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Abstract— Moving a robot arm quickly in cluttered and
unmodeled workspaces can be difficult because of the inherent
risk of high impact forces. Additionally, compliance by itself
is not enough to limit contact forces due to multi-contact
phenomena (jamming, etc.). The work in this paper extends our
previous research on manipulation in cluttered environments
by explicitly modeling robot arm dynamics and using model
predictive control (MPC) with whole-arm tactile sensing to
improve the speed and force control. We first derive discrete-
time dynamic equations of motion that we use for MPC. Then
we formulate a multi-time step model predictive controller that
uses this dynamic model. These changes allow us to control
contact forces while increasing overall end effector speed. We
also describe a constraint that regulates joint velocities in order
to mitigate unexpected impact forces while reaching to a goal.
We present results using tests from a simulated three link planar
arm that is representative of the kinematics and mass of an
average male’s torso, shoulder and elbow joints reaching in
high and low clutter scenarios. These results show that our
controller allows the arm to reach a goal up to twice as fast as
our previous work, while still controlling the contact forces to
be near a user-defined threshold.

I. INTRODUCTION

The current state of robot manipulation capabilities lags
far behind both human speed and capability. Meanwhile,
an aging world population and events such as the nuclear
disaster at Fukushima, Japan, have led to an increased call for
robotic systems for assistive applications, disaster response,
and search and rescue. However, many current approaches
to robot control are most applicable in highly structured
environments such as factories. Although this design has
resulted in effective obstacle avoidance and precise motion
control for industrial robots, these methods do not generalize
well to unstructured applications where unmodeled impact
and contact can occur.

In this paper we describe our formulation of a multi-
step model predictive controller (MPC) that uses a dynamic
model of the arm. This model incorporates simple impedance
control at the joints and whole-arm tactile sensing. We
use this model to explicitly control the joint states and
contact forces for a three degree of freedom simulated planar
robot arm modeled after the mass and kinematics of a 50th

percentile North American male (see Figure 1). We build
and improve on our previous work on manipulating in clutter
(see [1]) by decreasing the time to reach a goal using our
new dynamic model formulation. In addition, we introduce
a novel impact force constraint that is predictive in nature
and allows an explicit trade-off between end effector velocity
and allowable impact forces.

Fig. 1: Screenshot of our software simulation testbed. There
are 80 red obstacles that are rigid and fixed. Red arrows show
the sensed normal force while green arrows show the total
resultant contact force.

II. RELATED WORK

A. Multi-contact Manipulation

Contrary to most common geometric approaches to ma-
nipulating in clutter that require accurate 3D models of the
world and expect contact only at the end effector [2]–[4], our
approach is based on haptic feedback across the whole robot
arm. Other work which more closely addresses the problem
we are investigating presents a framework for controlling
a robot with multiple contacts along the links [5]. That
work along with work in [6], [7] models contact as being
rigid and assumes that the robot has at least six degrees
of freedom (DoF) between each contact and the torso of
the robot. However, unexpected contact or manipulation in
cluttered environments is not addressed. Other research has
shown that it is possible to make contact at multiple locations
to perform a task, but these also require complete geometric
models of the world, assume rigid contact, or do not use
sensor feedback during the planned actions [8]–[10]. Most
related to our approach is recent work which uses an optimal
control formulation and explicit contact modeling to perform
multi-contact tasks [11]–[13]. However, this work generates
open-loop trajectories and has currently not been applied to
online feedback control for robot manipulation.

B. Collision Detection and Reaction

The majority of research for unwanted or unmodeled
collisions in robotics has focused on reacting to impacts once
collision has occurred [14]–[16]. This includes work which
uses novel sensing technology to quantify forces during
impact [17] and model the instantaneous stiffness effects



during collision [18]. Other work develops mathematical
models to show the effect of compliance on impact forces
[19]. Extensive work has sought to quantify the potential for
injury when robots impact humans [20] and some work has
been done recently to limit joint velocities accordingly [21].
However, in our work we use a novel constraint to regulate
joint velocities so as to limit unexpected impact forces while
still reaching the goal more quickly than if we limited all
joint velocities uniformly.

