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Abstract—Unstructured, human environments present great
challenges and opportunities for robotic manipulation and grasp-
ing. Robots that reliably grasp household objects with unknown
or uncertain properties would be especially useful, since these
robots could better generalize their capabilities across the wide
variety of objects found within domestic environments.

Within this paper, we address the problem of picking up an
object sitting on a plane in isolation, as can occur when someone
drops an object on the floor - a common problem for motor-
impaired individuals. We assume that the robot has the ability
to coarsely position itself in front of the object, but otherwise
grasps the object with an open-loop strategy that does not vary
from object to object.

We present a novel end effector that is capable of robustly
picking up a diverse array of everyday handheld objects given
these conditions. This straight-forward, inexpensive, nonpre-
hensile end effector combines a compliant finger with a thin
planar component with a leading wedge that slides underneath
the object. We empirically validated the efficacy of this design
through a set of 1096 trials over which we systematically varied
the object location, object type, object configuration, and floor
characteristics. Our implementation, which we mounted on a
iRobot Create, had a success rate of 94.71% on 680 trials, which
used 4 floor types with 34 objects of particular relevance to
assistive applications in 5 different poses each (4x34x5=680). The
robot also had strong performance with objects that would be
difficult to grasp using a traditional end effector, such as a dollar
bill, a pill, a cloth, a credit card, a coin, keys, and a watch.
Prior to this test, we performed 416 trials in order to assess
the performance of the end effector with respect to variations in
object position.

I. INTRODUCTION

Autonomous mobile manipulation in the home has the
potential to beneficially impact the lives of millions of people,
but significant challenges must first be overcome [1]. Homes
vary in their internal structure and contain a wide variety of
objects, including unique handmade items and mass produced
products subject to wear and tear. Ideally, we would like robots
to be able to robustly grasp these objects in unmodified homes.
Within this paper we look at a constrained version of this
general grasping problem. How can a mobile robot reliably
grasp an object that is sitting on the floor in front of it?

Many researchers have pursued a model-based approach to
grasping, wherein a robot creates a model of the object or
registers a pre-existing model to the object, searches for viable
grasps in simulation, and then attempts to use these grasps on
the object in the real world. A compelling alternative to this

Fig. 1. The robot described in this research prior to attempting to grasp a
cordless phone on the carpeted floor.

sense-plan-act style of manipulation is to develop algorithms
and mechanisms that do not require a model of the object,
sophisticated sensory inference, or grasp planning. Within this
paper we present an end effector whose mechanical design
enables it to robustly grasp a wide variety of objects from
the floor with a sensorless, open-loop grasp controller. The
robot can successfully grasp these objects without knowing
their identity or orientation, and only uses coarse information
about their planar position, overall size, and overall shape. Fur-
thermore, the robot does not need to know the characteristics
of the floor on which it is operating.

In order to validate the efficacy of our approach, we tested
the grasping performance of a mobile robot using the end
effector (see Figure 1) in a total of 1096 trials over which
we systematically varied the object’s type, the floor type, the
object’s configuration, and the object’s position. The everyday
objects we used in our tests incorporate a variety of materials
and exhibit diverse mechanical properties and complicated
interactions with sensors that go beyond the state of the art
in physical simulation (e.g., cloth, paper, cardboard, plastics,
carpet, friction, contact, and transparency) [2], [3], [4], [5],
[6]. Given the challenges inherent in adequately simulating the
perceptual and physical interactions involved in grasping these
everyday objects and the ultimate goal of real-world operation,
we believe that performing tests in the real world is essential
[7].

The following sections of this paper cover the motivations



for this research, inspirations for the design, related work, the
implementation of the end effector and the robot, experimental
evaluation, and conclusions.

II. MOTIVATION

Assistive robots serve as the main motivator for this re-
search. People with motor impairments have consistently
placed a high priority on the ability of a robot to retrieve
dropped objects from the floor [8]. Motor impairments can
both increase the chances that an individual will drop an object
and make recovery of the object difficult or impossible. For
this research, we assume that a dropped object will tend to be
isolated on the floor and that the robot will be able to position
itself so that it is facing the object with an unobstructed path
between it and the object.

