Bell et al. [1] that we fine-tuned.

We describe our algorithm in Section III. We analyzed
the performance of our algorithm through simulated trials
(see Section IV-A). We compared the performance of our
algorithm using a uniform probability distribution versus
probabilities obtained using the visual material recognition
system (see Section IV-B) before the robot makes contact.
We also evaluated our algorithm with a real robot in a clut-
tered foliage environment, as shown in Fig. 1 (see Sections
V & VI).

II. RELATED WORK

Researchers have worked on various ways of inferring
properties of the environment using vision, tactile sensing, or
a combination of both. Knowledge of the material properties
of an object could help a robot deal with novel objects in
the environment.

A. Material recognition using tactile sensing

Robots may make contact with various objects in the
environment while performing manipulation tasks. Tactile
sensing enables robots to gain information about object
characteristics such as surface texture [6], [7], stiffness [8]
and temperature [9]-[12]. These properties have been shown
to be useful in material recognition [6], [7], [11], [12].
In addition, there have been extensive studies on material
recognition using tactile sensing with features such as contact
forces, contact motion, contact pressure, contact vibration
etc. [13]-[16]. Tactile sensing only provides these labels to
regions of contact. In this work, we use tactile information
from these points of contact and couple it with information
from vision to infer properties of the rest of the scene.
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Fig. 2: Integrating tactile sensing and vision for material recognition. The vision pipeline is processed by a fine-tuned
convolutional neural network originally trained on the MINC dataset by Bell et al. [1]. We use a fabric based tactile sensing
sleeve and HMMs [4] to classify points of contact. We combine the probabilities from the two modalities by taking a convex
sum inspired by Arnab et al. [5]. We use a dense CRF to predict labels for each pixel from the combined probability map.

B. Material recognition using vision

Vision has been used for texture recognition [17], [18].
Recent work has shown that vision can also be used for
material recognition tasks [1], [5], [19]-[21]. Bell et al.
[1] introduced a large scale database, Materials in Context
Database (MINC), that has 23 material categories. They also
introduced a framework that combines a convolutional neural
network with a fully connected conditional random field to
produce pixel level material labeling of the scene with 73.1%
mean class accuracy. In this work we use the convolutional
neural network model trained by Bell et al. [1] for the visual
perception system.

CRFs are commonly used in vision problems to simulta-
neously segment and assign labels to each pixel in multi-
class labeling problems [22]-[24]. Arnab et al. [5] used a
joint dense CRF model to augment dense visual cues with
sparse auditory cues to estimate dense object and material
labels. While a basic CRF uses a pairwise potential term that
incorporates local smoothing term, a dense CRF incorporates
a pairwise potential between each individual pair of pixels,
which enables long range interaction between pixels. This
is useful for our task as it helps incorporate our notion that
visually similar and spatially proximal points have similar
labels and at the same time enables propagation of the
information to spatially distant points.

C. Integration of touch and vision

Studies have shown that, under some conditions, humans
can be modeled as combining visual and haptic information
using a maximum-likelihood integrator [25]. The researchers

proposed that humans integrate estimates of an environmen-
tal property through each individual sensory modality by
performing a maximum likelihood estimator. Some early
work in integrating vision and haptics [26]-[28] integrated
information from the two modalities to build models of
objects.

Allen [27] used vision to first determine objects of interest
which the robot then explored using tactile sensing. The data
from the two modalities were integrated to build a model
that was compared with a model database to recognize the
object. Stansfield [26] presented a robotic perceptual system
that used vision to segment objects, and then haptically
explored them to build a model of the object. Hosoda et al.
[29] used a Hebbian network to learn consistency between
data from a camera and tactile sensors to identify slip.
Zytkow and Pachowicz [28] used vision and touch to learn
object manipulation tasks. Luo et al. [30] combined vision
and tactile sensing to localize the local point of contact by
matching tactile feature with the visual map. In this work,
we propose the use of dense CRFs to integrate the material
classification predictions from tactile sensing and those made
using vision to generate labels for the entire scene.

