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Abstract— Robots that effectively manipulate the human
body could potentially be useful in a wide variety of applica-
tions, including assistive applications for people with disabilities.
Toward this end, we present a method to enable robots to
compliantly manipulate human limbs. Our approach uses model
predictive control (MPC). Given an action by the robot, the
model predicts how the human body will move and what forces
the robot will apply to the human body. The robot uses this
model to optimize its actions to achieve desired motions of the
human body while controlling applied forces. This optimization
is subject to various constraints, including constraints to avoid
hyperextension of the human’s joints and to avoid slipping of
the robot’s end effectors. In this paper, our controller uses a
quasistatic model of the human limb in contact with the robot’s
end effectors, which have linear Cartesian stiffness with respect
to Cartesian equilibrium positions. We evaluated our approach
in simulation with the specific task of lifting the leg of a human
body in a supine position (i.e., lying down). In our tests, we
varied the goal configuration for the human leg, the stiffness
of the robot’s two end effectors, and the model error (i.e., the
difference between the controller’s model of the human body
and the actual human body). Our evaluation demonstrates the
feasibility of our approach, since our controller performed well
in terms of the forces the robot applied to the human leg and
the human leg’s motions.

I. INTRODUCTION

The human body is a complex object that merits special
consideration by robots. Robots that effectively manipulate
the human body could potentially be useful in a wide variety
of applications. For our research, healthcare serves as an es-
pecially motivating application area. Many healthcare-related
tasks could potentially benefit from robotic manipulation of
the human body, including preparation for surgery, diagnostic
procedures, rehabilitation, and assistance.

In this paper, we focus on the task of repositioning a
person’s limb (i.e., an arm or leg). This often serves as a
subtask for other body manipulation tasks and sometimes
serves as a complete task on its own. We propose a method
by which a compliant robot could potentially use its end
effectors to reposition a person’s limb. We evaluated this
method using a physics-based simulation of a robot with two
end effectors repositioning the leg of a human in a supine
position. This is a challenging task due to the substantial
weight of the leg, the use of two small areas of nonprehensile
contact, the importance of controlling the contact forces, and
the articulated and constrained nature of the limb.

In addition to being an interesting problem for robotic
manipulation, robots that assist with limb repositioning could
potentially be beneficial to patients in hospitals or people
with disabilities [1]. For example, the standard nursing
practice is to reposition people in bed who cannot move
themselves as often as once every 2 hours to prevent the

Fig. 1. An image from the physics simulation we used to evaluate our
approach. The green figure is the simulated human body. The two white
rectangles are the robot’s two Cartesian impedance controlled end effectors.
The red blocks are the surfaces upon which the body rests on during each
trial.

formation of pressure ulcers [2]. Also, many people with
motor impairments require assistance moving their legs, as
evidenced by the wide variety of assistive devices that exist
to help people with disabilities move their own legs [3]. A
robot could potentially provide assistance with these tasks
and others.

Our approach uses model predictive control (MPC). MPC
has the advantage of enabling us to explicitly define costs and
constraints relevant to the task of manipulating the person’s
body. Given a proposed action by the robot, the model
predicts the forces that will be applied by the robot and
how the person’s body will move. This allows the robot to
optimize its actions to reduce the predicted forces, while
achieving desirable predicted motions. It also allows the
robot to select actions that the model predicts will satisfy
constraints. These constraints can be used to avoid actions
that might apply too much force to the person’s body or
hyperextend a joint. They can also help the end effectors
stay in contact with the body and not slip.

In this paper, we use a quasistatic model of the robot
manipulating a human limb. We consider this to be a good
baseline model for this manipulation problem, since slow
motions of the human limb would be desirable for many
applications. We expected a quasistatic model to have suit-
able predictive power due to the limb’s low joint velocities
and joint accelerations. Our results support this notion.
Investigating the use of dynamic models would be a natural
step for future research, and could build on the framework
we present in this paper.

To evaluate our approach, we created a specific controller
in simulation based on our general formulation (see Fig. 1).
The controller enabled a simulated robot to lift a leg with
a knee joint to achieve goal poses for the thigh and shank.



We evaluated the performance of this controller in terms of
its ability to smoothly move the simulated leg to desired
configurations in reasonable lengths of time with appropriate
applied forces. In our tests, we varied the goal configurations,
the stiffness of the robot’s end effectors, and the difference
between the controller’s model of the human body and the
actual human body (i.e., model error). The results from our
evaluation demonstrate the feasibility of our approach.