In addition to its direct relevance to assistive robotics, a
robot that reliably grasps objects from the floor could be
useful for house cleaning and organization. We also believe
the end effector we present has wider implications for robots
that autonomously grasp objects, since analogous methods of
grasping are used by humans.

III. DESIGN INSPIRATION

We designed and implemented a straight forward and inex-
pensive end effector, shown in Figure 1, and affixed it to a
simple 1-DoF arm attached to an iRobot Create. The design,
detailed later, pulls elements from several different inspira-
tions. First, it implicitly takes advantage of the prevalence
of flat surfaces that are orthogonal to gravity within indoor
human environments. As we have previously demonstrated,
robots can take advantage of this structure when manipulating
objects [9]. In the current paper, the end effector has the goal
of sliding an object from a flat and relatively smooth surface
in the world onto a smooth, flat surface that is integral to
the end effector. If we assume that the dynamics involved in
this operation are insignificant and that the object is statically
stable on the initial surface, we can expect for the object to be
in a statically stable configuration once it has been transferred
to the end effector’s flat surface. Second, as shown in Figure 2,
humans often use similar strategies to grasp everyday objects
in domestic environments using their bare hands or tools.
These strategies tend to make use of a wedge that can be
pushed under the object, a surface onto which the object can
be slid, and a member (or friction) that applies force to the
opposite side of the object in order to slide it over the wedge
and onto the surface. Our end effector design emulates these
same components. With their bare hands, people often use their
finger nail as a wedge with which to get under an object, use
their fingers or palm as a surface onto which to push an object,
and apply force to the opposite side of an object either actively
or passively using the thumb, palm, or fingers. Moreover,
common household tools, such as a brush and dustpan or a
kitchen turner, serve as specialized end effectors for humans
that take advantage of similar mechanics as well as the planar
structure of indoor environments. Third, we use a compliant

Fig. 2. Four examples of related grasping methods during everyday household
manipulation. Top Row: Picking up a coin from a flat surface with thumb and
forefinger fingernail. Middle Row: Sliding a coin off a table edge and onto
the forefinger. Bottom Left: Use of brush and dustpan. Bottom Right: Use of
a kitchen turner.

finger inspired by the work of Dollar and Howe [10], [11] to
sweep the object onto the flat surface and hold it there.

IV. RELATED WORK

There is a large corpus of grasping work that depends on
explicit models, either estimated or known a priori [1]. These
methods have been successful with small sets of objects, but
their ability to scale to the diverse array of objects found
within indoor human environments has yet to be demonstrated
[12], [13], [14], [15]. Downloading models over the web
and creating new models with human interaction may help
this approach scale, but the robots will need to reliably
select and register models from a potentially vast database
given real-world sensor data. More troubling is the inevitable
existence of unmodeled, difficult to model, and one-of-a-kind
objects that are likely to be found in domestic settings. This
suggests that robots will sometimes need to operate with both
incomplete a priori knowledge and imperfect sensing [1].
Fortunately, recent research, including this paper, indicates that
explicit object models may be unnecessary for basic pick and
place tasks in indoor environments. Consequently, we expect
for these model-free methods to be effective, valuable, and
complementary to model-based approaches.

Two broad types of approaches have demonstrated success
in performing model-free grasping under some circumstances:
(1) Create or learn mappings from sparse, task-relevant sensing
to specialized controllers [9], [16], [17], [18], [19]. (2) Use
robust mechanical mechanisms, such as a compliant gripper



Fig. 3. Schematic drawing of the end effector and robot.

[10], [11]. Our end effector falls very much in the tradition
of approach 2, since it uses open-loop control and mechanical
design to achieve robust model-free grasping. Given its open-
loop approach to control, it also relates to work on sensorless
manipulation [20].

