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Abstract— Many tactile sensors can readily detect physical
contact with an object, but tactile recognition of the type
of object remains challenging. In this paper, we provide ev-
idence that data-driven thermal tactile sensing can be used
to recognize contact with people and objects in real-world
settings. We created a portable handheld device with three
tactile sensing modalities: a heat-transfer sensor that is actively
heated, a small thermally-isolated temperature sensor, and a
force sensor to detect the onset of contact. Using this device,
we collected data from contact with the arms of 10 people
(3 locations on the right arm) and contact with 80 objects
relevant to robotic assistance (8 object types in 10 residential
bathrooms). We then used support vector machines (SVMs) to
perform binary classifications relevant to assistive robots. When
classifying contact as person vs. object, classifiers that only used
the temperature sensor performed best (average accuracy of
98.75% for 3.65s of contact, 93.13% for 1.0s, and 82.13% for
0.5s). When classifying contact into two task-relevant object
types (e.g., towel vs. towel rack), classifiers that used the heat-
transfer sensor together with the temperature sensor performed
best. Performance was good when generalizing to new contact
locations in the same environment (average accuracy of 92.14%
for 3.65s of contact, 91.43% for 1.0s, and 84.29% for 0.5s),
but weaker when generalizing to new environments (average
accuracy of 84% for 3.65s of contact, 71% for 1.0s, and 65%
for 0.5s).

[. INTRODUCTION

In this paper, we provide evidence that data-driven ther-
mal tactile sensing can be used to recognize contact with
people and objects in real-world settings. Unlike approaches
that attempt to classify objects into a large number of
categories, we focus on task-relevant binary classification.
Robots operating in human environments would benefit from
the ability to recognize when contact has occurred with a
person versus objects in the environment. For example, a
robot might regulate the force it applies to a person or
monitor contact with a person for communicative signals.
When manipulating objects, distinguishing between contact
with an object of interest and a nearby object could also
be useful. For example, a robot might use this capability to
better maneuver its end effector to grasp a target object. In
general, we expect that the task being performed by the robot
and observations of the local environment can be used to
reduce the tactile recognition problem to one of categorizing
contact into a small number of categories.

We train support vector machines (SVMs) to classify time
series from a temperature sensor and a heat-transfer sensor.
As we demonstrate, temperature sensing is useful for detect-
ing contact with a person’s body versus the environment.
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Fig. 1: A person using a handheld device to make contact with a toothbrush
on counter in a bathroom (left), and a human participant’s shoulder (right).

Temperature sensing is well matched to this classification
problem, since the human body actively generates heat,
while most objects in the environment are thermally passive
and close to the ambient temperature. We also show that
heat-transfer sensing can be informative for distinguishing
between task-relevant objects. This is in part due to heat-
transfer sensing being able to distinguish materials with
different thermal effusivities, such as metal and plastic.

Data-driven approaches for tactile perception have shown
promise [1], but suitable training data is lacking. To help
address this challenge, we developed a portable handheld
device (see Fig. 1) [2] for the efficient acquisition of heat-
transfer and temperature sensing data from objects in their
natural settings. Robot vision and audition, including face
detection and speech recognition, have benefited greatly from
large labeled data sets of pictures, videos, and audio collected
by people. One of our motivations for creating this device
is to enable people to efficiently acquire tactile training data
for robots, so that tactile perception systems for robots can
similarly benefit. Our data-driven recognition algorithm uses
this data to train the classifiers for thermal recognition of
contact with people and objects.

Thermal recognition of objects in situ entails distinct chal-
lenges from material recognition and laboratory-based stud-
ies. In contrast to recognition of material samples, objects
will often be composed of multiple materials with distinct
thermal properties, such as different thermal effusivities.
Objects will also have geometries that affect heat transfer,
such as by altering the contact area between thermal sensors
and the object. Also, different objects in the same object
category can be made of thermally distinct materials, such
as a plastic fork and a metal fork. In contrast to laboratory-
based studies, objects in their natural settings and thermal
sensors making contact with them will be influenced by more
varied thermal phenomena. These include sunlight through
windows, heating, ventilating, and air conditioning (HVAC),
body heat, and complex connections between objects and the
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Fig. 2: Tactile sensor response with average (solid lines) and standard deviation (shaded) values for both heat-transfer (top two regions in each graph)
and temperature (bottom two regions in each graph) sensors for contact with task-relevant objects and locations on human arm. Black dashed lines show

the onset of contact.

interiors and exteriors of buildings.