II. RELATED WORK

Most research on robotic manipulation of the human
body has focused on exoskeletons or specialized devices.
Researchers have investigated rehabilitation devices such
as the MIT-Manus and the Mirror Image Movement En-
abler (MIME), which constrain arm movement and provide
graded assistance to users in reaching tasks [4]. Researchers
have also investigated lower-extremity rehabilitation devices
to move the legs in conjunction with treadmills for gait-
training [5] [6]. Likewise, researchers and practitioners have
developed a variety of robotic exoskeletons for the lower
extremities, such as the Berkeley Lower Extremity Ex-
oskeleton (BLEEX) [7], EXPOS [8], and HAL [9]. Other
related assistive devices include intelligent wheelchairs and
wheelchairs with patient transferring capabilities, such as
[10]. The ”Intelligent Sweet Home” robotic residence de-
veloped at KAIST includes an intelligent bed robot system
consisting of a manipulator and pressure sensors that can,
among other features, provide support to a person in bed
trying to reposition his or her body [11]. Most of these
research efforts involve specialized robotic devices, such
as exoskeletons strapped to the person’s body, or actuated
beds or chairs with large surface areas for contact with the
person’s body. In contrast, we focus on the possibility of a
general-purpose robot using its end effectors to manipulate
the human body, potentially with small contact areas and
nonprehensile contact.

Research in nonprehensile manipulation spans topics rang-
ing from orienting parts in factories to rolling, lifting, push-
ing, and throwing objects [12]. Researchers have previously
investigated two-armed nonprehensile robotic manipulation
using a geometric approach involving friction cones to help
plan actions that maneuver parts [13]. Researchers have
also worked with cooperative mobile manipulation [14]
and cooperative lifting of objects between multiple robots
[15][16]. Although the cooperative and nonprehensile control
strategies in these studies have similarities to our approach,
our focus on manipulating a human limb is distinct. In par-
ticular, we consider the problem of compliantly manipulating
an articulated human limb with biomechanically-relevant
constraints and costs.

The most similar research of which we are aware comes
from a long-term effort to develop the RI-MAN [17] and the
more recent RIBA (Robot for Interactive Body Assistance)
robots that include capabilities for lifting a person. The
RIBA robot has been used to investigate the possibility of
mobile two-armed robots transferring people between beds
and wheelchairs, lifting people, and estimating a person’s

comfort during lifting [18] [19] [20]. Additional studies have
looked into developing a mechanical model to be used by
controllers that lift and carry a person [21]. Similarly, we use
a model-based approach to inform controllers that manipulate
the human body. However, we focus on limb manipulation,
provide a general formulation for our controller, and repre-
sent biomechanical considerations as costs and constraints.
The details of our approach also differ, such as our use of
model predictive control (MPC).

III. MPC FOR REPOSITIONING A HUMAN LIMB

In this section, we present our general approach to robotic
repositioning of a human limb. We start with a general
model of the robot in contact with the human limb. Next,
we find an approximate quasistatic model. We then take
derivatives to find a linear model. Given a proposed change
to the equilibrium positions of the robot’s end effectors,
this linear model predicts how the limb’s joint angles and
the applied forces will change. We formulate a quadratic
programming problem based on this linear model that the
robot solves at each time step in order to decide how
to change the equilibrium positions of its end effectors.
Throughout this paper, we use lowercase boldface symbols
to represent vectors, uppercase boldface symbols to represent
matrices, and lowercase symbols to represent scalars.

A. Model of the Human Limb and the Robot
We start by modeling the human limb as a serial chain

of rigid bodies connected via m pin joints using the com-
mon joint-space Lagrangian formulation for a serial torque-
controlled robot manipulator [22].

MMM(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq +ggg(qqq) = τττhuman + τττrobot (1)

where qqq is the m-dimensional vector of the human limb’s
joint angles, q̇qq and q̈qq are the limb’s m-dimensional joint
velocity and joint acceleration vectors, MMM(qqq) is the limb’s
m × m mass matrix, CCC(qqq, q̇qq) is the m × m Coriolis and
centrifugal matrix for the limb, ggg(qqq) is the limb’s m-
dimensional configuration-dependent gravity vector, τττhuman
is the m-dimensional joint torque vector due to moments
generated by the limb itself, and τττrobot is the m-dimensional
joint torque vector generated by contact with the robot. In
addition, we define joint angle constraints for the human
limb to model acceptable ranges of motion, which we denote
using element-wise inequalities as qqqmin ≤ qqq ≤ qqqmax, where
qqqmin and qqqmax are m-dimensional vectors representing the
element-wise minimum angles and maximum angles for the
human limb’s joints.

