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Abstract— We demonstrate that data-driven methods can
be used to rapidly categorize objects encountered through
incidental contact on a robot arm. Allowing incidental contact
with surrounding objects has benefits during manipulation
such as increasing the workspace during reaching tasks. The
information obtained from such contact, if available online,
can potentially be used to map the environment and help in
manipulation tasks. In this paper, we address this problem
of online categorization using incidental contact during goal-
oriented motion. In cluttered environments, the detailed internal
structure of clutter can be difficult to infer, but the environment
type is often apparent. In a randomized cluttered environment
of known object types and “outliers”, our approach uses Hidden
Markov Models to capture the dynamic robot-environment
interactions and to categorize objects based on the interactions.
We combined leaf and trunk objects to create artificial foliage
as a test environment. We collected data using a skin-sensor on
the robot’s forearm while it reached into clutter. Our algorithm
classifies the objects rapidly with low computation time and few
data-samples. Using a taxel-by-taxel classification approach, we
can successfully categorize simultaneous contacts with multiple
objects and can also identify outlier objects in the environment
based on the prior associated with an object’s likelihood in the
given environment.

I. INTRODUCTION

Rapid identification of haptic properties of objects in
unknown environments during exploration or navigation is
a difficult problem. Our method extracts information from
incidental contacts and simultaneously comprehends the in-
coming data. The information obtained from such contact
can be used to map the environment by categorizing object
properties from the robot-environment interactions. This can
potentially help in manipulation tasks and in the exploration
of unknown environments. Allowing incidental contact with
surrounding objects while maneuvering through a cluttered
environment has many benefits such as an increase in the
robot’s workspace. By ‘incidental contact’, we mean any
contact that occurs unintentionally while performing a goal-
directed manipulation tasks. In this study, we address this
issue of rapid categorization of objects conditioned on the
environment.

Our approach uses hidden Markov models (HMMs) and
considers the likelihood of finding particular object types
in an environment to classify dynamic robot-environment
interactions. We extend our previous work [1] on object
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Fig. 1. (Left) A mobile humanoid robot, Cody, reaching into clutter
while making simultaneous contact with multiple objects; (Right) Rapid
categorization of Leaf and Trunk categories while the robot is reaching into
clutter. The taxels categorized as leaves are marked with green dots (on the
left side of forearm) while the brown dots show the trunk (on the right side
of forearm).

classification by implementing HMMs to model these in-
teractions for rapid online categorization. We generalize our
algorithm to non-stereotyped motions. Our new algorithm
allows multiple simultaneous contacts and has the capability
to identify outlier objects. Inferences based on the likelihood
of finding an object in a given environment use little training
data for identifying specific objects and isolating outliers. For
our experiments, we used the 7 DoF arm of the humanoid
mobile manipulator, Cody, as shown in Fig. 1. As an example
of a cluttered environment with known object types and
unknown configuration, we created artificial foliage consist-
ing of combinations of leaf and trunk objects. A common
scenario is shown in Fig. 1 in which the robot is making
simultaneous incidental contacts on its forearm (forearm skin
sensor) and end-effector (our newly developed flipper with
tactile sensing described in Section IV-A.1) with multiple
objects. Only the forearm sensors are used to perform object
categorization. We provided the robot-arm with goals in its
workspace, and it used model-predictive control (MPC) [2]
to limit contact forces while navigating towards the goals.

We organize the remainder of the paper as follows. In
Section II, we review related work in this domain. Section
III describes our approach of categorization of objects condi-
tioned on the robots environment. In Section IV, we describe
our experimental procedure in detail and in Section V, we
present experimental results for this algorithm and analyze
the accuracy in various conditions. In Section VI, we present
the conclusions from our work.

II. RELATED WORK

Categorization of haptic properties of objects is an ex-
tensively explored field (refer [1] for a detailed literature