In combination, these papers demonstrate the utility of a
model-free approach to grasping. For all of them, a coarse
estimate of the position of the object is the only requirement
for an (often successful) grasp attempt, since the generalized
model or the mechanical mechanism implicitly accounts for
position error, pose, and other forms of variation in the object
and environment. In each case, the authors’ design is exper-
imentally verified using anywhere from 4 to 12 objects and
up to 150 grasp attempts. However, there was no consensus
about which objects to use or how they should be configured.

All of the above approaches have relied on prehensile
grasping, usually with a hand or fingers closing around the
object. Our end effector uses a nonprehensile approach to
perform model-free grasping, unlike previous work [21].

V. SYSTEM OVERVIEW

This section describes the mechanical design and the grasp-
ing algorithm.

A. Mechanical Design

The robot is composed of four major components, as
illustrated in Figure 3: the iRobot Create base, the arm, a flat
plate with a leading wedge, and a 2-link compliant finger.

Attached to the cargo bay of the iRobot Create base is a
1-DoF, 0.194 meter parallel linkage adapted from an off-the-
shelf folding desk lamp. We call this component the arm, as it
is responsible for raising (up to 0.14m) or lowering (down to
0.0m) the end effector before and after an object has been
swept onto the flat plate. The arm is actuated by a servo
attached to the iRobot Create base. To accurately size the
servo, we calculated the required torque, which is comprised

Fig. 4. This sequence of images taken from above (left) and from the side
(right) while the robot was grasping a cordless telephone illustrate the control
algorithm.

of two components: a 1 kg (10 N) object load on the plate
center (a lever of length 0.322m) and the load imposed by the
arm mechanism and plate mass (2.8 N with a center of mass
/ lever length of 0.194m).

τobj = Fobj · robj = 10.0N · 0.322m ≈ 32.2kg · cm (1)

τarm = Farm · rarm = 2.8N · 0.194m ≈ 5.4kg · cm (2)

τtotal = τobj + τarm = 32.2 + 5.4 ≈ 37.6kg · cm (3)

To allow sufficient margin of error, we chose the SPG785
Pan (HS-785HB servo with 1:3 gear ratio) with a maximum
torque of 39.5 kg · cm. At the opposite end of the arm sits
the 2-joint finger mounted on the left side of the flat plate.
The arm tilts the flat plate slightly down towards the floor
to provide good contact during grasping when it must slide
underneath the object. The plate consists of a kitchen turner
and a custom machined piece of metal to extend the plate.

A 2-joint compliant manipulator acts as a brush to sweep
objects from a stable configuration on the floor to a stable con-
figuration on the flat plate. To improve grasping, particularly
for small, flat objects, each link attempts to minimize clearance
with the floor via soft foam attached beneath the link’s rigid



Fig. 5. The left and right images show the results of grasping tests with the test objects (red wooden cylinders) in the middle image. The dark areas in
the left image show areas where the robot successfully grasped the short red test object on the left side of the middle image. The dark areas in the right
image show where the robot successfully grasped the tall red test object on the right side of the middle image. The quarter in the middle image is included
to illustrate the size of the test objects. The three small red dots on the left and right images show the locations that were used when testing the robot with
(from top to bottom) large objects, medium sized thin objects, and small objects.

aluminum tubing. The sections between links are revolute
joints, designed to be compliant in the plane of finger motion
and stiff out of plane. For Joint-1 and Joint-2 (see Figure 3),
the rest angle configuration is 25o and 50o respectively. These
angles were chosen based on the work of Dollar and Howe
[10], [11].

The compliance in the manipulator is achieved through
retention springs connected between the links, forming an
underactuated system. The finger is closed by pulling on a
single 0.914 mm diameter steel cable using a Hitec HS-
5955TG servo with a lever arm (r=0.019m). The cable is
anchored on Link-2 and runs through the bodies of Link-1
and the base link to the servo. Early tests indicated that a
force of 35 Newtons would be required to fold the compliant
finger with no object present. This amounts to a required cable
servo torque given by:

τ = F · r = 35N · 0.019m = 0.665N ·m ≈ 6.65kg · cm (4)

The Hitec HS-5955TG supplies up to 24.0 kg · cm – a
magnitude that proved to be sufficient to grasp all 34 objects
on all four surfaces during our tests.

