
Combining Tactile Sensing and Vision for Rapid Haptic Mapping

Tapomayukh Bhattacharjee, Ashwin A. Shenoi, Daehyung Park, James M. Rehg, and Charles C. Kemp

Abstract— We consider the problem of enabling a robot
to efficiently obtain a dense haptic map of its visible sur-
roundings using the complementary properties of vision and
tactile sensing. Our approach assumes that visible surfaces that
look similar to one another are likely to have similar haptic
properties. We present an iterative algorithm that enables a
robot to infer dense haptic labels across visible surfaces when
given a color-plus-depth (RGB-D) image along with a sequence
of sparse haptic labels representative of what could be obtained
via tactile sensing. Our method uses a color-based similarity
measure and connected components on color and depth data.
We evaluated our method using several publicly available RGB-
D image datasets with indoor cluttered scenes pertinent to robot
manipulation. We analyzed the effects of algorithm parameters
and environment variation, specifically the level of clutter and
the type of setting, like a shelf, table top, or sink area. In
these trials, the visible surface for each object consisted of an
average of 8602 pixels, and we provided the algorithm with
a sequence of haptically-labeled pixels up to a maximum of
40 times the number of objects in the image. On average, our
algorithm correctly assigned haptic labels to 76.02% of all of the
object pixels in the image given this full sequence of labels. We
also performed experiments with the humanoid robot DARCI
reaching in a cluttered foliage environment while using our
algorithm to create a haptic map. Doing so enabled the robot
to reach goal locations using a single plan after a single greedy
reach, while our previous tactile-only mapping method required
5 or more plans to reach each goal.

I. INTRODUCTION

Tactile sensing can provide distinctive information about
a robot’s environment, including direct measurements of
mechanical properties of nearby objects, but requires that the
robot make physical contact with locations of interest, which
can be energetically costly and time consuming. Vision can
rapidly sense visible surfaces, even when they are out of
reach, but provides information that differs from what tactile
sensing can provide. In this paper, we address the problem
of inferring dense haptic labels across a visible surface based
on sparse haptic labels, thereby enabling a robot to efficiently
obtain a dense map with fewer contact events. One notable
characteristic of this problem is the different forms of spatial
sampling associated with these two perceptual modalities.
We define a haptic map to be a set of pairs associating
locations with haptic labels. Specifically, we use two types
of haptic map in this paper. For one, the robot must assign
haptic labels to point cloud data, specifically from an RGB-
D image. For the other, the robot must assign haptic labels
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Fig. 1: A robot DARCI, equipped with a tactile-sensing
sleeve (blue) and a Kinect, reaching inside a cluttered foliage
environment.

to occupied voxels. The goal is for the robot to rapidly and
accurately assign haptic labels to support manipulation. We
refer to the process of the robot assigning haptic labels to
locations as haptic mapping.

Our key idea for this work is that visually similar objects
near the robot are likely to have similar haptic properties.
Though touch typically provides information about a small
area, humans can attribute a haptic property to a large area
by visually perceiving that the large area looks like the small
contacted area. Humans can also attribute haptic properties
to objects based on visually similar objects with which they
have interacted in the past (e.g. fabric identification) [1].

We performed simulations to analyze the performance
of our algorithm on different cluttered environments (See
Section IV). We discuss the effects of algorithm parameters
and present the results with our method in Section IV-A. As
shown in Figure 1, we also performed experiments with the
humanoid robot DARCI reaching in a cluttered environment
using a tactile-sensing sleeve and a Kinect (Section V and
Section V-D). These experiments build on our past research
devoted to reaching in clutter and use the same reconfig-
urable artificial foliage and underlying system components,
including a tactile perception system that recognizes object
categories based on touch [2]. For our experiments with
the real robot, this tactile perception system provided sparse
haptic labels of trunk and leaf.

II. RELATED WORK

Researchers have worked on various aspects of the role
of multiple sensory modalities such as haptics and vision in
day-to-day manipulation tasks for both humans and robots.