To evaluate our approach, we collected two data sets.
For the first, we collected data from contact with 3 differ-
ent locations on the right arms of 10 human participants.
For the second, we collected data from contact with 80
objects, consisting of 8 object types from 10 residential
bathrooms. We considered objects in the bathroom because
many activities of daily living (ADLs) with which robots
might provide valuable assistance take place in bathrooms,
such as hygiene, grooming, bathing, showering, toileting,
transfers, and dressing [3]-[5]. We selected these objects

because they are related to ADLs and are commonly found
within residential bathrooms in the United States.

In our evaluation, we only consider binary classification
problems. Due to the existence of only two categories
(i.e., two object types or two contact types), we use terms
like ‘distinguishing’, ‘classifying’, and ‘recognizing’ nearly
interchangeably.

Our evaluation of human vs. object recognition focuses on
distinguishing contact with a human arm from contact with
task-relevant objects associated with ADLs. This recognition
problem has additional challenges due to factors such as



clothing, the location of contact on the person’s body, and
physiological differences among people (See Fig. 2(f)).

Our evaluation of task-relevant object recognition focuses
on distinguishing a target object, which we refer to as the
tactile foreground, from an object in its immediate sur-
rounding, which we refer to as the tactile background. Each
foreground/background pair corresponds with two objects
relevant to a specific task. For example, the task of placing a
towel on a towel rack and the task of picking up a toothbrush
from a counter (See Fig. 2).

II. RELATED WORK

Most previous tactile recognition studies focus on data
taken from material samples or objects in a controlled lab-
oratory setting. However, our work focuses on task-relevant
object recognition using data gathered from in situ objects
in homes. Also, contact based material recognition studies
in the literature have often focused on deliberate exploratory
contact behaviors. These behaviors help in controlling the
sensing to maximize the information retrieval for material
recognition. Our work uses a single instance of sustained
contact.

A. Human vs. Object Recognition

Humans represent an important class of object in the world
that merits special consideration by machines. Research
communities devoted to other perceptual modalities, such as
audio and video, have emphasized machine perception of
signals resulting from people, such as face detection [6]. In
contrast, detecting when tactile signals result from human
contact has been relatively unexplored [7]. In [8], we used
heat flow to classify contact with medium-density fiberboard
versus a persons bare forearm. The closest other work of
which we are aware investigated multimodal tactile sensing
for affective interaction with the Huggable, a small robotic
teddy bear for companionship [9], [10]. The Huggable used
distributed electric field, temperature, and force sensors [10]
to categorize gestures based on 200 examples from a single
person using his/her hand to make communicative contact.
In contrast, we focus on discriminating contact between
objects and people under varying conditions, such as location
and presence of clothing, and investigate the relevance of
these capabilities for tasks related to ADLs. [11] uses SVMs
and carefully designed features to detect collisions from
physical interactions between a robot and a human. Kerr et
al. [12] used the BioTAC™ sensor to infer properties of a
human body by detecting pulse, classifying the heart rate and
analyzing pulse-to-pulse intervals.

There have also been studies on detecting people using
non-contact thermal sensors such as thermal cameras [13].
This body of work generally relies on the fact that there is
a temperature difference between a heat-generating object
like the human body and surrounding objects. Researchers
have also used other non-contact thermal sensors such as
pyrometers to measure skin temperature [14]. [15] gives an
overview of the temperature of the human body, explains
the source of heat generation, and discusses its variability
depending on the location on the body.

Fig. 3: Design of handheld haptic data acquisition device.

B. Object vs. Object Recognition

1) Thermal Sensing Only: There have been many studies
on material recognition using only thermal sensing. For an
overview of such material recognition studies, please refer
to [8], [16]-[20].