We model the base of the human limb, the trunk, as being
rigidly fixed to the world. We only model contact by the robot
and assume all other contact with the limb is negligible. We
model contact with the robot as consisting of a set of n point
contacts, each of which only applies a d-dimensional force
vector, fff roboti , to the human limb with no accompanying
moments, such that

τττrobot =
n

∑
i=1

JJJT
i fff roboti (2)



where n is the total number of contacts, and JJJi is the d×m
contact Jacobian matrix for the ith contact.

We model the robot as having a single end effector at each
of the n contact locations. The robot controls the end effector,
i, by commanding a d-dimensional Cartesian equilibrium
position vector, xxxeqi , that results in the force, fff roboti , applied
at contact i with

fff roboti = KKKi(xxxeqi − xxxi) (3)

where xxxi is the current contact location, and KKKi is the end
effector’s d × d stiffness matrix. This robot model corre-
sponds with a robot using a form of low-stiffness Cartesian
impedance control with linear Cartesian stiffness at each of
its end effectors [23][24] .

Furthermore, we model the contact between the robot and
the human limb as not slipping or breaking. In other words,
for the short periods of time over which the controller makes
predictions, it models each contact position, xxxi, as being
attached to a location on the human limb. In addition, our
model assumes that no new significant contacts occur over
this period of time. As we discuss later, our controller uses
constraints on the predicted contact forces for each contact
to avoid slipping or breaking contact.

Combining the components of this model results in

MMM(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq +ggg(qqq) = τττhuman +
n

∑
i=1

JJJT
i KKKi(xxxeqi − xxxi).

(4)

B. Quasistatic Model

For this paper, we intend for the control system to be
used by robots that move the human body smoothly and
slowly with negligible inertial effects, such that q̇qq ≈ 0 and
q̈qq≈ 0. As such, we created a quasistatic model that neglects
torques from the mass matrix and Coriolis and centrifugal
matrix. Furthermore, we modeled the torques generated by
the human body as being a function of the joint angles
τττhuman = −hhh(qqq), which is a form that has previously been
used to model joint torques in the hip [25]. These modeling
decisions result in

ggg(qqq)+hhh(qqq) =
n

∑
i=1

JJJT
i KKKi(xxxeqi − xxxi). (5)

C. Linear Model

We use our quasistatic model to predict changes to the
human limb’s joint angles, qqq, and the forces applied to
the human limb, fff roboti , given changes to the equilibrium
positions of the contact points, xxxeqi . We estimate these
changes using the m×nd matrix ∂qqq

∂xxxeq
and the nd×nd matrix

∂ fff robot
∂xxxeq

, where xxxeq is an nd-dimensional vector that is the con-
catenation of the n distinct d-dimensional equilibrium contact
position vectors, xxxeqi , and fff robot is an nd-dimensional vector
that is the concatenation of the n distinct d-dimensional
contact force vectors, fff roboti .

We first rewrite our quasistatic model in matrix form as

ggg(qqq)+hhh(qqq) = JJJTTT KKK(xxxeq− xxx) (6)

where KKK is an nd×nd block diagonal matrix with KKKi,i =
KKKi, JJJTTT = [JJJT

1 ...JJJ
T
n ] is an m×nd block matrix representing the

n contact Jacobians, and xxx is an nd-dimensional vector that
is the concatenation of the n distinct d-dimensional contact
locations, xxxi.

If the human limb were not in static equilibrium, it might
begin to accelerate due to gravity and a lack of sufficient
support from the robot. Our model assumes that the equations
of static equilibrium, represented by (Eq. 6), are satisfied
at all times. rank(JJJTTT KKK) = m for the m× nd matrix JJJTTT KKK
would ensure that this is possible. Although it is not generally
necessary, this can be achieved by having a contact point on
each link of the human limb, since this allows an independent
force in an arbitrary direction to be applied to each link.
However, once used by the controller, this may or may not
be achievable due to constraints and model error.