Research on multisensor fusion has often focused on com-
bining overlapping information to obtain a reliable estimate
of the environment [3], and other work has focused on using
modalities sequentially to guide each other, such as vision
providing guidance for tactile exploration [4]. Our work
considers the problem of using sparse tactile sensing with
dense visual sensing to produce dense haptic representations
of the robot’s environment.

A. Human Multisensory Perception

Many studies on human multisensory perception focus
on cognitive and neurological aspects, such as the binding
problem [5] in cross-modal interactions [6]. Others have
investigated the psychophysical aspects of combined per-
ception with vision and haptics [7]–[9] using the concept
of temporal synchrony and spatial coincidence. Our method
uses spatial and temporal correspondence between haptic and
visual sensory modalities to obtain a dense haptic map.

B. Robotic Multisensory Perception

1) Object Perception: There are many studies that deal
with haptic and visual perception of virtual objects [10]–[12]
or real remote objects [13] by a human operator. Researchers
have also investigated haptic and visual perception to support
object perception for robot autonomy. Stansfield [4] used
vision to segment an object and estimate its position and then
used haptics to actively explore and perceive the object. Allen
[14] used vision to obtain sparse 3-D data about regions of
interest and then used haptics to actively explore regions for
object recognition. Researchers have also extracted object
attributes such as rheological properties [15], mass and
elasticity [16], friction [17], and such by exerting known
forces with haptics and observing responses with vision.

2) Active Perception: Researchers have worked on active
vision and associated information from vision to various
physical interactions [18]–[21]. Coelho et al. [22] used vision
to determine appropriate grasping strategies and then used
haptics to grasp the objects. Using tasks such as flipping
a light switch and operating a drawer, Nguyen and Kemp
implemented SVMs with vision as input to predict if a
manipulation behavior is likely to succeed at a particular 3D
location [23]. Sukhoy and Stoytchev developed a framework
for pressing buttons using a robot’s visual and auditory
percepts [24]. van Hoof et al. used vision in cluttered en-
vironments to predict an action with the highest information
gain [25].

3) Localization and Mapping: Relatively few studies have
looked at mapping using both haptics and vision modalities.
However, researchers have studied various ways of haptically
mapping the environment by assigning physical properties
to objects using only tactile sensors. Some studies focused
on presenting haptic information using a ‘haptograph’ that
uses frequency and spatial analysis to represent contact
information [26], [27]. Schaeffer and Okamura [28] used
various probabilistic methods to simultaneously localize the
movement of a robotic fingertip while haptically mapping the
surface. Rui et al. used Gelsight tactile sensing to localize the
pose of small parts grasped using a robot hand [29]. Alt and

Algorithm 1 VisualHapticRelation(SH Labels,RGB Im)
Input: SH Labels← Sparse Haptic Labels
Input: RGB Im← RGB Image from Kinect
Output: CL list← Color Label relation list
Output: LCL list← Location Color Label relation list

5: while SH Labels is not empty do
SH ← SH Labels.POP ()
XY ← SH.XY
RGB ← RGB Im [XY ]
Label← SH.Haptic Label

10: LCL← LCL list entry with best match XY
if LCL == None then

Label counts← new 0 array
Label counts [Label] + +
LCL← (XY,RGB,Label)

15: LCL list.Append(LCL)
else

LCL.Label counts [Label] + +
end if
CL← CL list entry with best match RGB

20: if CL == None then
Label counts← new 0 array
Label counts [Label] + +
CL← (RGB,Label counts)
CL list.Append(CL)

25: else
CL.Label counts [Label] + +

end if
end while

Steinbach developed a visuo-haptic sensor which uses vision
to monitor the deformation of a plastic foam in contact to
attribute haptic properties to objects in the environment [30].
Fox et al. [31] used data from a whiskered robot for grid-
based Tactile SLAM to generate an occupancy grid. All these
studies focus on building the haptic map based on tactile data
alone, and thus, the maps are local and limited to the area
of active exploration.