There have also been studies in which researchers have
used thermal sensing in conjunction with other sensory
modalities for material recognition purposes.

2) Thermal and Force Sensing Modality: Engel et al.
[21], [22] developed a flexible multimodal tactile sensing
system using pressure and thermal sensing and achieved 90%
accuracy over 50 trials for recognizing 5 materials. Siegal et
al. [23] developed a multimodal sensor consisting of an 8 x
8 array of capacitive tactile sensors with a 4 x 4 array of
thermal sensors. Takamuku et al. [24] designed an anthropo-
morphic finger consisting of 3 strain gauges and 4 thermistors
with a heating element arranged in a layered format. They
successfully classified 5 materials using a combination of
strain gauge information and thermal sensing. Yang et al.
[25] constructed a 32 x 32 array of conductive rubber based
force sensors and absolute temperature measurement chips
mounted on both sides of a flexible substrate.

Yuji et al. [26] developed a tactile and thermal sensor using
a single pressure-conductive rubber sheet with unequally
spaced electrodes to infer both temperature and contact force.
They used a common heating element to warm a 2x2 array
of sensing modules to 36°C and performed tests with two
materials. Caldwell et al. [27] developed a multimodal tactile
sensor to measure contact force and thermal response. They
measured the contact force and robot position during specific
exploratory behaviors to infer texture, stiffness and object
profile, temperature and thermal properties. The thermal
sensor used a temperature controlled heat source at a constant
40°C and a Peltier Effect sensor to identify 7 materials with
different thermal properties. Castelli [28] developed an 8x8
array of capacitive-based tactile sensors using temperature-
dependent semiconductors for absolute temperature measure-
ment. Dario et al. [29] developed a polymer-based tactile and
thermal sensor inspired by dermal and epidermal layers of
human skin.

3) Thermal and Other Sensing Modalities: Taddeucci et
al. [30] used a multimodal haptic sensing finger with thermal
and vibration feedback and a high resolution array of tactile
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Fig. 4: Exploded view of tactile sensor module.

sensors to identify 14 objects during idealized sliding contact
using neural networks. [31]-[33] used the BioTAC™ sensor
with thermal feedback to classify objects using Bayesian
learning techniques, ANNs and HMMs.

Mittendorfer et al. [34] developed hexagonal multi-
modal sensing modules with optical proximity, thermal and
acceleration-vibration modalities combined to form an array
on a robot arm. In [35], the authors developed a prosthetic
skin that used strain, pressure, temperature, and humidity
sensors, along with electroresistive heaters.

III. DESCRIPTION OF THE HANDHELD DEVICE

Figure 3 shows the design of the complete handheld
data acquisition device. Figure 4 shows the tactile sensor
module that mounts to the front of the handheld device and
comes into contact with objects. The tactile sensor includes a
sensor for measuring heat transfer, a fast response thermistor
for temperature sensing and a fabric-based force sensor for
force estimation. The heat-transfer and temperature sensing
modalities are used for recognition purposes. The force
sensing modality is only used to detect the onset of contact
and is not used for recognition.

The handheld device uses an onboard camera to save
a picture of each object for documentation. The onboard
Raspberry Pi 2 and 8 channel 12 bit ADS7828 analog-to-
digital converter (ADC) record data to a USB flash drive
from the force sensor at approximately 550 Hz and from the
heat-transfer sensor and temperature sensor at approximately
110 Hz. To simplify analysis, we upsampled the data from
the heat-transfer and temperature sensors to 550 Hz using
zero-order hold interpolation in order to match the sample
rate of the force sensor.

A. Design Assembly of the Sensor Module

Figure 4 shows the complete sensor with a 3D printed
base. We used Surebonder 727 Hot Glue [36] to attach the
passive fast response thermistor, and heat-transfer sensor on
top of the force sensor, which is mounted on the 3D printed
base. The heat-transfer sensor and fast response thermistor
sit beside one another and form the outer-most sensing layer.
They come into direct contact with the object, which allows
for faster response times.