Fig. 2. (Left) Trunk-only environment for training the HMM model for Trunk Category; (Middle) Leaf-only environment for training the HMM model for
Leaf Category; (Right) Combined environment for testing

review). Our focus in this study is online classification
of objects from incidental contact, on which there are
few related previous studies. Our previous work included
categorization from incidental contact during goal-directed
movements [1] but it was implemented for stereotyped
motion of the robot-arm and was not generalized to multiple
contacts. In addition, the categorization was done offline
and the algorithm required extensive training data of equal
sample-length to classify specific objects [1]. In our current
study, we address these shortfalls by implementing an online
categorization scheme using HMMs which can deal with
time-series data of varied length. Some of the previous
studies on online categorization used explicit exploration
movements for object identification [3] and shape identifi-
cation [4]. Soh et. al. [3] created a spatio-temporal online
recursive kernel gaussian process to perform online object
classification during gripping movements by a robot hand.
They found that they could identify between objects based on
signature tactile features. The tactile features were measured
with a specific hand closing movement. Liu et. al. [4] used a
naive Bayesian process to perform online classification of
shape and pose of objects during an explicit exploration
movement by a robot finger. They used an off-the-shelf
tactile sensor array mounted on a robot finger and were
able to rapidly identify object shape after exploration of
the object by the finger. The objects were smaller than the
sensor array, so complete exploration before identification
was possible. Chitta et. al. [5] created a hybrid velocity-
force controller that allows a robot gripper to hold objects
and gather tactile and deformation data from the interaction.
Using their gathered tactile and deformation data, they were
able to distinguish between states of the objects (e.g. empty,
full, open, closed) with recognition rates comparable to that
of a human. Jamali and Sammut [6] used several machine
learning algorithms to perform material classification based
on surface texture during explicit exploration movements
by a bio-inspired artificial finger. Vibrations measured by
the tactile sensors in the finger while being run across the
textured surface at a specified speed could be used to identify
the material with some accuracy after minimal training data.

Work on online categorization has been performed in
other fields as well, such as in 3D scene analysis, hand-

written character recognition, human gait recognition, and
in monitoring of bearings for abnormal behavior in indus-
trial machinery. Hu et. al. [7] categorized 3D scenes into
different object types from range data for use in robotics.
They described the tradeoff between precise categorization
at the cost of speed and fast categorization at the cost of
increased misclassifications and used a simple but imprecise
scene representation method to address the problem. Hu
and Zanibbi [8] performed online recognition of handwrit-
ten mathematical symbols by creating an HMM for each
symbol class and a segmental K-means to initialize the
gaussian mixture models parameters. Garain and Chaudhuri
[9] combines a nearest-neighbor classifier with an HMM
to perform online recognition of handwritten mathematical
symbols. Kale et. al. [10] used a continuous HMM to
perform online identification of humans by gait. Starner et.
al. [11] presented two real-time HMM systems to recognize
continuous, sentence-level American sign language while
Yamato et. al. [12] proposed a HMM-based method for
recognizing human actions from a series of time-sequential
images. Cartella et. al. [13] assessed bearing condition in
industrial machinery using online adaptive learning of left-
right continuous HMM. These studies use HMMs as a tool
for rapid identification of object characteristics.

III. CATEGORIZATION METHOD

For our problem, the robot must classify each region of
contact, Ri, according to the type of object, ci, that resulted
in the contact region. We assume that the robot is operating
in a known environment, E, composed of T object types
and that each contact region, Ri, results from one of these
T object types or results from an anomalous object type
that is not typically found in the environment, E. In this
paper, we use hidden Markov models (HMMs) to perform
the classification problem, and focus on the problem of an
environment with different object types.

Hidden Markov model is a statistical tool to model systems
using a state-based approach such that the current state is de-
pendent only on the previous state. The states are hidden and
are not directly observable. Instead, they are stochastically
dependent on observations. The elements which constitute
an HMM are (1) N, the number of states in the model; (2)



M, the number of distinct observation symbols per state; (3)
A = {aij}, the state transition probability distribution; (4) B
= {bj (k)} , the observation symbol probability distribution;
and (5) P = {πi}, the initial state distribution [14], [15]. The
model is represented as given in eq. (1), where the parameter
λ describes the HMM model.

λ = (A,B, π) (1)

For classification using HMMs, we need to train the
HMM models first. We had different HMM models which
we trained on environments composed of single object cat-
egories. We trained the HMMs by choosing the λ which
locally maximizes P (O|λ) iteratively using expectation-
maximization (EM) techniques [14]. After training the mod-
els for the different categories, we evaluate a new observation
sequence O = {O1, O2, ...On} according to eq. (2) which
gives us the model which best matches the observation
sequence. The third step in eq. (2) leads to the fourth step,
if all the models are equally likely, as is the case for the first
part of this study.

c∗ = argmax
c∈[C]

P (λc|O)

= argmax
c∈[C]

P (O|λc)P (λc)

P (O)

= argmax
c∈[C]

P (O|λc)P (λc)

= argmax
c∈[C]

P (O|λc)

(2)

Later, we use HMMs to identify an outlier in the environ-
ment for which all the models are not equally likely. In this
case, the conditional probability is given by eq. (3).

c∗ = argmax
c∈[C]

P (O|λc)P (λc) (3)

IV. EXPERIMENTAL PROCEDURE

For our experiments, we used a mobile humanoid robot
Cody to reach into artificially created reconfigurable clut-
tered environments while rapidly classifying into various
categories objects encountered through incidental contact.
The details are given in the following subsections.