Unlike the above active exploration studies, our previous
work [2], [32] uses information generated from incidental
contact with a whole-arm tactile sensor to generate a local
and sparse 3D haptic map. By incidental contact, we mean
contact that is not central to the robot’s current actions and
may occur unexpectedly or unintentionally. In this paper, our
system uses vision to make better use of information gained
via incidental contact. For example, the sparsity of the haptic
maps used in our previous work can sometimes reduce the
usefulness of plans [32]. Our current study addresses this
issue by using vision to generate dense haptic maps across
visible surfaces based on sparse haptic labels.

III. ALGORITHM

Our proposed algorithm is divided into 2 stages, assign-
ing sparse haptic labels (See Section III-A) and assigning
dense haptic labels (See Section III-B). For this paper, our
algorithm makes two notable simplifications. First, it only
uses color to decide which locations are visually similar.
Additional appearance features, such as texture features,
could potentially improve its performance. Second, it only
uses haptic labels with 2D image coordinates and performs
operations with respect to the image’s coordinate system.



Algorithm 2 Map(RGB Im,D Im,CL list,LCL list)
Input: RGB Im← RGB Image from Kinect
Input: D Im← Depth Image from Kinect
Input: CL list← Color Label relation list
Input: LCL list← Location Color Label relation list

5: Output: Hap map← Haptic map of visible scene
procedure GETLABEL(RGB,CL list)

CL← CL list entry with best match RGB
if CL == None then

Label← “Unclassified”
10: else

Label← ArgMax (CL.Label counts)
Count← CL.Label counts [Label]
if Count ≤ 0.8 ∗ Sum (CL.Label counts) then

Label← “Uncertain”
15: end if

end if
return Label

end procedure
for each Pixel in RGB Im do

20: RGB ← Pixel.RGB
Pixel.Label← GetLabel (RGB,CL list)

end for
for each LCL in LCL list do

RGB ← LCL.RGB
25: Label← GetLabel (RGB,CL list)

if LCL.Label 6= Label then
XY ← LCL.XY
C RGB ← ConnectedComponent(RGB Im,XY )
C D ← ConnectedComponent(D Im,XY )

30: Segment← C RGB ∩ C D
for each Pixel in Segment do

Pixel.Label← LCL.Label
end for

end if
35: end for

for each Pixel in RGB Im do
Hap map.Add (Pixel)

end for

Tactile sensors can assign haptic labels to 3D Cartesian
locations around a robot using forward kinematics with
calibrated sensors, and our algorithm assumes that these have
been transformed into the 2D color image.

A. Stage 1: Sparse Haptic Labeling
Our system on the real robot uses our previous hidden

Markov model (HMM) based classification method described
in [2] for local haptic categorization. It takes force data
from the tactile-sensing sleeve over time as input and outputs
sparse haptic labels each with a 2D color image coordinate.

B. Stage 2: Dense Haptic Labeling
In this stage, our algorithm uses the sparse haptic labels

from Stage 1 and RGB-D data from a Kinect to assign
dense haptic labels across visible surfaces. In order to infer
the dense haptic labels across visible surfaces from the
sparse haptic labels, our algorithm maintains a visual-haptic
relation.

1) Visual-Haptic Relation: The algorithm (see Algorithm
1) creates a relation between the visual and haptic data using
two lists.

The first list (LCL list) is the ’Location Color Label’
relation, which keeps track of the locations of all the points

of contact, their corresponding RGB values and haptic labels
assigned in Stage 1. When a new contact is made, the algo-
rithm finds the corresponding point in the image. It checks
if the new point is the same as any of the previously tracked
points. If such a point exists, it increments the corresponding
haptic label. Otherwise, it stores the coordinates of this new
point, its RGB value, and haptic label counts in the list.

The second list (CL list) is the ’Color Label’ relation
between colors and haptic labels. When a new contact is
made, the algorithm compares the RGB value of this point
and checks if the color is similar (We use a distance measure
in the CIELAB color space, see Section IV) to any of the
colors of previously tracked points. If such a point exists, the
algorithm increments the count of the corresponding haptic
label for this color. Otherwise, it creates a new relation for
this color. The algorithm uses this relation in Section III-B.2.