Kroemer et al. autonomously inferred low-dimensional
representations from contact vibration tactile data by sliding
a tactile sensor on 26 rich multi-scale surfaces of 17 different
materials. They used both tactile and vision data in the
training phase and created a mapping matrix, which they
used in the testing phase with only tactile data [31]. Ueda et
al. [32] used vision to observe the deformation of an object
after interacting with it and used this information to extract



rheological properties of the object. Charniya and Dudul
[33], used a lightweight plunger and an optical mouse to take
the surface image to classify the material. Zheng et al. [34]
used deep learning for surface material classification using
surface texture images and time-series of acceleration data
measured from scratching the surface. They used multiple
convolutional neural networks, one with images as inputs and
the other with spectrograms of acceleration signals as inputs
and used a fully-connected layer to combine information
from both.

Gao et al. [35] trained two CNNs for haptic and vision
data and combined their output using a fusion layer to
assign up to 24 haptic adjectives to an object. To use the
highest-performing version of their algorithm, a robot would
obtain images of the object from multiple views, and record
tactile signals while touching the object with four exploratory
behaviors (hold, squeeze, slow slide, and fast slide). This
work is strongly related to ours. For example, their haptic
adjectives could be considered a type of haptic label, and
they make use of the same material recognition CNN from
Bell et al. [1] that we do. However, they focus on assigning
multiple haptic labels to a single isolated object that the robot
has haptically explored. In contrast, we focus on assigning
haptic labels to locations all around the robot to produce a
haptic map. Our current algorithm assigns a single haptic
label to each location with the notion that the haptic label
could be inferred by touching the location.

D. Haptic Mapping of the scene

Haptic maps generated via active exploration [36]-[38]
and incidental contact [39] tend to be sparse due to the
local nature of tactile sensing. Our previous work [39]
used the sparse haptic map generated by tactile sensing
and demonstrated its usefulness in manipulation tasks. Our
previous work [2] then generated dense haptic maps of the
visible scene by combining sparse data from tactile sensing
with vision data. We achieved this by introducing an iterative
algorithm that incorporates the notion that visually similar
objects may have similar haptic properties. We used this
to infer dense haptic labels of the scene from points of
contact, and used a joint space planner to reach multiple
goal locations in a cluttered environment with just one plan.
However, this algorithm did not leverage the potential for
vision to predict the haptic labels before the robot makes
contact using visual cues alone. In this paper, we introduce
an improved algorithm to achieve the same goals.

III. ALGORITHM

Our proposed algorithm (Figure 2), uses a dense CRF
(Section III-A) to generate dense haptic labels from prob-
abilities estimated using tactile sensing and vision (Section
II-B). In Section III-C, we compare the algorithm with our
previous algorithm [2] and we describe the implementation
details in Section III-D.

A. Generating dense haptic map

We use a dense conditional random field [3] in a manner
similar to Arnab et al. [5] to obtain a dense haptic map.

Given a dense probability map from the visual modality (p”)
and a sparse probability map from tactile sensing (p?), we
combine the two probabilities using a convex combination.
This is inspired by Arnab et al. [5], who generated material
labels using two separate modalities, vision and audio. They
combine these two terms by taking their convex combination.
We use this approach since the haptic labels are sparse,
similar to the labels acquired by audio sensing in [S]. We
combine the two terms as shown in (1)

if haptic label
is available,

pi(zi) =
wyp¥ (x;) + (1 — wy)U otherwise,
(D
where x; is the haptic label of pixel ¢, pY(x;) is the
probability of the label estimated by a classifier trained to
predict labels using vision (Section III-B) and p!(x;) is the
probability of the label estimated by tactile sensing (true
labels in Section IV and labels generated by hidden Markov
models (HMMs) [4] in Section V). Note that only one
haptic label from a mutually exclusive set can be assigned
to each pixel ¢. U is a uniform distribution. wy, and w, are
weight parameters (which can take a value between 0-1) that
determine the importance of each individual prediction. Our
algorithm then assigns haptic labels to individual pixels using
a dense CRF [3]. It finds a set of labels that minimizes the
Gibbs energy function defined as follows:

B(x|l) =) _ti(z:) +wp ) _wij(wiz;) (g
i i<j
where ;(x;) is the unary term and ;;(x;,x;) is the
pairwise term that connects every pixel pair in the image.
We use the unary and pairwise terms from Bell et al. [1]. w,,
is the weight for the pairwise term.

