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Abstract—We present a novel particle filter implementation for
estimating the pose of tags in the environment with respect to an
RFID-equipped robot. This particle filter combines signals from
a specially designed RFID antenna system with odometry and
an RFID signal propagation model. Our model includes antenna
characteristics, direct-path RF propagation, and multi-path RF
propagation. We first describe a novel 6-antenna RFID sensor
system that provides the robot with a 360-degree view of the
tags in its environment. We then present the results of real-world
evaluation where RFID-inferred tag position is compared with
ground truth data from a laser range-finder. In our experiments
the system is shown to estimate the pose of UHF RFID tags in
a real-world environment without requiring a priori training or
map-building. The system exhibits 6.1deg mean bearing error and
0.69m mean range error over robot to tag distances of over 4m
in an environment with significant multipath. The RFID system
provides the ability to uniquely identify specific tagged locations
and objects, and to discriminate among multiple tagged objects in
the field at the same time, which are important capabilities that
a laser range-finder does not provide. We expect that this new
type of multiple-antenna RFID system, including particle filters
that incorporate RF signal propagation models, will prove to be
a valuable sensor for mobile robots operating in semi-structured
environments where RFID tags are present.

I. INTRODUCTION

Radio frequency identification (RFID) is an umbrella term
for a variety of transponder systems, including active (battery-
powered) and passive (battery-free) tags of widely varying
complexity and capabilities. In this work we concentrate on
simple, low-cost passive UHF RFID tags, often called “smart
labels,” based on the widely adopted EPC Global Generation 2
communication protocol [1]. Currently available passive UHF
RFID tags are battery-free, with a read range exceeding 5
meters and data storage capacities ranging from 128 bits to
over 1K-bit. They currently cost less than $0.10 USD in
volume. To date, RFID tags have typically been used in a
purely binary fasion, returning a tag ID if the tag can be read,
or indicating that no tag was found. Prior work has shown
how this binary tag sensing modality can be used to improve
robot localization, mapping, navigation, and unique object
detection. In this work we demonstrate that there is valuable
information present in the tag’s RF signal itself, beyond the
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Fig. 1. Mobile robot with 6-antenna RFID sensor system

tag ID. We present a novel enhancement to on-robot RFID
sensing by leveraging robot mobility with a physical sensor
model and a particle filter framework that provides relative
tag pose (range and bearing to each tag from the robot’s local
frame of reference) in addition to tag presence or absence.
This enhancement does not require a priori mapping, and does
not require the collection of labor-intensive sensor histogram
models.

In this work we leverage a unique element of passive tag
behavior. Because passive RFID tags do not contain a battery,
sufficient incident RF power must be available at the tag to
allow its on-board circuitry to operate [2]. We take advantage
of this tag power-up threshold to produce an estimate of the
forward path loss between each of 6 robot-mounted reader an-
tennas and each tag in the environment. The forward path loss
is the difference between the amount of RF power transmitted
by the reader and the amount of RF power actually reaching
the tag, and is a function of reader antenna characteristics,
tag antenna characteristics, and the range and bearing to the
tag. We have developed a particle filter implementation for
estimating each tag’s range and bearing relative to a robot-
mounted reader by employing the measured path loss from
the robot to the tag in concert with direct-path and multi-path
RF propagation models.



To make a path loss measurement to any tag regardless
of its bearing with respect to the robot, we have developed
an antenna array with 6 overlapping beams that achieves a
360-degree view of the robot’s surroundings (see Fig. 2).
This antenna array enables tag range and bearing estimation
regardless of the robot’s orientation at the time of mea-
surement. We show that a factory measurement of antenna
radiation pattern is sufficient to generate the physical model
parameters employed in the particle filter which obviates the
time-intensive histogram model generation employed in prior
work (e.g. [3]). With this new approach, it is not necessary to
build or have a priori knowledge of any histograms or maps
for relative tag pose estimation.

Fig. 2. Multiple antenna array shown with RFID reader and ground-truth
capture equipment

Some potential RFID applications include enhanced navi-
gation using reference waypoints, improved localization and
mapping, robust object localization and interaction, mobile
manipulation of tagged objects, and the development of robust
human-robot interaction behaviors, such as people following.
We expect that the contributions of this work in tag range and
bearing estimation can be of value in all of these applications.
The remainder of this paper will focus on implementation
details and the results of several experiments to characterize
RFID tag pose estimation accuracy compared with ground
truth data obtained with a laser range finder.