2) Dense Haptic Map Generation: In this stage, our
algorithm (see Algorithm 2) uses CL list (See Section III-
B.1) to infer the haptic labels of the rest of the visible scene.
For this, the algorithm compares the color of every point in
the visible scene with the colors maintained in the CL list
(using a distance measure in the CIELAB color space, See
Section IV). The algorithm determines the appropriate haptic
label by finding a label that has a count greater than 80% of
the total haptic count for the best matching color, if there is
a matching color. If such a label doesn’t exist, then the point
is classified as ‘Uncertain’. Any points in the visible scene
that do not match a color maintained in the CL list remain
‘Unclassified’.

However, there may be scenarios in which objects with
visually similar properties have distinct haptic labels. The
algorithm detects such cases using contradictions between
CL list and LCL list. For example, a new contact could
be made and the haptic label for the color associated with the
point (obtained from LCL list) could be different from the
haptic label for the color in general (obtained from CL list).
The algorithm addresses such situations by updating only a
local segmented region (instead of the whole scene) with the
associated haptic label. The algorithm segments a region by
computing connected components for the RGB image, com-
puting connected components for the depth image, selecting
the color and depth connected components that contain the
point of interest (obtained from LCL list), and then finding
the intersection between these two connected components.
Section IV-A.2 shows the relevant quantitative results.

3) Implementation: We implemented our algorithm in
Python using the scikit-image [33], OpenCV [34] and
NumPy [35] libraries. We used the scikit-image Python
library for color transforms and color difference calculations,
OpenCV for image handling and NumPy for data manipu-
lation. We used ‘cv bridge’ [36] to convert between ROS
images and OpenCV images. After we updated the RGB
image with dense haptic labels, we combined the RGB image
with the depth image from the Kinect to generate a point
cloud using nodelets in the depth image proc ROS package
[37] to assign haptic labels to each point in the point cloud.
The implementation we evaluated for this paper directly
transforms haptic labels in 3D to the image’s coordinate



TABLE I: Effect of threshold and distance measure on
performance.

Distance Threshold F1score [0, 1]
Measure (Avg.) (Std.Dev.)

5 0.55 0.18
CIE76 15 0.75 0.17

25 0.75 0.18
5 0.57 0.23

CIE94 15 0.63 0.24
25 0.66 0.23
5 0.62 0.17

CIEDE2000 15 0.76 0.17
25 0.72 0.21

TABLE II: Percentage of pixels updated with contacts for all
images.

ContactPoints/ P ixels updated correctly
No.ofObjects (Avg.) (Std.Dev)

5.0 63.08 % 19.71 %
10.0 69.48 % 18.26 %
15.0 71.98 % 17.28 %
20.0 73.84 % 17.02 %
25.0 75.11 % 16.18 %
30.0 75.67 % 16.09 %
35.0 74.98 % 16.91 %
40.0 76.02 % 16.26 %

system, ignoring their depth with respect to the visible
surface. Filtering out haptic labels that differ too much
in depth from the visible surface would be a worthwhile
modification.

IV. EVALUATION WITH SIMULATED TRIALS

We evaluated our algorithm on annotated RGB-D images
in order to provide a controlled evaluation with a substantial
number of trials. For this evaluation, we used a simple model
of a robot, which provided a sequence of haptic labels with
each label associated with a specific pixel in the RGB-D
image.