1) Solving for ∂qqq
∂xxxeq

: Since our model assumes that no
contact slips or breaks, we can write the contact locations,
xxx, as a function, xxx(qqq), of the human limb’s joint angles, qqq.
Notably, ∂xxx

∂qqq = JJJ. We also approximate the contact Jacobians,
JJJ, as being constant between controller steps due to small
changes in the joint angles, qqq, which is an approximation
that we have found to be useful and effective in our previous
research, such as [26]. We then rewrite our quasistatic model
as

ggg(qqq)+hhh(qqq)+ JJJTTT KKKxxx(qqq) = JJJTTT KKKxxxeq (14)

and use implicit differentiation to find

∂ggg
∂qqq

∂qqq
∂xxxeq

+
∂hhh
∂qqq

∂qqq
∂xxxeq

+ JJJTTT KKK
∂xxx
∂qqq

∂qqq
∂xxxeq

= JJJTTT KKK, (15)

which we can write as

(
∂ggg
∂qqq

+
∂hhh
∂qqq

+ JJJTTT KKKJJJ)
∂qqq

∂xxxeq
= JJJTTT KKK. (16)

If the square m×m matrix ∂ggg
∂qqq +

∂hhh
∂qqq + JJJTTT KKKJJJ is invertible,

we can solve for ∂qqq
∂xxxeq

with

∂qqq
∂xxxeq

= (
∂ggg
∂qqq

+
∂hhh
∂qqq

+ JJJTTT KKKJJJ)−1JJJTTT KKK. (17)

For this paper, we only consider situations for which ∂ggg
∂qqq +

∂hhh
∂qqq +JJJTTT KKKJJJ is invertible. We computed the m×nd matrix ∂qqq

∂xxxeq
symbolically for the model that we used in our evaluation.
We also note that for our model to predict that the robot can
independently influence the m joint angles, it must be the
case that rank( ∂qqq

∂xxxeq
) = m, which will only be possible with

a sufficient number of contacts, n≥ m
d .



minimize
∆xxxeq

α

∥∥∥∆qqqdes−
∂qqq

∂xxxeq
∆xxxeq

∥∥∥2
(7)

+
n
∑

i=1
βi

∥∥∥ fff robot i
+

∂ fff roboti
∂xxxeq

∆xxxeq

∥∥∥2
(8)

+
n
∑

i=1

n
∑

j=i+1
γi, j

∥∥∥∥n̂nnT
i

(
fff robot i

+
∂ fff roboti

∂xxxeq
∆xxxeq

)
− n̂nnT

j

(
fff robot j

+
∂ fff robot j

∂xxxeq
∆xxxeq

)∥∥∥∥2

(9)

subject to :

qqqmin ≤ qqq+ ∂qqq
∂xxxeq

∆xxxeq ≤ qqqmax (10)

−∆xeqstep ≤ ŝssT
j ∆xxxeqi ≤ ∆xeqstep ∀i, j (11)

µ n̂nnT
i ( fff robot i

+
∂ fff robot i

∂xxxeq
∆xxxeq)≤ ĉccT

i, j
(
III− n̂nnin̂nnT

i
)
( fff robot i

+
∂ fff roboti

∂xxxeq
∆xxxeq) ≤−µ n̂nnT

i ( fff robot i
+

∂ fff robot i

∂xxxeq
∆xxxeq) ∀i, j (12)

fbreak < −n̂nnT
i ( fff robot i

+
∂ fff roboti

∂xxxeq
∆xxxeq) < fdiscom f ort ∀i (13)

α,βi,γi, j Scalar weights for the multi-objective cost function
n The number of contact locations with one end effector per contact location
qqq Current joint angles for the human limb
∆qqqdes Desired change in the joint angles for the human limb
∆xxxeq Change in the equilibrium positions of the robot’s end effectors
∆xeqstep Maximum allowed change for the equilibrium positions of the robot’s end effectors per time step
qqqmin Minimum allowed joint angles for the human limb
qqqmax Maximum allowed joint angles for the human limb
fff robot i

Current contact force applied by the robot to the human limb at contact i
µ Coefficient of friction for contact between the robot’s end effectors and the human limb
n̂nni Unit vector normal to the surface of the human limb at contact i that points away from the interior of

the limb
ĉcci, j Unit vector tangent to the surface of the human limb at contact i and, if d = 3, the jth sample from a

circle around the contact location (i.e., sampled friction cone)
ŝss j The jth unit vector sampled from the unit sphere (d = 3) or unit circle (d = 2) corresponding to equal

magnitude changes in the equilibrium positions of the end effectors
fbreak Minimum compressive force allowed between the robot’s end effector and the human limb to avoid

breaking contact (e.g., disallows adhesive contact forces)
fdiscom f ort Maximum compressive force allowed between the robot’s end effector and the human limb to avoid

causing discomfort

Fig. 2. The quadratic programming problem for the general controller.