C. Model Predictive Control in Robotics

One of the initial application areas for model predictive
control (MPC) was chemical process control [22]. MPC is
also generally referred to as receding horizon control such
as in recent work on the control of aerial vehicles [23],
[24]. MPC has also been used in robot locomotion research
(e.g, [25]–[27]). In terms of robot manipulation, MPC has
recently been used in applications such as bouncing a ball
[28], generating manipulator trajectories to compensate for
inertial forces on a boat [29], controlling a 6 DoF cable-
driven parallel manipulator [30], and reaching in free space
[31].

III. CONTROLLER FORMULATION

In this section, we present the basic mathematical models
that we use to formulate our model predictive controller
which uses haptic (tactile and torque) feedback to maneuver
in clutter. For all mathematical formulas, we use bold face
letters to represent matrices or vectors. We start with a joint
space Lagrangian formulation for a serial torque controlled
robot manipulator (see [32], [33]):

M(q)q̈ +C(q, q̇)q̇ + F (q̇) +G(q) =
N∑
i=1

JT
cif

ext
i + τ control (1)

The variables q, q̇ and q̈ are joint angles, velocities and
accelerations respectively and all terms in Equation 1 are in
joint space. On the left hand side of the equation M(q) is
the configuration dependent mass matrix, C(q, q̇) represents
the Coriolis and centrifugal terms, G(q) is the configuration
dependent gravity term and F (q̇) is the resultant joint torque
vector due to both viscous and Coulomb velocity dependent
friction. The terms on the right hand side of Equation
1 represent the control torques (τcontrol) and the external

torques (
N∑
i=1

JT
cif

ext
i ) due to external forces applied by the

environment. N is the number of total contacts at the current
instant in time, fext

i is the current contact force at the ith

contact and Jci is the geometric contact Jacobian at that
contact location. The contact Jacobian is calculated in the
same manner as a traditional geometric Jacobian at a given
location except that the columns related to all joints distal to
the contact are zeroed because they have no direct effect on
the contact. The contact forces and locations are measured
by using whole-arm tactile sensing skin that covers our
simulated robot arm.

All controllers in this proposed work are built on top
of “simple joint impedance control” [34], [35] which we

Fig. 2: Graphical representation of the dynamics that are
included in our robot model. The links have mass and
rotational inertia. The blue elements represent the simple
impedance control at the joints and the red springs represent
contact with the world.

model explicitly in our controller formulation. We use this
method due to its inherent compliance and stability while
making contact in unknown environments. Equation 2 shows
the definition of how the control torques at the joints are
generally calculated for this kind of joint impedance control.

τ control(Kp,Kd, qdes) = Kp(qdes − q)−Kdq̇ + Ĝ(q) (2)

We define the desired joint angle qdes as the angle to
which the joint would settle in the absence of external forces
with perfect gravity compensation. The inputs to determine
the applied control torques are Kp,Kd, qdes. Where Kp

and Kd are m by m dimensional diagonal matrices and m
is the number of joints on the robot. The term Ĝ denotes
an estimate of the torques required for gravity compensation
and we assume that it compensates for G(q) in Eqn. 1. Our
low-level impedance control runs at 1 kHz while our model
predictive controller runs at 100 Hz.

For this work, we neglect joint friction (F (q̇) = 0). We
assume that each contact can be represented as a single point
contact. Additionally, we assume that the change in force
over time for that contact can be represented as the reaction
force from interacting with a linear spring. This model of
the robot arm is represented graphically in Figure 2. We
approximate the variable fext

i using the following relation:

fext
i ≈ fmeasured

i +KciJci(q − q0) (3)

Here fmeasured
i is the current measurement of the normal

contact force at the ith location,Kci is the Cartesian stiffness
of the contact at i, and q0 is the starting configuration of the
arm right after we obtain fmeasured

i .

