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Abstract— In this paper, we demonstrate data-driven infer-
ence of mechanical properties of objects using a tactile sensor
array (skin) covering a robot’s forearm. We focus on the
mobility (sliding vs. fixed), compliance (soft vs. hard), and
identity of objects in the environment, as this information could
be useful for efficient manipulation and search. By using the
large surface area of the forearm, a robot could potentially
search and map a cluttered volume more efficiently, and be
informed by incidental contact during other manipulation tasks.
Our approach tracks a contact region on the forearm over time
in order to generate time series of select features, such as the
maximum force, contact area, and contact motion. We then
process and reduce the dimensionality of these time series to
generate a feature vector to characterize the contact. Finally,
we use the k-nearest neighbor algorithm (k-NN) to classify a
new feature vector based on a set of previously collected feature
vectors. Our results show a high cross-validation accuracy in
both classification of mechanical properties and object recog-
nition. In addition, we analyze the effect of taxel resolution,
duration of observation, feature selection, and feature scaling
on the classification accuracy.

I. INTRODUCTION

Autonomous manipulation in cluttered environmnets is
a difficult problem due to the possibility of unavoidable
contact with obstacles. Haptic technology can serve as a
useful tool for enabling effective manipulation. A robot could
utilize haptic information obtained from its interaction with
objects in the environment to maneuver itself through clutter.
While doing so, knowledge of the mechanical properties
of an object, such as its mobility, compliance, weight and
surface properties like friction could be especially useful.
Such information is not only useful for efficient manipulation
but can also be used to haptically search for and recognize
an object. By using the large surface area of the forearm, a
robot could potentially search and map a cluttered volume
more efficiently than if it only uses its hand.

Note that non-contact sensing modalities, such as cameras
and laser scanners, are not always effective for manipulation
in clutter. Such sensors have limited ability to infer mechan-
ical properties [1], [2]. Humans rely heavily on their sense
of touch for manipulation tasks and can even manipulate
objects using only tactile information [3]. Visually similar
objects or environments can have very different mechanical
properties. For example, compliant leaves can be pushed
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Fig. 1. Force data from Forearm Skin-sensor mounted on Cody.

aside without generating large forces. At the same time, if
there is something fixed and rigid occluded by the leaves,
such as a branch or a concealed object, then the total
system or contact behavior can become quite rigid. Likewise,
when searching for an object of interest in rubble with
only non-contact sensing, it may be hard to distinguish
between things that are stuck and those that can be pushed
or pulled aside. Hence, estimating the mobility of an object
could be highly valuable for manipulation. However, mobility
estimation studies using haptic sensing are lacking.

In this paper, we specifically address the mobility-based
classification problem and also estimate object compliance
characteristics using haptic sensing techniques during ma-
nipulation tasks. The rest of the paper is arranged as follows.
In Section II, we review the related work in this domain.
Section III describes the approach that we have used in
tackling the problem of haptic data based classification and
recognition of environmental objects. In Section IV, we
present the results of applying our algorithm in real-life
experimental situations and analyze the effects of various
conditions on the performance of our algorithm. In Section
V, we present conclusions from our work.

II. RELATED WORK

Object categorization, based on their various characteris-
tics for specific tasks, has been dealt with extensively in
previous studies. Researchers have addressed the problem of
object categorization based on the objects’ various character-
istics such as material, shape and functional properties using
single or multiple sensor modalities as given below.

A. Material Property based Classification

Previous work on material property classification is per-
haps the most closely related work to our approach. Although



we do not explicitly model material properties, the features
we extract from the interactions between the robot arm and
environmental objects are a direct consequence of these
material properties which affect the interaction dynamics.
Drimus et. al. [4] classify rigid and deformable objects based
on haptic feedback from a novel tactile sensor using flexible
piezoresistive rubber. They represent tactile information from
a palpation procedure as a time-series of features, and use
k-nearest neighbor classifier to categorize the objects [4].
This is the most similar prior work of which we are aware.
However, in addition to classifying compliant and rigid
objects, we also classify fixed versus movable objects. This
classification could be important in cluttered environments
because the mobility of an object coupled with its compliance
suggests how much force needs to be applied to either change
its state for effective manipulation, or give up. Moreover, our
method does not employ an exploratory / probing procedure
used explicitly for classification as in [4]. Instead, our
method extracts the required features through general contact
during a stereotyped reaching motion. This scenario is more
representative of incidental contact that could occur with
the forearm during a manipulation task. Also, the features
extracted in our method correspond with physical quantities
whereas the features in [4] are tactile array images. The
tactile images do not have a clear interpretation with respect
to an object’s mechanical properties. This makes it difficult
to understand the underlying dynamics of the factors which
might contribute in the haptic object classification.

Sukhoy et. al. investigate the use of a vibrotactile sen-
sor for surface texture recognition using a Support Vector
Machine (SVM) classifier [5]. Ho and Jones develop a
thermal display for simulating the thermal cues associated
with making contact with various materials of different
properties [6]. Kim and Kesavadas present a methodology
for estimating the material properties of objects by an active
tapping procedure [7]. Takamuku et. al. use a simplified
version of an artificial skin with strain gauges and PVDF
films and estimate the material properties of objects with the
help of exploratory procedures like tapping and squeezing
[8]. Hosoda and Iwase [9] use a Bionic hand and utilize its
hand compliance to grip an object to obtain haptic data. They
use a recurrent neural network to classify objects based on
learned haptic cues from dynamic interactions [9].