2) Solving for ∂ fff robot
∂xxxeq

: To find ∂ fff robot
∂xxxeq

, we directly take the
derivative of fff robot written as

fff robot = KKK(xxxeq− xxx(qqq)) (18)

which for our contact model without sliding results in

∂ fff robot

∂xxxeq
= KKK(III− JJJ

∂qqq
∂xxxeq

). (19)

D. Quadratic Programming Problem

Our approach uses model predictive control (MPC) with a
time horizon of length one. Our model corresponds with the

discrete-time state-space representation1 x[k+1] = A[k]x[k]+
B[k]u[k], where the state vector at the current time step x[k] =[

qqq
fff

]
, the state matrix A = III for all time steps, the input

matrix at the current time step B[k] =

[
∂qqq

∂xxxeq
∂ fff robot

∂xxxeq

]
, and the

input vector at the current time step u[k] = ∆xxxeq.
For the task of moving the human limb, we want the

robot to attain a desired change to the limb’s joint angles,
∆qqqdes, while controlling the applied forces. At each time
step, the robot creates a convex optimization problem. The

1To avoid confusion, we have written the conventional discrete-time state-
space equation using distinct notation without boldface.



optimization finds changes to the commanded equilibrium
positions for the robot’s end effectors, ∆xxxeq, that result in
the lowest cost relative to an objective function subject to
constraints. We base the objective function on the predicted
forces the robot would apply to the human limb, fff robot +
∂ fff robot

∂xxxeq
∆xxxeq, and the predicted joint angles for the human

limb, qqq+ ∂qqq
∂xxxeq

∆xxxeq. In general, the controller searches for
actions that are predicted to achieve the desired changes to
the joint angles of the human limb while keeping the applied
forces low and distributed across the contacts, subject to
constraints on the human limb’s predicted joint angles, the
robot’s commanded equilibrium positions, and the predicted
contact forces.

1) Quadratic Cost Function: Specifically, we formulate
the quadratic programming problem shown in Fig. 2, which
has a quadratic cost function and linear constraints. The α-
weighted term of the cost function (Eq. 7) penalizes actions
based on the difference between the predicted change in
human joint angles and the desired change in the human joint
angles, ∆qqqdes. The β -weighted terms of the cost function (Eq.
8) penalize actions based on the predicted magnitudes of the
forces applied by the robot, thereby encouraging solutions
that result in lower contact force magnitudes. The γ-weighted
terms of the cost function (Eq. 9) penalize actions based on
the differences between the normal forces applied by the end
effectors in order to distribute the applied normal forces more
evenly. For example, this can be advantageous when a robot
has multiple contacts on a single link of the human limb.

2) Linear Constraints: We express the first set of linear
constraints (Eq. 10) using element-wise inequalities to place
limits on the human limb’s joint angles in order to avoid
hyperextension, or joint angles that could result in discom-
fort. The second set of constraints (Eq. 11) limit the size of
the change in the equilibrium positions, ∆xxxeqi , by projecting
proposed changes onto unit vectors sampled from a unit
circle or unit sphere, depending on the dimensionality of
the equilibrium positions (i.e., d = 2 or d = 3). The third
and fourth sets of constraints (Eq. 12 and Eq. 13) seek to
ensure that the robot’s end effectors do not break contact or
slip along the surface of the limb, and thereby match the
contact model we used in our derivation. The third set of
constraints (Eq. 12) use a Coulomb friction model to limit
the predicted shear forces applied by the robot’s end effectors
in one direction for d = 2 or in directions evenly sampled
around a circle for d = 3. The fourth set of constraints (Eq.
13) limit the predicted forces applied normal to the surface
of the human limb in order to avoid situations that would
cause discomfort or result in the robot’s end effector breaking
contact with the human limb (e.g., disallowing adhesive
forces).

IV. EVALUATION

We evaluated our method using a simulated robot with
two end effectors and a simulated human body in a supine
position (see Fig. I). The robot’s task was to reposition the
human body’s right leg to a desired configuration and then

return the leg to its starting configuration. The human leg
had two rotary joints, one at the hip and one at the knee.