We combine equations 1, 2, and 3, and rearrange to obtain
a state space representation which gives the following:

[
q̈
q̇

]
= A

[
q̇
q

]
+B


qdes

N∑
i=1

JT
cif

measured
i

q0

 (4)

where



A =

 −M(q)−1(Kd +C(q̇, q)) −M(q)−1(Kp +
N∑
i=1

(JT
ciKciJci))

I 0

(5)

B = M(q)−1

 Kp I
N∑
i=1

(JT
ciKciJci)

0 0 0

 (6)

In this case, the matrices I are appropriately sized identity
matrices. We derive the symbolic form of the mass matrix,
Coriolis, and gravity terms using a symbolic python library
(see [36] for an older version of this library). The above
equations allow us to discretize our system using the matrix
exponential (found in [37]) and formulate the following
discrete-time state space equations:

[
q̇[t+ 1]
q[t+ 1]

]
= Ad[t]

[
q̇[t]
q[t]

]
+Bd[t]


qdes[t]

N∑
i=1

JT
cif

measured
i [t0]

q[t0]

 (7)

In these equations, [t] and [t+1] represent the current and
next time steps. The state space matrices Ad and Bd are not
constant because they are dependent on terms like the mass
matrix which may change at every time step. We define a
relation for the desired joint angles such that:

qdes[t] = qdes[t− 1] + ∆qdes[t] (8)

Accordingly, qdes becomes a state variable and ∆qdes
becomes the available control input.

These equations are exact if the Taylor series is infinite
and the inputs do not change over the predicted time step.
However, we use a Padé approximation [38] to represent
the matrix exponential. In addition, our contact force model
is imperfect and we neglect the non-normal force. However,
we have found this formulation to give good performance for
our initial tests. We use the matrix exponential to discretize
because a first order Euler approximation was not as accurate
and made control more difficult given our control rate of 100
Hz.

Using the dynamic constraints from Equations 7 and 8,
and a cost function described below, we can form a model
predictive controller. For our tests we used a time horizon
of four discrete steps (meaning H = 4), with a control rate
of 100 Hz (or a 0.01 second sample time). The procedure is
then to solve the associated quadratic programming problem
for ∆qdes and apply the resulting control input for the first
time step. After solving once and applying the control input,
we reformulate the optimization given updated sensor and
state values and solve again following the same process at
every time step. Equations 9 through 18 show the complete
optimization.

Our cost consists of a terminal cost (Eqn. 9) which
attempts to move the end effector towards a desired goal
position, a cost on forces over a desired force threshold (Eqn.
10), a cost on changing the contact force faster than a spec-
ified rate (Eqn. 11), and a cost on control effort (Equation

12). The desired force threshold (fthreshold) specifies that
contact forces below the scalar value are acceptable, while
any predicted force above the value incurs a penalty in our
cost function.

Originally, the terms related to force were explicit con-
straints. However, due to feasibility issues with our opti-
mization, we moved these terms into the cost function. The
constraints in our current formulation consist of the discrete
dynamic equations (Eqns 13 and 14), limits on joint actuation
and angles (see Eqns. 15, 16, 17) and a joint velocity
constraint detailed in Section III-A. The variable ∆xdes
is a waypoint that has a fixed step size in a straight line
towards the goal unless the distance to the goal position is
smaller than the step size. We have found that in practice, our
new controller is able to control forces without any slewing
of intermediate goal positions even if the goal position is
physically unattainable during the short time horizon used
for prediction. Instead the step size affects success rate and
end effector speed but has little effect on contact forces or
overall stable motion of the arm as discussed later in the
paper.