B. Grasping Algorithm

Snapshots of the basic grasping process are shown in Figure
4. These motions are initiated by pressing a single button, and
they are carried out by the robot without significant sensor
feedback or variation in the control. The only feedback is
used internally by the servo motors and the mobile base to
ensure that the predefined trajectories are followed. We assume
that the robot has already navigated such that it can move
in a straight line towards the location of the object. As the
robot approaches the object, the arm gradually lowers the end
effector to the floor such that the leading edge (wedge) of
the flat plate makes good contact with the floor. The robot
continues to move forward for a fixed distance. During this
forward motion, the edge of the plate comes into contact
with the object. After a predefined distance, the finger closes.

During a successful grasp, the compliant finger is able to
gradually pull the object onto the plate as the iRobot Create
base simultaneously continues forward, pushing the plate
under the object. The cable-driven, compliant finger is actuated
to its furthest position (closed), and then the arm raises the end
effector. When successful the object is sitting on the flat plate
and is raised up with the end effector. In this version of the
robot the flat plate is tilted, so as to make firm contact with the
floor when lowered. Unfortunately, this sometimes results in
the object toppling over when the end effector is raised. We
have worked to correct this problem in the second version
of the robot that we discuss later by adding an additional
degree-of-freedom that tilts the end effector and ensures that
it remains flat as it is raised off of the floor.

Further details of this control algorithm follow. The robot
starts by moving forward at 6 cm/sec for 5 seconds. After the
first second of forward motion the robot begins to lower its
arm at a rate of approximately 1.05 rad/sec, which results in
the arm being fully lowered after around 1.5 more seconds
(lowered 90 degrees). After the first 5 seconds of forward
motion, the robot slows down to 4 cm/sec to grasp the object
and continues to move forward for 3.8 seconds. At the same
time that it slows down it starts to close its compliant finger.
Once the robot has fully stopped, it slowly raises its arm,
ideally with the grasped object on the flat plate.

C. Mechanical Considerations

One significant choice in the design of the end effector is
the distance of the compliant finger off of the floor. Several
factors argue for a small distance. First, the net torque applied
to the object by the compliant finger and the front wedge of
the flat plate will be reduced as the finger’s distance from
the floor is decreased. A lower net torque can help maintain
the pose of the object while it is transferred to the flat plate.
Second, if the distance between the finger and the floor were
large, the net torque on the object would tend to press the front
of the object’s base down on the front wedge of the flat plate.
This downward force would resist the desired movement of the



Fig. 6. Four common floor types used in the experiments: Wood floor, short
pile carpet, tile floor, and medium pile carpet

plate beneath the object and increase the chance of toppling.
For this reason, a good location for the finger contact point is
below the center of mass of the object. Third, a low position
simplifies sweeping the floor for objects with a low profile.

VI. EXPERIMENTAL EVALUATION

In total, we performed 1096 grasp attempts with 34 different
objects in various configurations on 4 different surfaces. We
separated the experiments into two different groups: testing
position dependencies and testing across objects, object con-
figurations, and surfaces. We tested position dependencies first
to find consistent locations at which to place the objects.

A. Testing Performance Based on Object Position

Our initial desire was to determine how detrimental position
errors were to successful grasps. Early experiments indicated
that this was largely dependent on the object’s size. Thus, to
examine position dependencies, we chose two representative
objects: one large wooden cylinder (height=0.031m, diame-
ter=0.030m) and one small wooden cylinder (height=0.003m,
diameter=0.030). We tested grasping with the large and small
objects a total of 312 and 104 times respectively on a smooth
wooden floor for a total of 416 grasp attempts. For both objects
we used a 17x12 grid with 0.030m resolution, but for our
first tests with the large object, we performed 3 tests at each
location to verify the consistency of the robot’s performance.
Due to the very high consistency of the results, we chose
to only perform a single test at each location with the small
object.