B. Heat-Transfer Sensor

We based the sensor for measuring heat transfer on our
work in [8]. The sensor uses a Thorlabs HT10K - Flexible
Polyimide Foil Heater with a 10 kOhm Thermistor [37]. This
sensor uses the modified transient plane source technique for
thermal property estimation [38]. In this technique, a resistive
heater heats the sensor up before bringing it into contact with
a uniform material sample at room temperature. With good
contact and a large sample, the material’s thermal effusivity
[8] primarily determines the heat transfer from the sensor
to the sample. This results in a characteristic temperature
change measured by the HT10K’s thermistor. We converted
the raw ADC output from the thermistor in the heat-transfer
sensor to degrees Celsius using a third-order polynomial fit
(R? = 0.994) based on calibration data.

C. Temperature Sensor

Unlike our previous work in [8], we also used a small, pas-
sive EPCOS fast response 10K NTC thermistor to measure
the approximate air temperature before contact and the ob-
ject’s temperature during contact. Though heat from the heat-
transfer sensor’s heater and other onboard electronics, as well
as other environment factors tend to raise the temperature of
the surrounding air, it is still possible to estimate the ambient
temperature of the environment within approximately 1°C
by recording the temperature sensor value prior to contact.
We implemented a third-order polynomial fit (R? = 0.994)
based on calibration data to convert the raw ADC output
from the fast response thermistor to degrees Celsius (See [8]
for details).

D. Fabric-Based Force Sensor

The force sensing modality uses a single 2.5cm square
taxel of piezoresistive fabric in a voltage divider circuit based
on the stretchable fabric-based force sensor described in [39].
We converted the raw ADC output from the taxel to force in
newtons, assuming a uniform pressure distribution over the
taxel, using a third-order polynomial fit (R? = 0.984) with
calibration data collected using an ATI Mini45 Force/Torque
Sensor.

IV. EXPERIMENTS

We performed two sets of experiments to evaluate our
device and methods.

A. Experimental Procedure

For both the experiments with humans and objects, we
performed the following procedure for data collection.

e We identified the object or the location on the human
arm and attached a sticky note adjacent to it identifying
the object / location.

e Before a trial with any object or any location on the
human arm, we allowed the heat-transfer sensor to heat
for 3 minutes to allow it to reach a thermal steady
state. This reduces variability in the sensor’s initial
conditions.

e We took a picture of the object/location using the
camera mounted on the device.
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Fig. 5: Test set consisting of 10 sets of common items found in a bathroom associated with activities of daily living (ADLs): bathtub, sink counter, empty
towel rack, toilet handle, toilet seat, toilet tank, toothbrush and towel on towel rack.

e We attempted to move the device in a linear motion
normal to the surface of the object with constant
velocity.

e We maintained contact with approximately constant
pressure for 5s and waited for a beep from the device
to break contact.

B. Experiments with human participants

For these trials, we used the handheld device to make
contact with three locations on the human arm, namely the
wrist, the forearm and the shoulder (covered by the sleeve of
an article of clothing) as shown in Fig. 6. Each participant
wore his/her own shoulder-covering clothing for the study.
We recruited 10 participants via word of mouth. We had 3
female and 7 male participants from 21 to 49 years of age.
We obtained informed consent from each participant. Our
study was approved by the Institutional Review Board of the
Georgia Institute of Technology. For each experiment, we
asked the participant to keep his / her arm on a table-like
surface while we applied the handheld device to three points
on his / her arm.

We chose locations on the wrist, forearm and elbow of
a human arm to be anatomically consistent across different
participants in our controlled experiments (Fig. 6). For the
wrist, we chose a location lcm away from the triquetral
bone towards the sagittal plane. For the forearm, we chose a
location on the bulk of the flexor muscle, Scm away (towards
the wrist) from the line connecting the elbow pit and elbow
bone. For the shoulder, we chose the location of the acromion
scapula. We conducted 1 trial per location, thus collecting

a total of 30 trials (3 locations X 10 participants). Figure
2(f) shows 3.65s of the data from all trials on the wrist and
shoulder of human participants. As seen in the figure, the
heat-transfer rate is higher for the bare wrist (and forearm)
locations compared to the clothed shoulder potentially due to
the thermal insulation provided by the clothing. Unlike the
experiments with household objects, the temperature sensor
warms up slightly after contact because it is in contact with a
heat-generating object (human body). The temperature sensor
is close to ambient temperature (within 1°C) before contact.