Yi(wi) = —logpi(z;) 3)
Yij(wi,x5) = 6(xy # x)k(fi — f5) 4)

In (4), § is a label compatibility term which introduces a
penalty if two pixels are assigned different labels (See eq.
(5). k is a Gaussian kernel.

8(x; # x;) = {1 o o, 5)

0 otherwise,

The feature f; used in [1] is the color (/ Lye I b) repre-
sented in L*a*b* color space and position (p*,p¥) of each
pixel:
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where 64, 01, and 6, are constants and d is the smaller input

image dimension. To summarize,

1) We use the the dense CRF framework used by Bell et

al. [1]

2) We use the formulation used by Arnab et al. [5] to

combine the probabilities from the two modalities.




B. Probability from vision

To generate a probability distribution for material recog-
nition based on the scene before contact, we use a convo-
lutional neural network trained for material recognition in
images by Bell et al. [1]. Bell et al. [1] trained the network
on the MINC database released by the same authors. The
images in the MINC dataset are annotated with 23 material
categories. For this work, we fine-tuned this network to rec-
ognize 8 material categories (Ceramic, Paper, Plastic, Metal,
Fabric, Wood, Glass and Other) using patches extracted from
various RGB-D datasets [5], [40]-[44]. These labels could
reasonably be classified using tactile sensing [7], [11] and
they better match the labels in the MINC database [1].

We annotated 228 images from these publicly available
datasets with the 8 material categories mentioned above. We
ensured that none of these 228 images used for fine tuning
were part of the image dataset used for evaluation (Section
IV). We then adopted the same procedure used by Bell et al.
[1] to extract patches from these 228 images. Specifically, we
used Poisson disk sampling to sample pixels in the images
and extracted square patches centered around these points.
The dimension of each patch was 23.1% of the smaller
image dimension. We then fine-tuned the MINC CNN model
using Caffe [45]. We replaced the last fully connected layer
(originally with 23 outputs) with a fully connected layer with
8 outputs. Since our dataset is small, we froze the weights of
all the layers till the inception (3b) layer. For the rest of the
convolution layers, we used one tenth of the learning rate of
the last layer. We used the stochastic gradient descent (sgd)
method for optimization. We used a base learning rate of
0.001. We would step it down by a factor of 10 every 20000
iterations. We set the momentum(vy), which helps accelerate
the learning, to 0.9. We also tried to fine-tune the values of
the earlier layers, but this did not help improve the results
with our dataset. We did the training on an Amazon AWS
g2.2xlarge instance.

C. Comparison with our previous algorithm [2]

In our previous work [2], we introduced an iterative
algorithm to infer dense haptic labels from a sequence of
sparse haptic labels. Our previous algorithm achieved this by
incorporating the notion that visually similar points are likely
to have similar haptic labels. We maintained a list of points of
contact and their associated color and haptic label. The dense
haptic labels were assigned by finding similar points using a
distance metric in the color space. In our previous algorithm,
vision was only used to determine similar points. Our present
algorithm also uses vision to estimate probabilities of haptic
labels.

D. Implementation:

We implemented our algorithm in Python using the scikit-
image [46], NumPy [47] and OpenCV [48] libraries. We used
the Python code provided by Bell et al. [1], which uses Caffe
[45] for building CNN and the C++ implementation of dense
CREF released by Krihenbiihl et al. [3].

TABLE I: Values of parameters used for simulations and

experiments
[ Parameter | Simulations | Experiments |
W 0.001 0.0
Wty 0.001 0.01
wp 80 50
0, 0.5 0.5
0r, 3.0 3.0
O 05 05

TABLE II: Comparison of performance of our current algo-
rithm with our previous algorithm [2].