A. Experimental Setup

Cody, as shown in Fig. 1, is a mobile humanoid robot
weighing approximately 160 kg. It has two Meka A1 arms,
a Segway omni-directional base and a Festo 1 DoF (degree
of freedom) vertical linear actuator for changing its height.
The two 7 DoF anthropomorphic arms contain series elastic
actuators for compliance and torque control ability. When
we control these arms, each joint simulates a low-stiffness,
visco-elastic, torsional spring. We control the robot’s arms by
changing the equilibrium angles of these simulated springs
over time [1].

Cody has a force-sensitive high-resolution skin across its
forearm. Meka Robotics and the Georgia Tech Healthcare

Fig. 3. Our newly developed flipper with tactile sensing based on fabric
based sensing technology. It has 69 taxels in total. It is used to navigate
clutter.

Robotics Lab developed the forearm tactile skin sensor,
which is based on Stanford’s capacitive sensing technology,
as described by Ulmen et. al. [16]. This skin has a capacitive
pressure-sensor array and each sensing element is called a
taxel (tactile pixel). The skin has 384 taxels in total arranged
in a 24 X 16 pattern. Each taxel is of 9 mm X 9 mm size
and it can measure applied force at 100 Hz. [1].

We created an artificial cluttered foliage environment using
leaf and trunk objects as shown in Fig. 2. The clutter is
reconfigurable so we can create a large set of environments
by rearranging the relative position of the leaf and the trunks.
It is made reconfigurable by a ground platform made of a
combination of wet and dry foams as shown in Fig. 2. The
leaves can be stuck stably inside these foams and can be
removed at will. The trunks are fixed to the table beneath the
foam platform with flanges to provide stability. Each foam
block is a 25 cm X 10 cm sized rectangular block. We can
move the foam blocks and the trunks and we can place leaves
in different relative positions to reconfigure the environment
and create a variety of cluttered environments with which
the robot can interact.

1) Whole-Arm Tactile Sensing with Flipper: While reach-
ing into clutter, contact can occur at any point of the arm
including the end-effector. By using only the forearm skin
sensor, we would lose contact information used for haptic
navigation. Without an end-effector, we would also lose the
degrees of freedom afforded by Cody’s wrist joint. Hence,
we created a wedge-shaped end-effector (referred to as a
‘flipper’, see Fig. 3) for Cody, on which we mounted tactile
sensors based on our fabric-based tactile sensor technology
[17]. We put 69 taxels ranging from 1 cm2 to 15 cm2 in a
pattern fixed to the 25 cm long flipper’s surface. We used
haptic signals from the flipper to navigate in the foliage
environment.

B. Collecting Training Data

The purpose of our classification is to categorize between
leaf and trunk in a foliage environment. Hence, we need a
model for the trunk and the leaf categories. To train the model
for the trunk category, we made the robot reach into a trunk-
only environment as shown in Fig. 2 (Left). To train another
model for the leaf category, we made the robot reach into a
leaf-only environment as shown in Fig. 2 (Middle). The test



Fig. 4. (Left) Cody reaching into clutter while making contact with multiple
objects on forearm and flipper; (Right) The contact forces on the forearm
and flipper skins are shown in Rviz with the goal provided by the interactive
marker

environment was a combination of trunk and leaf objects as
shown in Fig. 2 (Right).

To collect training data, we made Cody reach into the leaf
training environment and into the trunk training environment
multiple times. For each of these reaches, we commanded
multiple goal positions for the robot end-effector using the
interactive markers in Rviz as shown in Fig. 4. The 7 DoF
robot arm moves towards the goal using model predictive
control [2] while limiting contact forces across its whole
arm. Fig. 4 shows the sensed forces from the forearm and
flipper skin sensors while the robot is making contact with
the environment. During each of the reaching attempts, we
provided multiple goals to make the arm contact various
parts of the clutter with various configurations. Between each
reach, we changed the configuration of the environment using
our reconfigurable cluttered environment setup to create
multiple environment situations. We used both the forearm
and flipper tactile sensors for haptic navigation and used the
data from the forearm for object classification. The next two
subsections detail the methods for extracting features from
the data collected during the experiments.