To create our dataset for this evaluation, we selected
186 RGB-D images of indoor cluttered scenes suitable
for robot manipulation tasks from various publicly avail-
able RGB-D datasets [38]–[42]. We relabeled the seg-
mented objects in these images using tools from [43],
applying a single haptic label to each segmented object
and, hence, all of its pixels. The haptic labels we as-
signed were Books, Cardboard, Ceramic , Fabric, Foam,
Glass, Leather, Metal, Onion, Paper, Plastic, Rubber,
Sponge, Wax, Wood, Bread, Plant, Soap, Cinder Block
and Soft P lastic. We chose these haptic labels because
tactile sensing could plausibly make these distinctions. Force,
deformation, area of contact, texture, stiffness, heat transfer
and other haptic features have been used to make compa-
rable distinctions in prior research [44]–[49]. Three people
independently assigned these haptic labels to the segmented
objects in the 186 RGB-D images. When the haptic labels
for an object disagreed, the three people discussed the label
and attempted to come to a consensus. For the fewer than
5 objects for which consensus was not readily achieved,
they found real-world objects that matched the objects in
the images and physically interacted with them to achieve
consensus. One experimenter also categorized the images

based on scenes (table top, shelf, sink area, bed, floor and
misc.) and clutter density (low and high).

We performed two sets of simulations with the 186 RGB-
D images. For the first set of simulations, we analyzed the
performance with different distance measures and thresholds.
In the first set of simulations, we randomly selected 40
labeled pixels for each image from the pixels associated
with the segmented and labeled objects. We evaluated the
generated dense haptic map matching it against the ground
truth labels. We repeated this process 5 times for each image
and each parameter (3 color-distance measures, and 3 color-
distance thresholds, See Table I) to generate 5 ∗ 3 ∗ 3 ∗ 40 ∗
186 = 334800 trials. For each parameter, we computed the
average across all the images for each category. We used the
F1score to evaluate the system for different thresholds and
distance measures.

We selected the 3 distance measures CIE76, CIE94, and
CIEDE2000 according to [50], [51]. CIE76 (1976) was the
original distance metric developed for L*a*b space which
was based on Euclidean distance but had issues with percep-
tual uniformity in saturated regions [50], [52]. The revised
version in 1994, CIE94, was defined in L*c*h color space
and introduced application-specific weights in the formula
but still was not perceptually uniform [50], [52]. CIEDE2000
added compensation terms in the CIE94 formula to revise it
[51], [52]. Section IV-A.2 discusses the results.

For the second set of simulations, we used the color-
distance measure and color-distance threshold that gave the
best performance in our first tests. For each image, we
generated a pool of labeled pixels by randomly selecting
1000 labeled pixels from each segmented object in the
image. We then randomly sampled 40 * Ni pixels without
replacement from this pool, where Ni is the number of
objects and i is the image. Ni had values that ranged from
1 object to 24 objects. We repeated this process for each of
the 186 images, resulting in

∑186
i=1 40 ∗Ni = 52160 labeled

pixels in total.

A. Results from the Simulated Trials

1) First Set - Effect of Algorithm Parameters: We evalu-
ated the algorithm for different color-distance measures, and
color-distance threshold values using all the images in the
dataset. Table I shows the results for different values of the
parameters. Our algorithm performed best using CIEDE2000
with ‘15’ as the threshold, so we chose CIEDE2000 as the
color-distance metric for the second set of simulations and
the robot experiments described in Section V.

2) Second Set - Quantitative Evaluation of Algorithm
Performance: To evaluate how our algorithm performed with
more contacts with objects in the environment, we found the
number of pixels that were correctly updated with each new
point of contact. Table II shows the results. As the number of
contacts increased, the rate at which the pixels were correctly
updated decreased. Although our sampling method tended to
distribute the contact points across the objects, it was still
highly random. Feedback-driven sampling, such as sampling
from locations that have not yet been labeled, might result
in improved performance. With a ratio of 40 contact points



Fig. 2: Simulation results of haptic categorization for some example images from different publicly available datasets [38]–
[42]. These examples show scenes from different environments with varying density of clutter. The uncertain regions are
marked with white and the background is marked with grey.

TABLE III: Performance on different environments.
Pixels

Env. F1score [0, 1] updated correctly
Type (Avg.) (Std.Dev.) (Avg.) (Std.Dev.)