The results of these trials are illustrated in Figure 5. The
robot successfully grasped the large object over a wide range
of positions. Grasping the smaller object was still robust to
position variation relative to the object’s size, but suffered
compared to the larger object. Anecdotally, we attribute the
inability to grasp the small object to a number of factors.
First, the portion of the flat plate that was custom built has
a duller front wedge compared to the pancake turner, which
deterred the small object from being swept onto the flat plate.
Second, when the small object was swept onto the flat plate, it
occasionally fell off while being lifted through a gap between
the compliant finger and the flat plate. We have tried to address

Fig. 7. These images show the new version of the robot we are developing.
We have completed the mechanical design and assembly and are working
on the control system. We posed the robot for these pictures. Left: Robot in
configuration to grasp object from the floor. Right: The robot is designed to
lift the object so it can comfortably deliver it to a person and potentially place
it on a table.

both of these failure modes in a subsequent prototype by
redesigning the flat plate to have a more consistent front
edge, and by providing a firmer, more continuous sweeping
mechanism beneath the links of the compliant finger.

Based on these tests and additional informal testing with
various objects, we chose three locations at which to place
the objects during subsequent tests. We chose these locations
because we expected them to maximize the grasping perfor-
mance. As denoted by the dots in Figure 5 and superscripts in
the results tables (Tables I and II), we used the top location
for large objects, the middle location for medium-sized flat
objects, and the bottom location for small flat objects. As
shown in the figure, the grasping performance was much more
sensitive to the position of small objects than to the position
of large objects. We believe that this variation will be signifi-
cantly reduced with the new version of the robot (see Figure
7), since the variation appears to be a direct consequence of
the piecemeal construction of this first prototype.

B. Testing Over Objects, Object Configuration, and Surfaces

Previously, we remarked that there is currently no consensus
on how robotic grasping should be evaluated. We chose to
systematically vary important characteristics over the trials,
including the object used, the object’s configuration, and the
type of floor upon which the object is sitting. We varied the
type of object in order to test the robot’s ability to pick up a
diverse array of objects without object recognition. We varied
the configuration of the objects, since we assume that the robot
does not know the orientation of objects nor the configuration
of articulated objects. We varied the floor, because homes
have different types of flooring and because the end effector’s
performance critically depends on the ability of the flat plate
to move under the object. As shown in Figure 4, this happens
due to a combination of the plate pushing between the floor
and the bottom of the object, and the object being pushed
across the floor onto the flat plate.

This still leaves the question as to what objects we should
use in our tests. Based on our research with physically im-
paired people who have amyotrophic lateral sclerosis (ALS),



we have identified objects that these potential users would like
to have a robot retrieve for them [2]. We used the preliminary
version of this work to come up with 34 objects representative
of the objects that a motor-impaired person might drop on the
floor and want a robot to recover. In addition to the objects, we
needed to determine the orientations, positions, and flooring
to use in our tests. With so many variables, combinatorial
explosion makes it impractical to test everything. Instead, we
opted for a disciplined sampling strategy. We fabricated 2
small sections of flooring common to household environments
(wood and tile), bought a small carpet sample (medium pile),
and used the carpeted floor in our lab (short pile), as shown
in Figure 6. We did not conduct tests with deep-pile carpet,
because iRobot recommends against the use of the iRobot
Create on deep pile. In our experience, deep-pile carpet
interferes with the robot’s motion. A grasp attempt was made
for each object at the previously determined location, in five
configurations, and on each of these 4 floors – resulting in
34 · 5 · 4 = 680 grasp attempts. We attempted to pick 5
representative object configurations that included variations in
the object’s orientation and any other remaining degrees of
freedom. We show pictures of these configurations for each
object in the results. The algorithm shown in Figure 4 was
performed in each attempt, resulting in the data displayed in
Table I, and continuing in Table II.