II. RELATED WORK

A wide variety of research has been conducted on the
application of RFID technology to robotics. This includes
RFID-enhanced interaction between robots and tagged people
and objects, such as that described in [4], where tags facilitate
person/object identification. There is also a great deal of prior
work in RFID augmented indoor navigation [5], where tags are
used as either a waypoint navigation and landmarking system
[6], or more commonly as a component of a robot’s localiza-
tion and mapping system. Several recent works employ long-
range passive UHF (902-928MHz) RFID, in addition to laser
rangefinders and odometry, as sensor inputs to a probabilistic
SLAM algorithm, for example [3]. In these prior results, the
RFID system merely reports the tag IDs of visible RFID tags,
or indicates that no tag is found. Our new work explicitly

takes advantage of RF signal information in the probabilistic
framework, while in the prior work any information present
in the RF signal itself is discarded before the tag IDs reach
the robot’s navigation system.

An alternative RFID-enhanced navigation approach uses
short-range (≈1m) magnetically coupled passive RFID tags
[7] to detect when robots pass above tagged waypoints. Again,
however, a binary indication of tag presence or absence is all
that is reported by the RFID system. Recent work in active
(battery-powered) tagging [8] demonstrates navigation to a
relatively expensive, battery powered target tag in a cluttered
environment. In the latter work, a mechanically rotating reader
antenna with a deep null in its radiation pattern is used
to find bearings from the reader to the active tag. In this
work, the RF signal strength is incorporated into the robot’s
navigation system, but [8] relies on expensive battery-powered
tags and requires a rotating antenna on the robot, which is
mechanically complex and limits update rate to the achievable
mechanical rotation rate for the antenna motor. Other complex
or expensive tag-centric antenna design techniques have also
been explored to find range and bearing [9].

In the prior work where passive UHF RFID is used, e.g.
[3], the tag reader has provided identity information only; that
is, the tag is either read or not read (tag ID present or absent),
and the result of the read attempt is taken as a binary variable.
In the approach of [3], a tag read/not read histogram approach
is inherent to the posterior update of robot’s belief state. In
that work, a model was built in a training configuration using
a 12,822 measurement histogram created by mounting the tag
on a box and counting the number of successful tag reads for a
wide variety of different tag ranges and bearings with respect
to the reader. A greatly simplified discrete likelihood detection
region model (Fig. 4 in [3]) was then used to estimate the likely
locations of the tags given an assumed map of the environment
derived from a laser scanner and a FastSLAM implementation.
This approach is adequate for line-of-sight applications where
multipath propagation is not prevalent, and where many tags
are simultaneously visible to the reader, but the histogram
approach requires an extremely large number (>10,000 in
some cases) of binary measurements and substantial training
time to result in a useful tag position estimate because of the
typically large read zone (10m2 to 25m2) available in front of
each antenna.

In contrast, in this work we look beyond the binary
“presence/absence” indication by leveraging an important
continuous-valued statistic of the RF signal itself. We employ
the tag’s power-up threshold (the incident RF power level at
which the tag receives enough power to operate) to provide
a continuous-valued measurement of the forward path loss
from each of 6 robot-mounted antennas to each tag in the
environment. Because each of the antennas has a beam width
of over 60 degrees, the 6 antenna array is capable of observing
tags at any bearing with respect to the robot without requiring
any mechanical motion of the antennas or the robot. We
show that the path loss measurements, when coupled with
a physical model of RF propagation, can be employed as a



continuous-valued statistic in a particle filter implementation
that eliminates the requirement to collect histogram training
data. Furthermore, the particle-filter’s maximum-likelihood tag
pose estimate is relative to the robot’s local frame of reference,
and thus does not require a pre-built map to find tag range
and bearing, though if a SLAM implementation is desired the
forward path loss statistic is also straightforward to use in a
probabilistic SLAM implementation such as the one presented
in [3].