C. Experiments with household objects

Figure 5 shows the common household objects found in
a bathroom from which we collected data. Our objective
was to analyze recognition performance for the following
task-relevant tactile foreground versus tactile background
recognition problems: toothbrush vs. counter; towel vs. towel
rack; toilet handle vs. toilet tank; toilet seat vs. toilet tank;
and towel vs. bathtub.

1) Objects in the same bathroom: We used the handheld
device to make contact with each of the 8 objects in the same
bathroom. We collected 10 trials from 10 different locations
on the same object while waiting for 3 minutes between each
trial. After collecting the data, for each sensing modality,
we subtracted the starting temperature of a trial from all
subsequent measurements in the trial. We did this to avoid
bias from spatially varying temperatures in the bathroom.

2) Objects from different bathrooms: We used the hand-
held device to make contact with each of the 8 objects once
each in 10 different bathrooms for a total of 10 trials with
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Fig. 6: The three images on the left show data collection from three locations
on the dominant arm of 3 different participants using the handheld device.
The image on the right shows the test locations (black) [1-Wrist, 2-Forearm,
3-Shoulder] and the anatomical key points (red) [A-Triquetral bone, B-
Elbow bone, C-Elbow pit, and D-Acromion Scapula].

each object. Figure 2 shows 3.65s of the sensor data from
all trials with different objects. As seen in the figure, the
heat-transfer rate is higher for the counter when compared to
the toothbrush. Also from the figure we see that the average
room temperature measured by the temperature sensor before
contact varies slightly between trials with toothbrushes and
counters potentially due to variations in the temperature of
the room while the data was recorded. After contact, the
temperature sensor cools slightly for approximately the first
Is of contact before coming to thermal steady state with
the object. Before contact the temperature sensor is heated
approximately 1°C above the air temperature in the room,
potentially due to heat generated in the heat-transfer sensor’s
heater and other onboard electronics.

D. Recognition algorithm

For each trial, we truncated the raw time series from
the heat-transfer sensor and temperature sensor to include
2000 time samples from time of contact to approximately
3.65s after contact for each modality. To ensure accurate
detection of contact, we checked each trial data visually and
determined the time instant when contact occurred using the
force sensor modality. We then used the same time instant
for the thermal modalities in the same trial. Our methods also
used estimates of the derivative (slope) of the heat-transfer
data with respect to time by taking the first difference of
the raw signals and then using a causal filter. The filter was
an 8th-order digital low-pass Butterworth filter with Nyquist
frequency of 100 Hz and cutoff frequency of 5 Hz.

We then normalized each modality by subtracting the
mean and dividing by the variance across all of the modal-
ity’s data, after which we vectorized each modality and
concatenated the resulting vectors into a single vector. We
used a binary support vector machine (SVM) classifier with
a linear kernel and 5-fold cross-validation to recognize each
object-object and human-object pair.

V. RESULTS AND DISCUSSION
A. Results with human participants

1) Effect of different modalities: Table I shows the results
with different modalities and 30 trials across the human-
participants experiment and 80 trials across the objects
experiment. Results show that temperature is a valuable
modality for distinguishing humans from their surroundings
irrespective of location or clothing. This is intuitive as the

TABLE I: Human vs. Object recognition.