A. Impulse-Momentum Impact Model

The term on the left side of Equation 18 represents a
perfectly elastic collision which would result in the highest
impact torque (as the link is completely decelerated and then
accelerated to the same speed in the opposite direction).
This joint space impulse model has been used before in
work on walking robots [39]. The parameter ∆timpact is
the time duration of the impact required to have the change
in momentum on the left side and we tune it empirically
according to the environment. The terms of this equation
form an impulse-momentum constraint that limits the joint
velocities in order to limit resultant impact forces. This initial
formulation is conservative as it assumes perfectly elastic
collisions and that each link of the arm is not decoupled.
This may not be the case as the joint coupling is dependent
on the arm configuration and impedance control parameters
at the joints.

In order to determine τmax, we relate the desired con-
tact force threshold to a maximum torque by finding the
approximate maximum moment arm from a joint to any distal
position on the arm. We then calculate the resultant torque
if the arm experiences the desired contact force threshold at
that point. The calculated torque value changes if we change
the desired contact force threshold as is the case in our tests.
We specify the direction of the force as being normal to
rmax (the distance from the point to the joint in question)
and the joint axis. Figure 3 shows a visual representation of
how τmax is calculated for the first joint.

To solve this optimization at every time step, we use recent
advances in optimization for embedded control to formulate
our controller and generate efficient C code (see [40] for
description of web-based CVXGEN).



minimize
q,q̇

α ‖∆xdes − Jee(q[t0 +H + 1]− q[t0])‖2 (9)

+β
t0+H∑
t=t0

N∑
i=1

max
(
nT

ciKciJci(q[t+ 1]− q[t0])− (fthreshold −
∥∥∥fmeasured

i [t0]
∥∥∥),0

)
(10)

+ζ
t0+H∑
t=t0

N∑
i=1

max
(
abs(nT

ciKciJci(q[t+ 1]− q[t]))−∆frate,i,0
)

(11)

+µ
∑t0+H

t=t0
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2 (12)

subject to : (for t = t0 . . . t0 +H)

[
q̇[t+ 1]
q[t+ 1]

]
= Ad[t]

[
q̇[t]
q[t]

]
+Bd[t]


qdes[t]

N∑
i=1

JT
cif

measured
i [t0]

q[t0]

 (13)

qdes[t+ 1] = qdes[t] + ∆qdes[t] (14)
q[t+ 1] 5 qmax (15)
q[t+ 1] = qmin (16)

abs(∆qdes[t]) 5 ∆qmax,des (17)
abs(2M(q)q̇[t+ 1]) 5 τmax∆timpact (18)

NOMENCLATURE

α, β, ζ, µ Scalar weighting terms for the multi-objective cost function
τmax Maximum allowable torque due to impact forces
Ad,Bd Discrete time linear approximations of the system state space matrices
fmeasured
i Measured normal force for contact i
Jci Geometric Jacobian at contact i
Jee Geometric Jacobian at the end effector
Kci Cartesian stiffness matrix for contact i
nci Contact normal direction at contact i
q, q̇ State variables of joint angle and velocity
qdes Commanded joint angles that are sent to the joint impedance controller
qmax Maximum joint angle limits
qmin Minimum joint angle limits
∆qdes Change in commanded joint angles, this is the output of our MPC
∆qmax,des Maximum allowable change in commanded joint angle
∆xdes Desired change in position at the end effector
∆frate,i Max desired rate at which the contact force should change at contact i
∆timpact Time duration of an expected impact
fthreshold User-defined allowable contact force threshold
H Number of time steps in the prediction model
t0 Current time for which state and other measurements are valid, this is a starting point for the predictive model