Over these 680 trials, the end effector achieved an overall
success rate of 94.71%.

VII. CONCLUSION

We have described the design and evaluation of a novel,
inexpensive end effector to grasp everyday household objects
from the floor. The design makes use of 3 main components:
a flat surface, a wedge, and a member to apply force. The
end effector performs a nonprehensile grasp of an object by
sliding the object onto the flat surface. For our implementation,
we used a compliant finger to push the object onto a thin,
smooth aluminum plate with a sharp, leading wedge. In our
extensive experiments, this straightforward design performed
well over a large set of objects, object configurations, and
floors, without the need for complex models, sensing, or
control. We expect for similar designs with small modifications
to perform even better, and we have already designed and
constructed a second version of the robot and end effector,
see Figure 7. We also believe related, nonprehensile grasp
strategies using more general end effectors hold promise for
robots operating in human environments.
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TABLE I
“DUSTPAN” ROBOT OBJECT EVALUATION – VARYING OBJECT, ORIENTATION, AND SURFACE

Surfaces

Object Orientations Short Pile Carpet Medium Pile Carpet Tile Flooring Wood Flooring

1. Medicine 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Bottle

2. Medicine 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Box (Claritin)

3. Single 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Pillo

4. Wallet 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

5. Soap 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

6. TV Remote 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

7. Cordless 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Telephone

8. Cellphone 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

9. Glasses 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

10. Keyso 5/5 = 100% 5/5 = 100% 4/5 = 80% 5/5 = 100%

11. Credit 5/5 = 100% 5/5 = 100% 3/5 = 60% 2/5 = 40%
Card∗

12. Microfiber 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Cloth∗

13. $20 USD∗
5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

Dollar Bill

14. Quarter 5/5 = 100% 5/5 = 100% 5/5 = 100% 4/5 = 80%
($0.25 USD)o



TABLE II
“DUSTPAN” ROBOT OBJECT EVALUATION – VARYING OBJECT, ORIENTATION, AND SURFACE (CONTINUED FROM TABLE I)

Surfaces

Object Orientations Short Pile Carpet Medium Pile Carpet Tile Flooring Wood Flooring

15. Single 5/5 = 100% 5/5 = 100% 3/5 = 60% 4/5 = 80%
Keyo

16. Plate 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

17. Plastic 4/5 = 80% 5/5 = 100% 4/5 = 80% 3/5 = 60%
Fork∗

18. Plastic 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Spoon∗

19. Knife∗ 4/5 = 80% 5/5 = 100% 5/5 = 100% 5/5 = 100%

20. Cup 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

21. Toothpaste 4/5 = 80% 4/5 = 80% 4/5 = 80% 4/5 = 80%
Bottle

22. Toothpaste 5/5 = 100% 5/5 = 100% 4/5 = 80% 4/5 = 80%
Tube

23. Book 5/5 = 100% 5/5 = 100% 5/5 = 80% 5/5 = 80%

24. Lighter 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

25. Wristwatch 4/5 = 80% 5/5 = 100% 5/5 = 100% 5/5 = 100%

26. Hair 3/5 = 60% 4/5 = 80% 5/5 = 100% 5/5 = 100%
Brush

27. Large Plastic 5/5 = 100% 5/5 = 100% 5/5 = 100% 3/5 = 60%
Container

28. Nalgene 2/5 = 40% 4/5 = 80% 5/5 = 100% 2/5 = 40%
Bottle

29. Sharpie 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Marker

30. Wire 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Cutter

31. Flashlight 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%

32. Odwalla 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Juice Bottle

33. Baby 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Bottle

34. Stuffed 5/5 = 100% 5/5 = 100% 5/5 = 100% 5/5 = 100%
Toy

o Indicates Small Object Overall Success Rate: 161 / 170 167 / 170 161 / 170 155 / 170
∗ Indicates Medium Object (Including Results from Table I) (94.71%) (98.24%) (94.71%) (91.18%)