Accuracy with Different Modalities
Two Single
Tasks Modalities Modality
H+T+ H+
Slope of H | Slope of H T

Brushing Teeth

Human | Toothbrush 88% 72% 100%

Hand on Counter
Human [ Counter 97% 95% 100 %
Wiping Face

Human | Towel 95% 75% 100%
Flushing Toilet

Human [ Toilet Handle 93% 72% 100%
Flushing Toilet

Human | Toilet Tank 95% 88% 100%

Lifting Toilet Seat

Human Toilet Seat 95% 88% 97 %
Taking a Bath

Human | Bathtub 93% 90% 93%
Placing a Towel

Human | Rack 93% 90% 100 %

[ Average Performance | 93.63% | 8375% [ 98.75% |

*H = Heat-Transfer, T = Temperature Sensor Modality

TABLE II: Human vs. Object recognition : Effect of contact duration.

T Modality
Tasks
0.5s 1.0s 2.0s 3.65s
Brushing Teeth
Human | Toothbrush 80% 97% 97% 100 %
Hand on Counter
Human | Counter 85% 93% 97% 100 %
Wiping Face
Human | Towel 78% 97% 97% 100%
Flushing Toilet
Human [ Toilet Handle 85% 90% 97% 100 %
Flushing Toilet
Human [ Toilet Tank 90% 90% 93% 100%
Lifting Toilet Seat
Human [ Toilet Seat 82% 93% 93% 97 %
Taking a Bath
Human | Bathtub 82% 88% 88% 93%
Placing a Towel
Human | Rack 75% 97% 97% 100%

[ Average Performance [ 82.13% | 93.13% [ 94.88% [ 98.75% |

human body generates heat which can be felt irrespective of
clothing.

2) Effect of contact duration: For these analyses, we
varied the duration of contact by truncating the data at
different time intervals (0.5s, 1.0s, 2.0s, and 3.65s) to see
how rapidly our algorithm could accurately classify. Table II
shows the results for different contact durations. We chose
passive temperature sensing because it gave the best results
in Table 1. Results show the highest accuracy was with
the longest contact duration of 3.65s, as seen in Table II.
However, results with just 0.5s of contact were above chance
(82.13%) showing the potential of these methods for faster
discrimination between humans and their surroundings.

B. Results with objects in the same bathroom

Table III shows the results for objects in the same bath-
room. Using both heat-transfer and temperature sensing gave
the best results. For this experiment, we used two different
towel conditions in dry and wet state as seen in Table III.
Note that the rack in this bathroom had a rectangular cross-
section, thus allowing more contact with the heat-transfer



TABLE III: Object recognition : Generalization to new locations.

TABLE V: Object recognition : Generalization to new environments.

Accuracy with Different Modalities Accuracy with Different Modalities
Task Two Single Task Two Single
Relevant Modalities Modality Relevant Modalities Modality
Scenarios H+T+ H+ Scenarios H+T+ H+
Slope of H | Slope of H T Slope of H | Slope of H T
Toothbrush on Counter 95 % 90% 95% Toothbrush on Counter 90% 85% 70%
Dry Towel on Rack 100% 100% 65% Towel on Rack 65% 65% 55%
Wet Towel on Rack 100% 100% 100% Toilet Handle on Toilet Tank 95% 95 % 55%
Toilet Handle on Toilet Tank 85% 80% 85% Toilet Seat on Toilet Tank 80% 60% 35%
Toilet Seat on Toilet Tank 75% 65% 60% Towel on Bathtub 90% 75% 55%
Dry Towel on Bathtub 95% 95% 60% [ Average Performance [ 8% [ 76% | 54% |
Wet Towel on Bathtub 95 % 95% 90%
l Average Performance [ 9214% | 8929% [ 79.29% | TABLE VI: Object recognition : Effect of contact duration on generalization

TABLE IV: Object recognition : Effect of contact duration on generalization
to new locations.

Task H+T+Slope of H Modalities
Relevant
Scenarios 0.5s 1.0s 2.0s 3.65s
Toothbrush on Counter 90% 90% 95% 95%
Dry Towel on Rack 95% 100 % 100 % 100 %
Wet Towel on Rack 95% 100% 100% 100%
Toilet Handle on
Toilet Tank 65% 75% 90% 85%
Toilet Seat on

Toilet Tank 75% 90 % 90 % 75%

Dry Towel on Bathtub 90% 90% 95% 95%
Wet Towel on Bathtub 80% 95% 90% 95%

[ Average Performance | 84.29% [ 91.43% [ 94.29% | 92.14% |

sensor. Table IV shows the effect of contact duration on
the recognition problem. Even with just 0.5s of contact, the
accuracy results are good because of less variability in object
conditions in the same bathroom, as mentioned above.