Contact Points/ Pizels correctly labeled
No. of Objects Current Previous
(Avg.£StdDev)% | (Avg.£StdDev)%

5 81.14 £15.02 % 63.08 £19.71 %
10 85.12 £11.68 % 69.48 +£18.26 %
15 87.58 £9.73 % 71.98 £17.28 %
20 89.20 +8.68 % 73.84 £17.02 %
25 90.72 £7.62 % 75.11 £16.18 %
30 91.59 £6.89 % 75.67 £16.09 %
35 92.37 £6.16 % 74.98 £16.91 %
40 93.05 +5.58 % 76.02 £16.26 %

TABLE III: Performance on different environments after 40
contact points per object.

Pixels
Env. Fiscore [0,1] correctly labeled
Type (Avg.£Std.Dev.) | (Avg.£Std.Dev.)%
Low Clutter 0.86 +£0.12 94.36 £5.16 %
High Clutter 0.72 +£0.13 90.28 +5.42 %
Bed 0.92 +£0.06 97.59 +£2.02 %
Floor 0.92 +£0.10 96.85 £3.77 %
Shelf 0.82 +0.11 92.94 £5.28 %
Sink Area 0.76 +£0.14 90.60 +5.87 %
Table Top 0.82 £0.14 93.10 £5.45 %
Misc. 0.84 +0.13 95.23 £4.36 %

IV. EVALUATION WITH SIMULATED TRIALS

A. Comparison with our previous algorithm

First, we compared the performance of our algorithm to
our previous algorithm from [2] using the same evaluation
procedure. We used the same set of 186 RGB-D images
of indoor cluttered scenes suitable for robot manipulation
tasks from various publicly available RGB-D datasets and the
same set of haptic labels as in [2]. Note, for simulations, we
assumed there is no uncertainty in the haptic label. For each
image, we generated a pool of labeled pixels by randomly
selecting 1000 labeled pixels from each segmented object
in the image. We then randomly sampled 40 * N, pixels
without replacement from this pool, where NN; is the number
of objects and : is the image. IV; had values that ranged from
1 object to 24 objects. We repeated this process for each of
the 186 images, resulting in Y, 40 * N; = 52160 labeled
pixels in total. For each of the sampled points, we assumed
that a patch of size 10x10 centered around this point had
the same haptic label as the center pixel and updated the
probability map for this patch. In our previous algorithm,
we did not make this assumption and considered the color
of the single pixel in the middle. Table I shows the values
of the different parameters used in our simulations.
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Fig. 3: Simulation results of haptic categorization after 40 contact points per object for some example images from different
publicly available datasets [41], [42], [49]-[51]. We chose indoor cluttered scenes suitable for robot-manipulation tasks.
These examples show scenes from different environments with varying density of clutter.
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To evaluate how our algorithm performed with more con-
tacts with objects in the environment, we found the number
of pixels that were correctly updated with each new point of
contact. We ignored the background for our evaluation. Table
IT shows the results and compares it with the results from
our previous algorithm. As the number of contacts increased,
the rate at which the pixels were correctly updated decreased.
Feedback-driven sampling, such as sampling from locations
that have not yet been labeled, might result in improved
performance. With a ratio of 40 contact points per object, the
algorithm correctly updated an average of 93% of the object
pixels in an image. Since there were 8602 pixels per object
on average, 40 pixels per object is a relatively small portion
of the visible scene. Note that with just 5 contact points per
object, the algorithm correctly updated an average of 81%
of pixels, which is higher than the results achieved for 40
contact points per object with our previous algorithm in [2].
Figure 3 shows various images from the dataset used in the
simulation and the corresponding outputs.

1) Effect of Clutter: We classified the images in our
dataset into two categories, low clutter and high clutter. We
computed the F score and percentage of pixels updated with
a ratio of 40 contact points per object for all images in
each category. Table Il and Fig. 4 show the results. Our
algorithm performed better with low-clutter environments
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Fig. 5: Percentage of pixels assigned correct/incorrect labels
for different environment types. Green: Correct, Red: Incor-
rect

(Fiscore = 0.86) when compared to high-clutter environ-
ments (Fiscore = 0.72).