A. Controller for Lifting a Human Leg

Using the general methods we have presented in this paper,
we implemented a controller to enable a robot with two end
effectors to reposition the leg’s thigh and shank by rotating
them around the hip and knee joints. The leg controller used
a planar model of the leg with two degrees of freedom,
one at the hip and one at the knee, so that m = 2, d = 2,
and n = 2. We modeled all the links as rectangles in 2D
(i.e., cylinders in 3D). We set hhh(qqq) = 0, since the simulated
human body consisted of rigid bodies connected via pin
joints (i.e., a ragdoll model). We found ggg(qqq) (Eq. 20), xxxthigh
(Eq. 21), xxxshank (Eq. 22), and JJJi using conventional methods
with results similar to textbook examples, such as the ”Planar
Elbow Manipulator” in [22].

gggT =

[ 1
2 (Ltmt cos(qt))+(Ls cos(qs)+2Lt cos(qt))ms)ga

1
2 Lsgams cos(qs)

]
(20)

xxxT
t =

[
rt cos(− 1

2 π +qt)+dt cos(qt)
rt sin(− 1

2 π +qt)+dt sin(qt)

]
(21)

xxxT
s =

[
rs cos(− 1

2 π +qs)+ds cos(qs)+Lt cos(qt)
rs sin(− 1

2 π +qs)+ds sin(qs)+Lt sin(qt)

]
(22)

In these equations, qt and qs are the angles of the thigh
and shank with respect to horizontal; ga is the gravitational
acceleration; mt , Lt , and rt are the mass, length, and radius
of the thigh cylinder; ms, Ls, and rs are the mass, length, and
radius of the shank cylinder; and dt and ds are the lengths
along the thigh and shank at which contact is made. Using
ggg(qqq), JJJT

i , and KKKi, we solved for ∂qqq
∂xxxeq

and ∂ fff robot
∂xxxeq

symbolically
with SageMathCloud [27] and Mathematica [28]. We set

α = 500000000, βi = 500, γi, j = 1, ŝss1 =

[
1
0

]
, ŝss2 =

[
0
1

]
,

∆xeqstep = 0.01 m, µ = 0.15, fbreak = 5 N and fdiscom f ort = 150
N for all our trials.

We set the cost function weights (α , βi, and γi, j) based
on empirical performance. The angular term weight, α , is
much larger than the force term weight, βi. This is due to the
angular term representing differences between small changes
in joint angles, while the force term represents the predicted
force, rather than just a change in the force. We set µ to
be lower than the friction parameter used by the physics
simulator to provide a safety margin. The maximum force
limit, fdiscom f ort = 150 N, corresponds with less than 10,000
Pa of uniformly distributed pressure across the robot’s end
effector. This is small compared to the average female pain
threshold of 290,000 Pa from [29] based on contact with
the hand. We set qqqmin and qqqmax to reflect the typical range
of motion of a human knee. During the trials, we provided
the controllers with the current configuration of the leg, the
current positions of the end effectors, and the current forces
applied by the end effectors. Between trials, we changed KKKi,



the masses of the links, and the dimensions for the links of
the leg models. We implemented the controllers in Python
and used the OpenOpt framework [30] to solve the quadratic
programming problems at each time step.

B. Trajectory Generation and Trajectory Following

When given a goal configuration, qqqgoal , the system first
generates a trajectory, TTT , consisting of a sequence of config-
uration waypoints, TTT = [qqq1,qqq2, ...qqqgoal ]. The waypoints, TTT i,
are evenly spaced with respect to each of the limb’s joints.
The largest angular step between waypoints is less than or
equal to a maximum step size, qstep. The simulated robot
attempts to follow the waypoint trajectory, TTT , using the limb
repositioning controller.

At any iteration of the system, a particular waypoint, TTT i, is
active. While a waypoint TTT i is active, the system solves the
quadratic programming problem with ∆qqqdes = TTT i−qqq, where
qqq is the limb’s current configuration. It then sets the Cartesian
equilibrium positions for the robot to xxxeq+∆xxxeq, where ∆xxxeq
results from the optimization . Except for the last waypoint of
the trajectory, once each and every limb joint angle is within
a threshold, qthresh, of the current waypoint, TTT i, the next
waypoint, TTT i+1, becomes active. For the last waypoint of the
trajectory, qqqgoal , the system uses a more stringent threshold,
qthreshgoal , and either starts to follow a new trajectory or
completes the trial upon meeting this threshold.