IV. METHODOLOGY AND TESTING

We used the open source physics simulation library Open
Dynamics Engine (ODE) [41] to simulate reaching in clutter.
ODE solves for unilateral contact constraints using a Lin-
ear Complementarity Problem (LCP) formulation. We used
a planar arm with three rotational joints and joint space
impedance control, as well as “skin” (or discrete tactile
sensing elements) covering the entire surface of the arm at a
resolution of one sensor per centimeter. This arm represents
the form of a humanoid robot and the masses and kinematics
are representative of an average North American male. We

simulated tactile sensing elements (taxels) as only sensing the
component of the applied force that is normal to the surface
which is what we used for control. However, for all metrics
that we reported in terms of contact forces, we used the full
magnitude of the simulated contact force. Figure 1 shows a
screenshot of the software simulation testbed and arm which
is representative of a person with three degrees of freedom
operating in the plane. The environment is composed of rigid
cylindrical obstacles that for our tests were all rigidly fixed.
Because the arm is planar, the cylinders can be thought of
as disks or circles in a 2D plane. These obstacles have a



Fig. 3: Visualization of joint space impulse-momentum con-
straint for the first joint of a two link arm.

diameter of 2 cm. We used randomly generated environments
with 20 and 80 fixed objects (see Fig. 1). This allowed us to
test a large number of possible multi-contact conditions as
the arm reached through the objects. For each environment,
we reached to eight pre-specified goal locations using the
same clutter environments as in our previous work [1].

Our initial design methodology involved setting the gain
on the position cost term first (Eqn. 9) and then trying to
manually vary the other parameters to achieve desirable per-
formance. However, our multi-objective cost function along
with other tunable parameters such as the waypoint size made
tuning the controller difficult and sometimes unintuitive. In
order to search the parameter space of our controller and
acquire some intuition, we used simulated annealing on 15
randomly selected environments in ODE (5 with 20 fixed
objects and 10 with 80 fixed objects). We ran these trials
with two different maximum desired force thresholds of 5 N
and 15 N, and accumulated the cost across all 30 trials. This
optimization resulted in a Pareto front that gave us a better
intuition for the trade-off between parameters while at the
same time improving performance significantly. The cost we
used was the following:

cost =

30∑
i=k

[1000(fk,max − fk,threshold)

+1000(fk,percent) + 10(tk,duration) (19)
+Jk,result]

Where k represents an individual trial, fk,max is the
maximum measured force in Newtons for a given trial,
fk,threshold is the user-specified force threshold, tk,duration
is the length of time in seconds of the trial, fpercent is the
percent of all contact forces over the threshold, and Jk,result
is a very large value (25,000) incurred for failure to reach the
goal. The first two cost terms are only used if the threshold
is exceeded for a given trial. The weightings are not used
to normalize the cost terms in any sense, but were manually
tuned such that the trade off between cost terms (especially
force and time to complete) caused the optimization to more
equally explore the Pareto front while searching mostly in
the space where success rates remained reasonable. Other
methods such as multi-objective genetic algorithms can also
be used to get similar results and in general the only criterion
for our parameter tuning optimization was that it allow the
definition of heuristic based costs instead of analytical costs
due to the nature of our simulation trials.

Applying this on a real humanoid robot (where simulation

TABLE I: Controller parameters identified by our simulated
annealing optimization.

Parameters Value
α 275 (1/m2)
β 229 (1/N)
ζ 0.01 (1/N)
µ 34.8 (1/rad2)
∆timpact 0.04 or 0.02 (s)
frate,i 10 (N)
waypoint 0.04 (m)

is not an option) will be more difficult. However, we believe
that our simulation approach can inform or restrict the search
space when tuning for a real robot. As expected, we found
that the parameters associated with our impulse-momentum
impact model had the largest affect on the maximum contact
forces experienced. However, the size of the waypoint also
altered the success rate significantly such that above 10 cm
the success rate was much lower than below 10 cm. We
believe that this has to do with the the isocontours of the
distance-to-goal cost such that smaller magnitude waypoints
allow the arm to move around obstacles in a non-greedy
fashion. The final parameters that we used for all tests are
found in Table I. We identified these parameters by running
this optimization many times which gave better coverage of
the search space using multiple restarts. After we obtained a
Pareto front, we identified candidate parameter sets that had
approximately equal total cost but varied according to their
performance with respect to each term in the cost function.
We then ran a larger subset of trials on these parameters
sets and picked the best one in terms of total cost. We used
∆timpact = 0.02 for the higher force threshold of 25 N and
0.04 for the 5 N threshold.