C. Connected Component based Categorization

Our first method of extracting features relies on connected
components. We represented the data from the forearm skin
sensor as a gray-scale image with a 24 X 16 array pattern.
We converted this image to a binary image representing the
taxels in contact by applying a threshold to each taxel. We
computed connected components on this array pattern to
segment the contact regions. For each of these connected
components, we computed the maximum force and the
contact motion at every time-instant. We expected these two
features to be informative about the characteristics which
distinguishes a leaf from a trunk because we would expect
the 3D position of the contact area to travel more when the
robot is bending a soft leaf and the maximum force to rise
faster when making contact with a trunk.

During each of the reaching attempts in the cluttered
environments, the robot frequently came into contact with
multiple objects simultaneously. We tracked the motion for
each of these connected components using their estimated 3D

positions in the world frame. We assumed that the robot’s
torso did not move throughout the trials and used the forward
kinematics from the robot’s torso to the center of each
associated contact region to estimate these positions. We
associated connected components between time steps based
on the distances between their estimated 3D positions.

For data management purposes, we name each period
between when the robot makes contact with an object and
when the robot breaks contact with that object as one trial.
There were varied numbers of trials during each reaching
attempt depending on the number of times the robot initiated
and broke contact with objects in the environment. Based
on the connected component based segmentation, there were
288 such trials for the leaf environment over 10 reaches and
324 trials for the trunk environment over 25 reaches which
form our training data for this approach.

D. Taxel based Categorization

Our second method of extracting features is taxel-based.
We consider data from each of the 384 taxels separately, nul-
lifying the need for segmentation and tracking. This method
is inherently high resolution but may contain redundant
information when multiple taxels contacting the same object
measure similar information content. We collect the same
force and motion features as described in Section IV-C. In the
taxel-based approach, the maximum force is the force acting
on the taxel as there is only one force per taxel at each time-
instant. In this approach, we name each period between when
each taxel in the robot’s forearm skin sensor makes contact
with an object and when that taxel breaks contact as one
trial. There were varied number of trials during each reaching
attempt depending on the number of times each taxel initiated
and broke contact with objects in the environment. Based on
the taxel-based approach, there were 496 trials for the leaf
environment over 10 reaches and 582 trials for the trunk
environment over 25 reaches which form our training data for
this approach. The features collected from a sample reaching
experiment are shown in Fig. 5.

V. RESULTS AND DISCUSSION

In this section, we present an experimental evaluation of
algorithm using cross-validation, and present an assessment
of online categorization performance.

A. Cross-Validation Performance of HMMs

We used two-fold cross-validation to characterize the
performance of our HMM classifiers. The data was collected
through various reaches in the leaf and trunk environments as
discussed in Section IV-B. We applied both component-based
(Section IV-C) and taxel-based (Section IV-D) categorization
methods to the data to compare their performance. To analyze
the effect of states and the effect of different features used
in our algorithm, we compared the performance of our
algorithm with varying numbers of hidden states (5, 10, and
20 states) and when using only force as a feature vs. both
force and motion as features. The results are given in Table
I.



Fig. 5. The force (Left) and motion (Right) features collected from a taxel using taxel-based approach while the robot was reaching into a clutter. The
figure shows a trial in which the robot came into contact with leaf (in green) and another trial in which it came into contact with a trunk (in brown). The
left figure shows that as the robot pushes against the object, the force increases at first and then the MPC controller tries to decrease it while moving
towards the goal. The right figure shows the motion of the taxel in contact. Clearly, the rate of increase of force as well the magnitude is higher for trunk
contact. Also, the motion is larger for leaf as the robot can push and bend the leaf easily.

Fig. 6. Cross-validation performance of taxel-based categorization using
a 20-state HMM with force as the feature.

The taxel-based methods consistently performed better
than component-based methods both for one-feature and
for two-feature based classification methods, irrespective
of the number of states used. This may be due to the
presence of higher resolution data in taxel-based methods
which captures the characteristics of dynamic interactions
more effectively than in component-based methods: in a
connected component, there are multiple taxels interacting
with the same object that may each capture different aspects
of the dynamic interaction when considered individually. The
confusion matrices for the results of the cross-validation
study for the taxel-based method with 20 states are shown
in Fig. 6 with force as the sole feature and in Fig. 7 with
both force and motion as features. Note that cross-validation
results using force as the sole feature gives consistently
equivalent or better results than using two features. It can be
seen from Table I that our algorithm consistently performs
better using 10 or 20 hidden states than using 5 states.
This implies that 5 state transitions may be insufficient
to characterize and distinguish models of leaf and trunk
categories.