Low Clutter 0.84 0.16 79.32% 16.12%
High Clutter 0.72 0.20 70.10% 14.74%
Bed 0.78 0.09 77.61% 21.23%
Floor 0.92 0.03 92.56% 7.82%
Shelf 0.71 0.15 68.08 % 7.50%
Sink Area 0.79 0.18 68.26% 13.38%
Table Top 0.80 0.20 79.01% 15.50%
Misc. 0.88 0.13 78.21% 24.70%

per object, the algorithm correctly updated an average of
76.02% of the object pixels in an image. Since there were
8602 pixels per object on average, 40 pixels per object is a
relatively small portion of the visible scene.

3) Second Set - Effect of Clutter: We classified the images
in our dataset into two categories, low clutter and high
clutter. We computed the F1score and percentage of pixels
updated with a ratio of 40 contact points per object for
all images in each category. Table III and Fig. 3 show
the results. Our algorithm performed better with low-clutter
environments (F1score = 0.84) when compared to high-
clutter environments (F1score = 0.72).

4) Second Set - Effect of Type of Environment: We also
classified the images into 6 different scene-based categories
as described in Section IV. We computed the same perfor-
mance measurements as in Section IV-A.3. Table III and Fig.
4 show the results.

V. EVALUATION WITH A REAL ROBOT

A. Experimental Apparatus

1) The Robot: We used the humanoid robot DARCI, a
Meka M1 Mobile Manipulator, which includes a mobile
base, a torso on a vertical linear actuator, and two 7-DoF
arms. The mobile base and torso height remained fixed
throughout our experiments. The left arm had a 3D-printed
cylindrical ABS plastic end effector (Fig. 1). The joints of the
robot arm use series elastic actuators (SEAs) and have a real-
time impedance controller with gravity compensation. This
simulates low-stiffness visco-elastic springs at the robot’s
joints.

2) The Tactile Sensor: For tactile sensing, we used our
fabric-based tactile-sensing sleeve with 25 discrete tactile
sensing areas (taxels) on the robot’s forearm and end effector
[53]. The tactile perceptual system converted the raw taxel
measurements to approximate normal forces using a non-
linear calibration function.

3) The Vision Sensor: For the visual modality, we used a
Microsoft Kinect to capture color (RGB) and depth images
of the scene. Our algorithm processes the RGB and depth
data as described in Section III-B.

4) The Environment: We evaluated our system in a clut-
tered environment consisting of artificial foliage that we
have used in our previous research [32]. Figure 1 shows the
environment, which is composed of trunks and leaves.

B. Experimental Procedure

We used a system that runs Ubuntu 12.04 32-bit OS with a
3.5.0-51-generic-pae linux kernel. It has 16 GB RAM and an



Fig. 3: Percentage of pixels updated for environments
with different clutter densities. Green: Correct, Red: Incor-
rect/Uncertain, Blue: Unclassified

Fig. 4: Percentage of pixels updated for environments
categorized based on scene. Green: Correct, Red: Incor-
rect/Uncertain, Blue: Unclassified

Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz X 8 processor.
We used ROS Fuerte [54] for communicating with the RTPC
and the robot DARCI. In our experiment, the robot reached
to different goal locations in the foliage environment, while
making incidental contact with various objects (trunk and
leaf). Our algorithm used the haptic classification of contact
into trunk or leaf along with the RGB-D data from the Kinect
to infer a dense haptic map across a visible surface.

To demonstrate our algorithm, we first teleoperated the
robot using interactive markers in rviz, a ROS-based 3D
visualization tool, resulting in various trajectories, contact
events, and lighting conditions. The robot used our previ-
ously developed controller described in [32] to quickly reach
to a target location with low contact forces .