We also performed tests using the Matlab Robotics Tool-
box [42] with Matlab’s native numerical integration algo-
rithms. Our Matlab implementation uses an explicit spring-
damper contact model. The contact stiffness for these trials
was 10,000 N/m whereas the stiffness for the rigid ODE
objects was approximately 48,000 N/m. Our simulated robot
arm has discrete tactile sensing elements that are spaced one
centimeter apart along each link to which we discretize any
simulated contact.

In all Matlab trials, we used a desired contact force
threshold of 5 N. The task was specified as reaching to a
goal location while controlling contact forces and we used
the same stopping criteria for success or failure as reported
in [1].

A. Success Rates, Time to Complete, and Contact Forces

In order to compare the performance of our new dynamic
MPC to our previous work, we ran four sets of 1,200 trials
each for the new controller and for our quasi-static controller
from [1] in ODE. The four settings were specified by varying
the density of clutter (20 objects and 80 objects) and the
value of the force threshold (5 N and 25 N). For the 5
N threshold we used the same data for the quasi-static
controller reported in [1]. However, for the 25 N threshold,



TABLE II: Summary statistics for comparing success rate, velocity and contact force control between our dynamic and
quasi-static controllers at different densities of clutter and for different force thresholds.

Low Clutter (20 objects) High Clutter(80 objects)

High Force Threshold (25 N)

dynamic model quasi-static model
avg. time to complete (sec) 10.3 22.1

success rate 76.7% 72.3%
99 percentile contact force value (N) 30.5 27.6

dynamic model quasi-static model
11.6 21.4

30.0% 23.3%
29.1 27.8

Low Force Threshold (5 N)

dynamic model quasi-static model
avg. time to complete (sec) 20.1 21.9

success rate 70.8% 77.3%
99 percentile contact force value (N) 5.6 7.9

dynamic model quasi-static model
18.3 20.6

28.3% 28.3%
8.0 7.9

Fig. 4: These graphs shows how the percent of overall contact forces above the force value in the x-axis decrease as the
force value increases.

we generated new results for the quasi-static controller using
the same controller implementation and parameters from [1].

We used three main criteria for comparing our new con-
troller that uses multiple time steps and a dynamic model
to our quasi-static MPC. The first was overall success rate
of reaching to a goal position through the simulated clutter.
The second was the average time to complete the task for
the intersection of successful trials for the two controllers.
The third measure was comparing the ability of the two
controllers to keep contact forces below the specified force
threshold. Table II summarizes these comparisons.

In terms of success rates, the dynamic controller per-
formed as well or better than the quasi-static controller for
three out of the four scenarios. We also obtained the success
rates for trajectories executed using a Bi-directional RRT
[43] as we did in our previous work [1]. The planner has

all knowledge of the environment and can be thought of as
an upper bound on feasible success rates. For 20 objects
the planner had a 96.7% success rate and for 80 objects
the planner had a 48.3% success rate. In [1] we showed that
multiple greedy reaches with our local quasi-static controller
approached the success rates that the planner only achieved
with full knowledge of the environment.

The table also shows that in all cases the dynamic con-
troller completes the task faster than the quasi-static con-
troller. The percent improvement in speed ranges from 8%
to over 200% with all values being statistically significant (α
= 0.05) using a paired t-test. Interestingly, at the force value
specified by the force threshold (of either 5 N or 25 N) the
dynamic controller always resulted in a lower percentage of
the sensed contact forces being above the threshold than the
quasi-static controller. However, the 99th percentile contact



Fig. 5: Three intermediate arm configurations showing the
goal location (green star) and object configuration (red
circles) that we used for tests in Section IV-B.

force magnitude (the value below which 99% of all contact
forces remains) was dependent on the clutter density and
force threshold. In all cases, the dynamic MPC had a lower
force value above which it had no more contact forces than
our original quasi-static controller meaning that it better
limited the maximum contact forces. Figure 4 shows the
percentage of contact forces above the force value shown
on the x-axis. Both controllers are able to successfully limit
contact force according to the force threshold specification.