B. Online Categorization Performance

In this section, we describe the implementation of our
algorithm for online rapid categorization as the robot reaches

Fig. 7. Cross-validation performance of taxel-based categorization using
a 20-state HMM with force and motion as the features.

into clutter. Based on results from Section V-A, we used
taxel-based methods for categorization. The robot used both
the forces sensed from forearm tactile sensing skin and
flipper to reach into clutter by moving towards commanded
goal while minimizing these forces using MPC [2]. We
classified the taxels in contact into 3 categories: trunk, leaf
and uncertain. The uncertain category was for those taxels
which cannot be classified into either trunk or leaf with
confidence. We implemented this classification scheme by
using a threshold on the log-likelihood values of the HMM
below which the taxel was categorized as uncertain. This
helped in reducing the number of misclassifications and in
improving the false-positive accuracy of our algorithm.

To analyze the performance of our algorithm, we com-
puted metrics of computation time, and amount of data
samples required for classification for one of the reaching
tasks. The results are given in Figs. 8, 9, and 10. From Fig.
8, we see that the algorithm can categorize rapidly taking on
average 0.83 s per 100 taxels in contact for inference using a
10-state univariate HMM. This computation was performed
on a system which runs Ubuntu 12.04 32-bit OS with a
3.2.0-45-generic-pae linux kernel. It has 4 GB RAM and an
Intel R© CoreTM i5-2410M CPU @ 2.30 GHz X 4 processor.
The number of data-samples used for classification varies
over time as seen in Fig. 9, with an average around 12



TABLE I
CROSS-VALIDATION PERFORMANCE.

Type Features Used 5 Hidden States 10 Hidden States 20 Hidden States
Component-Based Max. Force 61.76% 72.22% 70.75%
Categorization

Max. Force and 54.41% 55.55% 58.50%
Contact Motion

Taxel-Based Force 72.91% 80.24% 81.40%
Categorization

Force and 70.22% 71.98% 73.47%
Contact Motion

Fig. 8. Computation time per 100 taxels in contact during a reaching task
for two category classification using 10-state univariate HMM.

Fig. 9. Number of Data Samples used to classify the objects in clutter using
HMMs during a reaching experiment. The data-samples are zero when the
classification is uncertain. Please note that the number of data samples is
proportional to time with the data-sample rate at 100 Hz.

(exactly 11.9). Fig. 10 shows that the number of correctly
classified taxels is higher than the misclassified taxels and
the number of uncertain taxels is low.

To compare our results against ground-truth, we conducted
10 reaching experiments in the artificial foliage environment
and designed them such that 5 of them contacted only leaves
while the other 5 only trunks. The results are shown in
Fig. 11. The results for the reaching trials in which the
robot contacted only leaves, are shaded in green while the
results for trunk contacts are shaded in brown. The number
of misclassifications was reduced, with the tradeoff that our
algorithm is more conservative. We prefer a conservative
approach as this allows us to choose environment-based
manipulation strategies with higher confidence.

After these experiments, we did a general reaching ex-
periment in which the robot reached into clutter while

making contact with trunk and leaf at different times or
simultaneously. The video of the reaching trials is submitted
along with this manuscript. It shows our approach for
rapid categorization with simultaneous contacts and multiple
objects. Fig. 12 shows a snapshot of the robot reaching into
the clutter while it is making contact with leaves. The rapid
categorization algorithm classifies the taxels in contact as
leaves and marks them with green dots as shown in Fig. 12.
Link to the video is given in [18]

C. Effect of Data-Sample Length

Based on results from Fig. 9 in Section V-B, we ana-
lyzed the effect of the data-sample length on the algorithm
performance. We varied the training-data sample length by
truncating the remaining data such that the maximum number
of data samples varied from 200 to 50 in intervals of 50.
We performed a two-fold cross-validation and the results
are shown in Fig. 13. We do not see significant effect of
the data sample length on the algorithm performance. This
result encourages us to believe that we can achieve faster
categorization without reduction in performance by using
fewer training samples.