III. MULTIPLE-ANTENNA RFID READER APPARATUS

In order to evaluate the performance, precision, and accu-
racy of the RFID sensor and particle filter implementation,
we first conducted a series of tests with a static test rig as
shown schematically in Figure 2. We employed the following
components in these tests:
• RFID Reader: ThingMagic Mercury 4e UHF RFID

reader with two antenna ports.
• RF Switches: Two Skyworks AS195-306 RF switches

controlled via USB and connected to multiplex the RFID
reader’s two antenna ports to 6 antennas.

• Antennas: Six MaxRad MP8906PTNF patch antennas
(70-degree horizontal, 50-degree vertical beam angle).

• Digital Compass: Ocean Server OS5000 tilt-
compensated digital compass.

• Laser Scanners: Two Hokuyo URG-04LX laser
rangefinders (≈ 4m range) for obstacle/wall detection.

• Laser Target: A cardboard cylinder was used as a laser
target for a SICK LMS291 laser rangefinder providing
ground truth.

After testing, the multiple antenna RFID apparatus was
mounted on the mobile robot base shown in Figure 1 for
mobile operation.

IV. INTEGRATING RF PROPAGATION MODELS INTO THE
PARTICLE FILTER

We employ a particle filter framework based on the low
variance resampling implementation from [10]. We wish to
find the posterior p(xt|z1:t, u1:t, x1:t), where x is the state
variable representing tag pose relative to the robot, z1:t are
RFID measurements from all previous time steps, and u1:t

are a set of controls (odometry updates) over all time steps.
We apply Bayes’ rule with a first order Markov model to yield
the recursive expression

p(xt|z1:t, u1:t, x1:t) = η · p(zt|xt) · p(xt|ut, xt−1) (1)

In this formulation, p(xt|ut, xt−1) represents a motion
model or control (odometry for our implementation, as dis-
cussed in [10]), η is a normalization factor, and p(zt|xt) is
the sensor model we desire to explore. In this expression,
p(zt|xt) represents the probability distribution of the sensor
measurement (i.e. reading/not reading a tag) given a current
state including the range and bearing to the particle under
consideration.

In this work we present a new model for thinking about the
distribution, p(zt|xt), based on a physical model of RF signal
propagation rather than an empirically-generated histogram
model as was used in [3], in order to obviate extensive
empirical training. Instead, we use an RF propagation model
including the RFID reader’s transmission power and antenna
characteristics to predict the far-field read range using the
Friis free space RF propagation model [11] with extensions
to handle multipath propagation indoors.

Fig. 3. RF propagation indoors including including direct path, ground
bounce multipath, and ceiling bounce multipath

A. Tag power-up and the forward link limit

In order to make inferences about the likelihood of a
tag being read in a certain state configuration xt, we must
first understand what factors influence tag readability. This is
relatively straightforward in the passive UHF RFID case as
one factor is dominant; since tags do not have batteries they
must derive their operating power from the incoming RF signal
transmitted by the reader. If insufficient RF power is incident
on the tag, the tag will not power up and will be completely
inert. Thus the potential readability of a particular tag given a
state configuration xt and an RF signal path associated with
xt is governed by the ‘forward link limited’ condition. The
forward link limit occurs when the incident power at the tag
P inc

tag just equals the power up threshold of the tag P th
tag , i.e. the

tag is just operating, but any decrease in incident power will
result in the tag becoming inoperative. We have determined
that the RFID reader’s receiver has an excess of sensitivity,
so as long as the tag is powered up, the reader will receive
the tag signal with probability arbitrarily close to unity. In
this condition we call the RFID system ‘forward link limited’
because the delivery of power from the reader to the tag is
the primary criterion for successfully reading the tag. We use
this threshold requirement to define the measurement model
as follows:

p(zti
= Present|xt) =

{
1.0 if P inc

tag ≥ P th
tag

0.6 otherwise

p(zti
= Absent|xt) =

{
1.0 if P inc

tag < P th
tag

0.6 otherwise



A number of read attempts are performed per measurement
update, as our algorithm sweeps across multiple power levels
and across all 6 antennas, to yield a probability distribution

p(zt|xt) =
∏
powers

antennas

p(zti
|xt) (2)

The decision region is fundamentally defined by the rela-
tionship between P inc

tag and P th
tag . The latter is specified by

the tag manufacturer, while the former can be estimated using
the well-known Friis free space RF propagation model [11].
The expressions above define a spatial probability distribution
that is effectively sampled by particles. Figure 4 shows the
two distinct distributions employed in the tag present and tag
absent cases. The numerical weight values were determined
experimentally to provide good convergence and sufficient
generalization, but are in similar proportion to the weights
found in the histogram methods of [3].