C. Results with objects from different bathrooms

1) Effect of different modalities: Table V shows the results
with one trial for each object in each bathroom for different
modalities thus totaling 80 (10 bathrooms x 8 objects x 1
trial) trials. Results (Table V) show that heat-transfer with
temperature sensing gave the best results, thus generalizing
to different objects / bathrooms. Results in Table V are worse
when compared with the results in Table III because 10
trials were taken from 10 different toothbrushes, counters,
towels etc. that may be different in each of the 10 bathrooms.
Results with towel and rack are low, possibly because racks
varied with rectangular and circular cross-sections which
affects the contact area with the heat-transfer sensor. Seg-
regating the data with the rectangular rack, which allows
more contact area with the heat-transfer sensor, resulted in
93% accuracy for towel-rack recognition with heat-transfer
and temperature data.

2) Effect of contact duration: Table VI shows the results
for different contact duration of 0.5s, 1.0s, 2.0s, and 3.65s.
We used both the heat-transfer and temperature data because
it gave the best overall results shown in Table V. Our
methods achieved highest accuracy with the longest contact
duration of 3.65s as seen in Table VI. With a duration of
1.0s, the accuracies are high except for recognition of towel
vs. rack, due to different shapes of cross-sections of racks
(See Section V-C.1). Recognition of towel vs. bathtub in such
short intervals is also low, probably due to different wet and
dry towel conditions.

to new environments.

Task H+T+Slope of H Modalities

Relevant
Scenarios 0.5s 1.0s 2.0s | 3.65s
Toothbrush on Counter 70% | 80% | 85% | 90%
Towel on Rack 55% | 50% | 60% | 65%
Toilet Handle on Toilet Tank | 75% | 90% | 90% | 95%
Toilet Seat on Toilet Tank 70% | 75% | 75% | 80%
Towel on Bathtub 55% | 60% | 70% | 90%

[ Average Performance [ 65% | 71% | 76% | 84% |

D. Discussion

Throughout this paper, we have referred to the actively
heated sensor as the heat-transfer sensor. However, both
thermal sensors rely on heat transfer. For example, the
unheated temperature sensor is cooler than the human body,
resulting in a distinctive signal due to heat transfer from the
human body to the sensor.

We conducted our research with robots in mind. We expect
our results to be relevant to robots that operate in close
proximity to people and manipulate objects, such as assistive
robots. However, other devices could potentially use similar
methods to sense their surroundings and human interaction.
For robots, a number of open questions remain. For example,
more varied conditions associated with a task might degrade
performance. During real-world use, we would expect greater
variability in applied force, contact area, relative orientation
of the sensor to the object’s surface, reheat times, and other
characteristics. Nonetheless, we expect data-driven thermal
recognition to still be useful, given the strong performance of
object vs. object classification when in a single environment
and human vs. object classification.

VI. CONCLUSIONS

We investigated data-driven thermal recognition of contact
with people and objects. Using a portable handheld data
acquisition device, we collected data from 3 different lo-
cations on the arms of 10 different human participants, and
from 8 types of task-relevant objects found in 10 residential
bathrooms. We implemented SVMs to distinguish between
contact with humans and objects, and between task-relevant
object pairs. In our tests, classifying contact as people versus
object worked well with temperature sensing alone in spite of
clothing, individual variation, and different locations on the
arm. Classifying contact into two task-relevant object types
worked well when restricted to a particular bathroom. Heat-
transfer sensing and temperature sensing had complementary
value for this type of recognition problem. Recognition
performed using both modalities outperformed recognition



performed with either modality alone. Classifying contact
in a new bathroom based on training data only from other
bathrooms did not work as well. However, the classifiers did
generalize to new bathrooms to some extent, as evidenced
by their improved performance with longer contact duration.
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