2) Effect of Type of Environment: We also classified the
images into 6 different scene-based categories. We computed
the same performance measurements as in Section IV-A.1.
Table III and Fig. 5 show the results. Note that the bed and
floor environments were less cluttered than shelf and sink
environments.

B. Effect of probability from vision—p*

For this set of simulations, we made two changes to the
procedure adopted in Section IV-A. First we redefined the
haptic labels of the 186 images as Ceramic, Paper, Plastic,
Metal, Fabric, Wood, Glass and Other. These labels could
reasonably be classified using tactile sensing and they better
match the labels in the MINC database [1]. Second, we
randomly sampled the points of contact directly from the
image instead of sampling from the pool as done in Section
IV-A.

We evaluated the effect of probability from vision (p,)
by comparing the performance of a uniform probability
distribution with the probability distribution generated using



TABLE 1V: Effect of probability from vision on perfor-

mance.
Pizxels correctly labeled
Contact Points Uniform From CNN
(Avg.£StdDev)% | (Avg.£StdDev)%
0 15.27 £25.66 % 36.96 +28.28 %
100 84.94 +16.08 % 88.68 £9.21 %
200 87.12 £15.47 % 91.41 £7.17 %
300 88.6 £15.11 % 93.07 £5.9 %
400 89.63 £14.93 % 94.26 £4.99 %
500 90.43 £14.83 % 95.16 £4.32 %
600 91.05 £14.79 % 95.89 +£3.74 %
700 91.59 £14.76 % 96.47 £3.29 %
800 92.0 £14.75 % 96.92 £2.9 %
900 92.32 £14.74 % 97.32 £2.55 %
1000 92.6 £14.73 % 97.63 £2.3 %

the convolutional neural network released by Bell et al.
[1] that we modified and fine-tuned. We repeated the same
simulation as described in IV-A using the same set of 186
images. We performed the simulation by initializing p” to
two different distributions described below:

1) Uniform Distribution: We assume that the robot has
no knowledge of the class of the pixels. We assign equal
probability (p” = 1/8) to all classes.

2) Probability Distribution determined by CNN: We set
p" to the probability map of the image using the fine-tuned
CNN described in Section III-B.

Table IV shows the results for the two different distribu-
tions. Before contact, the dense CRF using a uniform prob-
ability distribution assigns the correct labels to 15.27% of
the pixels. The dense CRF using the probability distribution
from CNN assigns the correct labels to 36.96% of pixels. We
see improvement in the performance of the algorithm when
it uses the probability distribution generated from the CNN.

V. EVALUATION WITH A REAL ROBOT

A. Experimental Setup

We used the humanoid robot DARCI (Fig. 1), a Meka
M1 Mobile Manipulator, which includes a mobile base, a
torso on a vertical linear actuator, and two 7-DoF arms.
The mobile base and torso height remained fixed throughout
our experiments. The right arm had a fabric based tactile-
sensing sleeve [52]. The tactile-sensing sleeve has 25 discrete
taxels. It records the contact force and we trained HMMs
for haptic categorization [53]. The joints of the robot arm
use series elastic actuators (SEAs) and have a real-time
impedance controller with gravity compensation. This simu-
lates low-stiffness visco-elastic springs at the robot’s joints.
We mounted a Microsoft Kinect on top of the torso. Our
algorithm processes the data from the two sensors (Kinect
and sleeve) as described in Section III. For our experiments,
we used a system that runs Ubuntu 12.04 32-bit OS with
a 3.5.0-54-generic linux kernel. It has 16 GB RAM and an
Intel(R) Core(TM) 17-3770 CPU @ 3.40 GHz x 8 processor.
We used ROS Fuerte [54] for communicating with the RTPC
on the robot DARCI. We used cv bridge [55] to convert
between ROS images and OpenCV images. We used the
GHMM toolkit [56] to implement and train the HMMs. We
tested the algorithm in an artificial foliage environment. The

TABLE V: Performance of the algorithm on the foliage
environment.