For the trials in our evaluation, the robot must reposition
the leg from a supine configuration, qqqsupine, to a lifted con-
figuration, qqqli f ted , and then back to the supine configuration,
qqqsupine. For all the trials in our evaluation, we set qstep = 0.01
rad (0.573◦), qthresh = 0.05 rad (2.865◦), and qthreshgoal = 0.01
rad (0.573◦). In general for this paper, we express all angles
with respect to a world frame with 0 rad (0◦) pointing distally
and horizontally along the platform. We allowed the system
to iterate at a maximum of 3 Hz with respect to simulated
time.

C. The Simulated Robot

The simulated robot consists of two end effectors each
with three actively controlled degrees of freedom. These
degrees of freedom move the end effectors in a vertical
plane aligned with the leg’s range of motion. They enable an
end effector to translate vertically and horizontally, and also
rotate to maintain contact with the leg. Each end effector is
a 1 kg rectangular box with a 0.15 m x 0.104 m contact
surface, which is comparable to a human hand. Our model
predictive controller for limb repositioning commands the
equilibrium positions of the end effectors, xxxeqi , at 3 Hz. A
low-level Cartesian impedance controller that runs at 1 kHz
uses these equilibrium positions to command the translational
forces, fff impi

, applied to the centers of mass of the two end
effectors.

fff impi
= KKKi(xxxeqi − xxxi)+DDDi(ẋxxi)+ ĜGG, (23)

where ĜGG compensates for the constant gravitational force at
the center of mass of each of the end effectors. The nominal
values of the stiffness matrix, KKKi, and damping matrix, DDDi,

are 1000III N/m and 600III Ns/m, respectively. The controller
uses these nominal values in the goal variation simulation
trials V-A. They are then varied in further tests V-B.

We use two independent derivative controllers to dampen
the movement of the end effectors as they rotate with the leg
links.

τee = dθ̇ (24)

where τee is the commanded torque around the end effector’s
center of mass, θ̇ is the current angular velocity of the end
effector, and d is the derivative gain with d = 20 Nms/rad.

D. The Simulated Task

We performed tests of our controller in simulation using
two end effectors and a simulated human ragdoll. We placed
one end effector on the thigh link and one on the shank
link. The simulated ragdoll leg shapes resemble human leg
shapes, however the controller’s model uses link shapes
with rectangular cross sections. Likewise, in the physical
simulation, the geometry of the ragdoll’s legs and the mass
of the ragdoll’s foot resulted in the centers of mass not being
exactly halfway along the lengths of the thigh and the shank,
and thus differed from the centers of mass in the controller’s
planar model. These differences between the actual leg and
the controller’s model of the leg resulted in model error.

We used Gazebo Simulator version 1.8.3 to perform our
evaluation. We constructed the simulated human ragdoll
based on the dimensions of a 50 percentile male from [31],
[32], and [33]. The length and mass of the thigh were ≈ 0.43
m and 12.3 kg, and the length and mass of the shank were
≈ 0.41 m and 4.95 kg. The hip, knee, and ankle joints of the
ragdoll had joint damping values of 1 Nms/rad The ragdoll
rests on top of a platform in part to test the feasibility of our
fixed-base assumption for the human limb. In our tests, the
trunk did not move, which suggests that modeling the human
limb as having a fixed base can be a useful approximation.

Prior to each trial, a modified version of our controller
moved the leg to the starting goal configuration, qt,goal =
0.2 rad (11.459◦ relative to horizontal) and qs,goal = −0.1
rad (−5.730◦ relative to horizontal) and held it there. This
resulted in the full weight of the leg resting on the end
effectors, no constraints being violated, and the system being
in static equilibrium. At the start of each trial, we positioned
the center of the robot end effectors at 0.2 m distal from
the hip joint and 0.198 m distal from the knee joint. In the
physics simulator, we set the coefficient of friction between
the robot end effectors and the human leg to 0.5 for all trials.

E. Evaluation Criteria

We defined task success as lifting the leg to within a
threshold of 0.01 rad (0.573◦) around the goal angles in
less than the amount of time it would take a trajectory
with constant angular velocity averaging 0.017 rad/s (1◦ 1/s)
to reach the larger of the two goal angles. Task success
also required lowering the leg to within a threshold of
0.01 rad (0.573◦) around the initial angles within the same
amount of time as the lifting task, and not allowing the
end effectors to slip along the leg more than 1.5 cm of



Fig. 3. Initial configuration for all trials. The robot must move the leg
from this configuration to a goal configuration, hold the goal configuration,
and then move the leg back to this configuration.