D. Identifying an Outlier in the Environment

We conducted an experiment to show that our algorithm
can be used to identify an outlier object in the environment
without explicitly modeling an outlier category. An outlier
object is an object which does not normally belong to the
environment in question and has distinct physical properties
from the expected object types. If we had a model for the
outlier category, we could use eq. (3) as is, for computing
the conditional probability. However, in our implementation,
without explicitly modeling the outlier, we identify an outlier
by using a threshold on the log-likelihood values of HMM.
We selected the threshold by considering the likelihood of
finding an outlier object in the environment.

Our setup consisted of a foam roll embedded in the artifi-
cial foliage environment as shown in Fig. 14. The experiment
was designed to compare the algorithm performance against
ground-truth. The robot would make contact with the outlier
first and then would come into contact with leaf or trunk.

For our task, c∗ (computed using eq. (3)) is the maximum
of c∗T (for trunk) and c∗L (for leaf). We computed the
difference between the log-likelihood values of c∗T and c∗L
which is an indicator of how confident the model is in its
inference. If the model (c∗) was either c∗T or c∗L and the
difference was greater than a threshold chosen (80 for our



Fig. 10. (Left) Number of correctly classified taxels; (Middle) Number of misclassified taxels; (Right) Number of Taxels which are not strongly classified
into one of the two categories, they are put into an uncertain category. We have this uncertain category to be able to reduce misclassifications while rapidly
categorizing the environment

Fig. 11. Rapid categorization performance for 10 reaches in clutter.
The figure shows the percentage of correctly classified, misclassified, and
uncertain taxels. To compare the algorithm performance with ground truth,
the first 5 reaches were engineered to have contacts only with leaves while
the next 5 reaches had contacts only with trunks as represented by their
respective colors.

Fig. 12. Successful categorization of leaves using taxel-based approach
(green dots corresponding to the taxels in contact) as the robot reaches into
clutter. The classification algorithm uses data from the forearm skin sensor
only. The MPC controller uses the forces from both the forearm and flipper
skin sensor to reach into clutter.

task), we classified it as a trunk or a leaf respectively with
high confidence. However, if the difference was between
80 and 15, we classified it as an outlier. Note that this is
equivalent to having a model for an outlier in eq. (3) with a
low prior. If the difference was less than 15, we classified it
as uncertain because we do not have strong confidence in our
inference. The results are shown in Fig. 15. The algorithm
successfully identified the outlier during both contact events,
although there were some uncertain contact data as well.

Fig. 13. Effect of changing the data-sample length. The original data has
trials with variable length. To analyze the effect of data-sample length on
the cross-validation performance, we truncated the remaining data such that
the maximum number of data samples in the trials are varied from 200 to
50 in intervals of 50. The sampling rate was 100 Hz.

Fig. 14. Experimental setup showing an outlier (foam roll) in an artificial
foliage environment.

This method shows the potential of identifying outliers in
the environment without the need of an explicit model.

One limitation of this algorithm is the need to choose a
threshold to identify the outlier. A wiser choice of features
might help in easily distinguishing the different object prop-
erties and make the algorithm more robust. Also, we used a
specific artificial environment for testing and some carefully
chosen environments for training which limits its practical
usage. The information content in the haptic data is dense
and visually promising but we might require more elaborate
processing techniques to achieve more confident estimates



Fig. 15. Successful detection of the outlier object (red) during a reaching
experiment. There were three distinct phases of contact, the first two were
with the outlier object while the last was with leaves. The algorithm
successfully detected the outlier in the first two phases of contact while
some of the taxels were uncertain (blue). There were few misclassified taxels
(green). For the last phase of the contact, the taxels were uncertain about
the contact.

about the categories. In addition, the recognition performance
depends on the task chosen and the MPC controller used
in this study, and it remains to be seen how well it can
generalize to other controllers.

VI. CONCLUSION

This paper describes our approach for rapid categorization
of objects conditioned on the environment. Our approach
uses hidden Markov models to model the dynamic inter-
actions of the objects with a robot-arm. Using our newly
developed flipper with tactile skin and the forearm skin
sensor, the robot can haptically navigate through a cluttered
environment while rapidly categorizing objects encountered
through incidental contact. We created an artificial foliage
as a test environment and trained two HMM models for
categorizing trunk vs. leaf. Our algorithm consistently per-
formed with cross-validation accuracy as high as 81%. For
our tests, the highest performance was achieved when the
categorization was done on a taxel-by-taxel basis with force
as the sole feature and using 20 states. The computation
time and data sample length were appropriate for online
categorization. Results showed that our algorithm can be
used to classify multiple objects with multiple simultaneous
contacts. In addition, our initial tests suggest that outlier
detection may be achievable.
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