Number of | Average number of | Pixels correctly labeled

reaches (N) contact points (Avg.£StdDev)%
0 0 27.76 £1.57 %
1 6.67 58.36 £20.35 %
2 7 65.37 £27.07 %
3 7.33 65.37 £27.07 %
4 7.33 65.37 £27.07 %
5 7.33 65.37 £27.07 %
6 12 86.87 £10.97 %
7 16 87.04 £10.73 %
8 16.67 87.07 +£10.75 %
9 17 84.46 +14.44 %
10 22.67 82.52 £9.70 %

environment is composed of trunks and leaves as seen in
Figure 1. We used this setup in our previous work [2].

B. Experimental Procedure

We programmed the robot DARCI to make 10 reaches into
the foliage environment for each trial. We conducted 3 such
trials with different configurations of the foliage (See Fig. 6).
In total, the arm reached into 30 end-effector goal locations
(5 pre-selected goal locations x 2 times x 3 trials). For each
of the trials, we randomized the order in which the goal
locations were selected. After reaching each goal location,
the robot-arm came back to the initial starting location and
then moved to the next randomly selected goal location. The
initial starting location of the robot-arm was the same for all
trials.

During each reach, the robot used our previously devel-
oped dynamic MPC controller [57] to reach the goal location
with low contact forces. The robot made incidental contact
with various points in the environment. We used forward
kinematics to locate the contact points and transformed the
coordinates of the points of contact to the image pixel co-
ordinates using the camera properties and depth information.
We ignored contacts beyond visible surface. We identified
those contacts as contacts for which the estimated depth of
the contact point was greater than the depth of the visible
surface. We used trained left-right HMMs with 10 states and
a uniform prior for our experiments. We had one HMM
model each for trunk and leaf and classified the contact
points as trunks or leaves based on maximum likelihood
estimates. We used this information and the Kinect image
to infer haptic properties for the rest of the scene using our
algorithm.

VI. EXPERIMENTAL RESULTS

We annotated the RGB image of the final scene after the
robot completed 10 reaches into the environment. We only
annotated the regions belonging to trunk or leaf and treated
the rest as background. We used this annotated image as
ground truth for our evaluation. Figure 6 shows the haptic
maps generated after various trials. Ignoring the background,
we evaluated the percentage of the pixels that our algorithm
correctly assigns to trunks and leaves after each reach. Table
I shows the values of the different parameters used for
our experiments. Table V reports the results. The algorithm



Fig. 6: The top row shows the scene after the robot made 10 reaches. The middle row shows the annotated images which
are the ground truth. The bottom row shows the corresponding haptic map. The trunks are marked with brown, the leaves
are marked with green and the background is marked in white. We ignored the background for our evaluation. Red X’s in

the top row show the goal locations.

assigned the correct labels to 82.52% of pixels that belong
to trunks or leaves after 10 reaches. Note that, unlike in
simulations, there is some uncertainty involved in the haptic
labels generated by the tactile perception system during
evaluations with the real robot. See the accompanying video
for its real-time performance.

VII. CONCLUSION

We presented a dense CRF-based algorithm to obtain
dense haptic maps across visible surfaces given sparse haptic
labels. We based our approach on the notion that surfaces
near the robot that look visually similar are more likely to
feel similar to one another when touched. To evaluate our
algorithm, we used idealized haptic labels with a collection
of 186 indoor images pertinent to robot manipulation selected
from various publicly available RGB-D datasets [2]. Our
algorithm performed substantially better than our previous
algorithm [2]. In general, it performed better for low-clutter
scenes than for high-clutter scenes. As expected, with more
haptic labels, our algorithm performed better at inferring
the correct haptic labels across the scene. In addition, we
found that using a probability distribution obtained from a
CNN with vision data improved performance. Our algorithm
obtained an average accuracy of 98% with the CNN versus
93% without, given 1000 contact points. Given O contact
points, our algorithm achieved 37% with the CNN versus
15% without. We also evaluated our algorithm on a real robot
reaching in artificial foliage. It assigned the correct label to
82.52% of pixels after 10 reaches.
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