Fig. 4. Update weighting. Left: When a tag is read, any particle inside the
Friis model read-range estimate is weighted by 1.0, any outside by 0.6. Right:
When a tag is not read, any particle inside the Friis model read-range estimate
is weighted by 0.6, any outside by 1.0.

B. The Friis free space RF propagation model with multipath
extensions

To find the power incident on the tag, we traverse the signal
path (for each path, including line-of-sight and all reflec-
tion paths) multiplicatively accounting for each component’s
gain/loss. To determine the incident power at the tag due to a
single path, we start with the reader’s transmitted power Prdr,
account for the cable loss CL, multiply by the gain of reader
antenna Grdr(θ) for each path, include the free-space loss due
to the spreading of the beam over that path (called path loss
or PL), and finally, account for the tag antenna’s gain Gtag

to arrive at the incident power on the tag integrated circuit.
We make explicit the possibility of multipath by summation
of incident power over all paths:

P inc
tag =

∑
all paths

Prdr · CL ·Grdr(θ) · PL ·Gtag (3)

In most situations, Prdr, CL, and Gtag are constants for all
paths, which reduces Eq. 3 to

P inc
tag = Prdr · CL ·Gtag ·

[∑
all paths

Grdr(θ) · PL

]
(4)

Grdr(θ) is the antenna radiation pattern and is readily
available from the antenna manufacturer. We estimate path
loss with the Friis model, which is derived from the spherical
geometry of the problem [11]:

PL =
(

3 · 102

4π · d · f

)2

(5)

where d is the distance (in meters) along the RF propagation
path, and f ≈ 915MHz is the operating frequency. Path
distance d represents the distance between a particle under
consideration and the robot. Fractional representations of all
ratios must be employed in these calculations1.

For a single (direct) path, substituting Eq. 5 into Eq. 4 yields
the required incident power for a successful read as a function
of distance to the tag. This relationship is illustrated in the
measurement presented in Fig. 5, which shows good agreement
between the Friis model and the measured incident power.
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Fig. 5. Measured incident tag power versus distance from reader, as compared
to the Friis model.

V. RF PROPAGATION MODEL PARAMETERS

In order to use the model quantitatively, we must know
the model parameters Prdr, Grdr(θ), Gtag , CL, and P th

tag .
Values for some of these parameters can be taken directly
from manufacturer’s specifications. For example, RFID reader
power Pwrrdr can be set in software from 5dBm to 30dBm
(3.1mW to 1W). Manufacturer’s specifications provide P th

tag

as -13 dBm (50µW), and Gtag as 1 dBi.

A. Determining Grdr(θ) and CL

It is common for antenna manufacturers to provide the
antenna gain, Grdr(θ), as a function of angle on the horizontal
plane. The antenna gain for the MaxRad MP8906PTNF used
in this paper is shown in Figure 6 as specified by the manu-
facturer, as observed experimentally with a series of actual tag
reads in the laboratory, and as empirically fit with a second-
order exponential.

To determine the cable and switch loss, CL, in the system,
we can simply add together the losses along the cable and

1RF component parameters are frequently given in the log units of dB,
given by XdB = 10 · log10X; values in dB must be converted to fractional
ratios before use here.



switch path from the RFID reader to the antenna. In our
system, the RF cables introduce a total of 1.5 dB in losses.
The switches themselves also introduce an additional 1 dB of
loss. Thus the total cable and switch loss CL = -2.5 dB.

Fig. 6. Grdr(θ) as specified in the MaxRad MP8906PTNF radiation pattern
specification, plotted with a second-order exponential fit to the observed tag
read profile.

VI. EXPERIMENTAL RESULTS AND MODEL VALIDATION

Evaluation of the multiple antenna RFID system and the par-
ticle filter implementation was performed in a 10m×12m open
room with ceiling height of ≈2.85m. The primary sources of
multipath in this room are the ground and ceiling bounces
from the reinforced concrete floor and ceiling. The robot base
and its 6-antenna RFID system were configured to sample
and capture in a data log file the observed tag readability
with varying read power levels in between movement events
of ≈ 20cm. Ground truth was obtained using a SICK LMS291
laser range-finder and a circular Hough transform to find the
centroid of the circular cardboard laser targets surrounding the
robot base and the tag. The orientation of the robot base was
measured with the digital compass and cross-validated with
manual angle measurements relative to room “north”.