For our quantitative evaluation using autonomous reach-
ing, we selected 1 start location and 2 goal locations within
the robot arm’s reach and inside the Kinect’s field of view
(See Fig. 6). When reaching into the clutter, the robot
only used the joint-space controller to follow joint-space
trajectories as described in [32], not the task-space controller.
For all reaches, the robot first reached from the start location
to the goal location when there was no map available. At any
time, if the robot’s arm became blocked, it moved back to the
start location and planned a new joint-space trajectory using
the current haptic map. At all times, the robot was updating
its haptic map, which was erased prior to the start of each
trial. In total, we conducted 12 trials. 6 trials (3 reaches

to 2 goal locations) tested reaching when the robot used
vision, tactile sensing, and our algorithm to generate dense
haptic maps, and 6 trials (3 reaches to 2 goal locations) tested
reaching when the robot only used tactile sensing to generate
sparse haptic maps. Section V-D discusses the results.

C. Data Collection and Preprocessing

1) The Tactile Sensor: We recorded the force and Carte-
sian 3D position data from each taxel of the tactile-sensing
sleeve at 100 Hz, truncated the data to begin at the estimated
onset of contact, and fed the force data into the trained HMM
models for haptic category predictions.

2) The Vision Sensor: For the visual data, we collected
RGB-D data from the Kinect. We transformed the color
space from RGB to CIELAB space. This color model is
designed to approximate the human vision system [55]. We
also collected the depth image from the Kinect. Since the
depth data received has missing data, we performed a Naiver-
stokes-based method for ‘inpainting’ from OpenCV [34] in
order to fill missing data in the depth image.

D. Results from the Real Robot

1) Demonstrations: Figure 5 shows the dense haptic map
generated for some of the teleoperated demonstration trials.
Note that the unclassified region also includes the area
occupied by the robot-arm.

2) Quantitative Evaluation: Fig. 7 shows the results of
our quantitative evaluation. Using our method for obtaining a
dense map by combining vision and tactile sensing, the joint-
space planner was able to reach both the goal locations in
all the trials using just one plan. In contrast, when not using
vision, the robot failed two times (greater than 10 plans)
and took 5 or more plans for trials in which it succeeded.
This evaluation demonstrates that rapidly generating a dense
haptic map can be useful. However, using our task-space
planner for greedy reaching as in [32] could potentially have
improved performance dramatically. Fig. 8 shows an example
plan of the robot with and without our new algorithm. Since
the goal of the planner is to avoid rigid objects, the haptic
map only updated the rigid objects (i.e., trunks) using 3D
voxels.

VI. CONCLUSIONS

We presented a method to more efficiently obtain dense
haptic maps across visible surfaces using sparse haptic labels
provided by tactile sensing. We based our approach on the
notion that surfaces near the robot that look visually similar
are more likely to feel similar to one another when touched.
To analyze the performance of our algorithm, we simulated
haptic contact and applied our algorithm to a collection of
186 indoor cluttered images pertinent to robot manipulation
selected from various publicly available RGB-D datasets
[38]–[42]. We discussed the effect of algorithm parameters
and environment types on the performance. With 40 contact
points per object out of an average 8602 contact points per
object for all images, the algorithm correctly updated 76.02%
of the pixels in the images. The algorithm can also reach
an average F1score of 0.84 for low-cluttered environments



Fig. 5: Dense haptic map generated during various demonstration trials. Legend: Brown: Trunk, Green: Leaf,
White:Uncertain, Black: Unclassified. The algorithm updated the haptic map in real time with 25 Hz. frequency.

Fig. 6: One start and two goal locations. A robot reaches
through the clutter to ‘Goal 2’ location.

Fig. 7: Number of plans required to reach the different goal
locations using our current method and previous method of
haptic mapping [2].

and 0.92 for floor scenes. It performs better for low-clutter
scenes than for high-clutter scenes. As expected, with more
contacts our algorithm performs better at inferring the correct
haptic labels for the environment. We also conducted real
robot experiments with a tactile-sensing sleeve and a Kinect
under various conditions. Our results demonstrated that our
algorithm can rapidly create dense haptic maps useful for
reaching goals in clutter.
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Fig. 8: Left: Robot reaching the target with only one plan
(one blue line) with current method. Right: Multiple plans
required to reach the goal with previous method [2]. Blue
lines show end-effector trajectories. Only rigid obstacles are
mapped using 3D voxels.
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