Fig. 4. Visualization of the results from varying the goal configuration.
The y-axis is the goal angle for the thigh. The x-axis is the goal angle for
the shank. The blue O’s represent goals with which the system succeeded.
The red X’s represent goals with which the system failed. The squared in
goals labeled 1 and 2 represent the two goal configurations we performed
further tests on. Goals to the right of the red line hyperextend the knee.

distance away from their starting positions. For a controller
to perform well, it should also move the leg smoothly to
desired configurations in reasonable lengths of time while
applying appropriate forces. To assess these properties, we
calculated the mean amount of slipping, the mean linear fit,
and the mean maximum force. Since we used joint angle
trajectories that were linear in time, we used a least squares
linear fit of the leg joint angles to quantify the smoothness of
the controlled movement of the leg. We report the quality of
a linear fit using the coefficient of determination (R2) of each
leg angle over time for each trajectory. A perfectly smooth
trajectory would give R2 = 1.

V. RESULTS AND DISCUSSION

A. Varying the Goal Configuration

First, we evaluated the ability of the system to achieve
various goal configurations for the simulated human leg (i.e.,
the thigh angle and shank angle). We conducted 25 trials,
each with a distinct goal configuration (see Fig. 4). The blue
circle indicates a success as defined by the criteria for task
success described above and the red x indicates a failure. The
red line to the right of the graph represents the joint limit
constraint where qs,rel,max =−0.01 rad (−0.573◦) relative to
the thigh angle. We only selected goal configurations that
did not hyperextend the knee, which is why all of the trials
are to the left of the red line.

Fig. 5. The two goal configurations used for further testing (Left: Goal 1,
Right: Goal 2).

The controller had difficulty primarily when the thigh goal
angle was close to zero. With the thigh goal angle set at
0.157 rad (8.995◦), the controller failed to complete the
task because the red support platform prevented the goal
shank angles from being reached. Similarly, the support
platform resulted in the three failures for a thigh angle of
0.314 rad (17.991◦). Our current system follows a simple
straight line trajectory in joint space. Trajectory planning
could potentially avoid collisions with the red platform and
allow the controller to reach more goals.

B. Further Testing with Two Goal Configurations

We performed 9 trials for each of 2 goal configurations
(a total of 18 trials) that we chose from the successful
configurations. During the 9 trials, we varied the end effector
stiffness and damping between three settings - low (k = 500
N/m, d = 424 Ns/m), medium (k = 1000 N/m, d = 600
Ns/m), and high (k = 2000 N/m, d = 849 Ns/m). We also
varied the modeled leg mass relative to the actual leg mass by
±15% and the modeled leg length relative to the actual leg
length by ±15%. Figure 5 shows the two goal configurations.
The first goal configuration was qt,goal = 0.628 rad (35.982◦

relative to horizontal), qs,goal = 0.385 rad (22.059◦ relative to
horizontal) and the second goal configuration was qt,goal =
0.471 rad (26.986◦ relative to horizontal), qs,goal = −0.443
rad (−25.382◦ relative to horizontal).

Table I provides the results for the two goals. For Goal 1,
the controller succeeded in 8 out of the 9 trials and performed
well in terms of low slipping, high smoothness, and low force
relative to the task requirements. The controller failed only
when the low stiffness setting was used. For Goal 2, which
was closer to the initial configuration of the leg, the controller
succeeded in 8 out of 9 trials, and also performed well by
our metrics. The controller failed only when the length was
varied to +15%.

VI. CONCLUSION

General purpose robots capable of effectively manipulat-
ing the human body with their end effectors could potentially
be beneficial for a variety of applications. We have presented
a general approach for robotic repositioning of human limbs
via model predictive control. While our results in simulation
are promising, the extent to which our approach would work
with real robots and real human bodies remains an open
question. We have presented empirical evidence based on
physics simulations to demonstrate the feasibility of our
approach. Specifically, we evaluated the performance of a
particular controller for the task of repositioning a human



TABLE I
RESULTS FROM FURTHER TESTING WITH TWO GOAL CONFIGURATIONS (M±SD)

Success Mean Slip (cm) Mean Linear Fit (R2) Mean Max Force (N) Max Max Force (N)
Goal 1 8/9 trials 0.51±0.098 0.993±0.005 91.996±10.891 105.025
Goal 2 8/9 trials 0.374±0.120 0.998±0.004 102.927±2.121 105.240

leg. The controller performed well at moving the simulated
leg to a number of configurations and did so smoothly,
at reasonable speeds, and with appropriate force. It also
succeeded in the presence of model error, which bodes well
for real-world implementations.
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