From these measurements, simulated odometric control up-
dates, consisting of translation and rotation with Gaussian error
profiles, were projected into the robot’s local frame for input
to the particle filter. The particle filter’s initial state consisted
of 1000 particles uniformly spaced over a 20m × 20m grid,
centered about the robot. Control updates and RFID read
events from all 6 antennas over 9 read power levels were
extracted from the logged dataset for each 20 cm of robot
movement. Measurement update rate is dominated by tag read
times of 1-3ms and antenna switching times of 6ms, yielding
6-antenna update times of 50-100ms. The results of this
evaluation are shown graphically in Figure 7 and numerically
in Table I, where µ = mean, σ = standard deviation and

derror = |dactual − destimated|

drelative = |derror ÷ dactual|

θerror = |θactual − θestimated|

While we employed 1000 particles in this experiment to
better quantify the variance, the particle filter is capable of
converging on an equally-accurate mean estimate with fewer
than 40 particles.

Error Line-Of-Sight With Ground &
Range Measures Only Ceiling Bounce

All dactual
derror

µ=0.71m µ=0.69m
σ=0.45m σ=0.42m

drelative
µ=16.2% µ=15.9%
σ=6.8% σ=6.6%

θerror
µ=6.11o µ=6.11o

σ=4.19o σ=4.19o

dactual ≤ 4 m derror
µ=0.40m µ=0.41m
σ=0.20m σ=0.21m

drelative
µ=13.3% µ=13.6%
σ=6.0% σ=6.3%

θerror
µ=5.12o µ=5.08o

σ=3.62o σ=3.72o

dactual > 4 m derror
µ=1.05m µ=1.00m
σ=0.39m σ=0.38m

drelative
µ=19.3% µ=18.4%
σ=6.1% σ=6.1%

θerror
µ=7.17o µ=7.23o

σ=4.50o σ=4.38o

TABLE I
PARTICLE FILTER ACCURACY AFTER CONVERGENCE

Results are shown in Table I split into three categories–
net error for all robot to tag distances, for robot to tag
distances of d ≤ 4m and for d > 4m. The region where d ≤
4m exercises the model primarily in the line-of-sight region
where multipath is insignificant, while the other two cate-
gories include significant ground and ceiling-bounce multipath
contributions. From additional experiments involving extended
transmit power versus read distance, shown in Figure 8, we
observe that the multipath models including ground and ceiling
bounces are necessary to obtain good accuracy when d > 4m.

VII. CONCLUSIONS

We have built and evaluated what we believe to be the
first mobile robot equipped with a UHF RFID system that
includes a multiple antenna UHF RFID reader as well as a
particle filter implementation incorporating a multipath RF
propagation model. This work presents a new particle filter
framework for interpreting signals from passive UHF RFID
tags that makes use of continuous-valued statistics derived
from the RFID signal itself.

In our experiments the system is shown to estimate the
pose of UHF RFID tags in a real-world environment with-
out requiring a priori training or map-building. The sys-
tem exhibits 6.1 deg. mean bearing error and 0.69m mean
range error over robot to tag distances of over 4m in an
environment with significant multipath. While these numbers
may not seem impressive when compared to typical laser
range-finder accuracy, the RFID system provides the ability to
uniquely identify specific tagged locations and objects, and to
discriminate among multiple tagged objects in the field at the



Fig. 7. Particle filter convergence. Left-to-Right, Top-to-Bottom: Time steps
1 through 36 in steps of 4 (≈7.2m robot travel, filter employs 1000 particles).

Fig. 8. Effect of multipath on Friis model estimated read distance on antenna
boresight.

same time, which are important capabilities that a laser range-
finder does not provide. We expect that the combination of this
type of RFID range-bearing system with a laser range finder
will provide especially promising results for indoor navigation
and interaction with tagged objects. We thank Georgia Tech’s
Health Systems Institute for support through its seed grant
program.
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