B. Effect of Impulse-Momentum on Impact Force Control

One way to reduce impact forces is to limit all joint
velocities. However, if we plan for the worst case impact
scenario, this would cause the arm to move unnecessarily
slowly in many joint configurations. For this reason, we
formulated the impulse-momentum constraint in Equation
18. To test the effect of this constraint, we varied the
∆timpact and evaluated performance in Matlab simulations.
We let the value for ∆timpact equal 0.08 seconds and 5.0
seconds. With a value of 5.0, the impulse-momentum con-
straint is effectively inactive throughout the arm trajectory.
Our environment had three fixed objects with which our
simulated arm made contact as it reached to a goal position.
Figure 5 shows the goal, obstacles and arm trajectory. The
objects have a stiffness of 10,000 N/m and a damping value
of 10 Ns/m.

The maximum measured force at every time step for the
different values of ∆timpact are plotted in Figure 6. The max
force in the worst case (with inactive constraint) is 14.1 N
whereas in the case where ∆timpact = 0.08, the maximum
force is only 5.26 N. That gives a 268% improvement in
force control. This makes sense as the constraint limits the
joint velocities according to unpredicted impact forces. We
can see from Figure 6 that the controller with timpact = 0.08
makes the first contact at a later time (approximately 0.61
seconds later). However, what is not clear from this figure
is the effect of this constraint on the end effector velocity.

Although this constraint will slow the speed of the end
effector in making progress towards the goal, it allows us
to make a structured trade-off. Specifically, Figure 7 shows
the end effector velocity for the two parameters of ∆timpact

that we tested. The point at which the velocities for these
trials settles to zero is where they have reached the goal.
The end effector velocity for the larger parameter value is
over three times higher at certain points in the trajectory, but
it only settles to the goal approximately 3.1 seconds sooner.

Fig. 6: This plot shows the effect of varying the impact time
parameter on the maximum force measured at each time step.
For ∆timpulse = 5 the constraint is essentially inactive.

Fig. 7: Effect of varying the impact time parameter on the
end effector velocity and time to complete the trajectory.

This means that for the smaller values of ∆timpact we have
a 268% improvement in impact force control in return for
only a 21.1% increase in time to complete.

C. Stability and Robustness

We have performed initial tests by varying the mass of
the simulated robot ±30% as well as varying jitter in the
control loop by up to three times the control rate. This
testing, along with the 4,800 trials that we ran in ODE
gives substantial empirical evidence that our controller is
stable. In general, although this controller is still a greedy
and suboptimal controller (due to the short time horizon), the
model prediction enables the simulated humanoid to reach
to the goal faster than our previous work with comparable
force control.

V. CONCLUSION

Our work shows the possibility of reaching at faster
rates into cluttered environments while controlling velocities,
forces, and mitigating effects of unexpected impact in a
planar simulated environment. We have shown that we can
include an impulse-momentum model of impact that allows
us to trade end effector velocity for impact forces. Addition-
ally, unlike many other controllers using a dynamic model
of a robot arm, our controller appears to be robust to model



variation which shows great promise for implementation on a
real robot. We also ran tests that show our controller can run
consistently around 50 Hz for robot arms with more degrees
of freedom than our planar arm using an off-the-shelf Intel
Core i7-3632QM CPU. Our approach and work has allowed
us to increase the speed at which our simulated robot can
reach in clutter while still regulating individual contact forces
in multi-contact situations.
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