Frank et. al. [10], [11] address the problem of determining
the elasticity properties of deformable objects by minimizing
the difference between the actual deformed surface of an
object and its corresponding finite element model. They use
a 3D registration technique based on point clouds obtained
from a depth camera for this purpose. Ueda et. al. [12]
also address the issue of extracting rheological properties of
deformable objects based on haptic vision. They monitor the
surface deformation of an object by exerting a known contact
force and then observe how the object returns to its original
shape after the contact force is withdrawn. Nizar et. al. [13]
address the problem of the classification of material type
and surface properties by developing a sensor which uses a
lightweight plunger probe to detect surface properties. They

also used an optical mouse sensor to obtain surface images
and used a Radial Basis Function Neural Network for classi-
fication. Platt et. al. [14] use proprioceptive and load-based
tactile information to localize features such as a bump, a snap
and a grommet embedded in flexible materials like a fabric.
They claim that using both tactile and proprioceptive data
results in a gain in the localization performance. Matheus
and Dollar [15] estimate the static friction between different
object-surface pairs while sliding a variety of objects which
affects the mobility of an object on a specific surface.

B. Shape based Classification

Kikuuwe and Yoshikawa use impedance perception
schemes to extract information on the local properties of
object surfaces and categorize objects into two classes such
as flat and convex cylindrical surfaces [16]. Schneider et.
al. [17] use touch sensors installed in the fingertips of a
manipulation robot to get low-resolution intensity images ob-
tained from multiple grasping interactions. They apply a bag-
of-words approach and unsupervised clustering techniques
to categorize objects using only the haptic feedback [17].
Allen et. al. use superquadric primitives for model-based
haptic object recognition and perform object recognition
using the similarity between the parameters of the recov-
ered superquadrics [18]. Caselli et. al. also use volumetric
models for dynamic integration of geometric information
with haptic exploration data and formulate the problem as a
match-to-sample scheme using the recovered model features
[19]. Faldella et. al. utilize an unsupervised Kohonen self-
organizing feature map for performing a match-to-sample
classification of 3-D objects using a volumetric model called
a wrapping polyhedron [20]. Pezzementi et. al. view tactile
sensor readings as images and apply PCA techniques to
identify the principal components of identified features, and
then cluster them as well as build per-class histograms as
a class characteristic [21]. Gorges et. al. [22] additionally
include some passive joints in the tactile sensor system of
their robot hand so that the tactile sensor conforms to the
object shape during interaction which could help to acquire
more information for shape reconstruction. They use Self-
Organizing Maps (SOMs) for identifying the haptic key
features and use a Bayes Classifier to classify the objects
based on their features [22].

C. Functional Property based Classification

Sinapov et. al. use acoustic properties of objects during
specific interaction schemes to classify the objects and
the behavioral interactions performed with them such as
grasping, shaking, dropping, pushing and tapping behav-
iors on 36 different household objects [23]. Berquist et.
al. monitor the changes in the joint torques of a robot
while it performs five exploratory procedures such as lift,
shake, crush, drop, and push on several objects and show
that the robot can learn to recognize objects solely on
the basis of proprioceptive information [24]. Griffith et. al.
use multiple exploratory behaviors and employ clustering
techniques for categorizing containers and non-containers by



extracting visual and acoustic features from its interaction
with objects and then employing unsupervised clustering
techniques to form several categorizations [25]. Sinapov et.
al. also combine proprioceptive and auditory feedback and
use a behavior-grounded relational classification model to
recognize categories of household objects [26].

III. METHODS

We used supervised machine learning to analyze data
from a skin sensor covering the forearm of a humanoid
robot named ’Cody’. Our goal was to classify an object
that the robot has not previously interacted with as being
in one of four categories: Rigid-Fixed, 2) Rigid-Movable,
3) Soft-Fixed, and 4) Soft-Movable. We also used the same
methods to haptically identify a specific object that the robot
has previously interacted with. In Secs. IV-B and IV-C we
show the effects of the spatial resolution of the taxels, and
the duration of the haptic interaction, on the classification
accuracy. Section IV-D shows the effect of different feature
scaling schemes on the performance of the algorithm while
Section IV-E highlights the importance of the individual
features for both classification and recognition purposes.

A. Experimental Setup

The experimental setup for our data collection is described
below.

1) The Robot ’Cody’: Cody, as shown in Fig. 1, is a stat-
ically stable mobile manipulator weighing roughly 160 kg.
The components of the robot are: Meka A1 arms, a Segway
omni-directional base and a Festo 1-D.O.F. linear actuator.
The arms consist of two 7-D.O.F. anthropomorphic arms with
series elastic actuators. When we control these arms, each
joint simulates a low-stiffness visco-elastic torsional spring.
We control the robot’s arms by changing the equilibrium
angles of these simulated springs over time.

Cody has a force sensitive skin across its entire forearm.
Meka Robotics and the Georgia-Tech Healthcare Robotics
Lab developed the forearm tactile skin sensor, which is based
on Stanfords capacitive sensing technology, as described in
Ulmen et. al. [27]. The skin consists of a capacitive pressure-
sensor array. We refer to the elements of this array as taxels
(tactile pixels). There are 384 taxels on the entire skin which
are distributed into a 24 X 16 array with each taxel being
9mm X 9mm in size. The array of taxels reports the estimated
force applied to each taxel at 100Hz.

2) Data Collection: For our experiments, we used a set
of 18 objects, shown in Fig. 2. We selected large objects that
have mostly uniform material properties and vary widely in
their mass, friction, and compliance. For each object, we
collected haptic data by commanding the same equilibrium
point trajectory for the arm and recording the sensor readings
from the taxels of the forearm skin at approximately 100Hz.

We labeled each of these objects as soft or rigid. We
considered pillow-like materials, foam, bubble-wrap, and
vegetation to be soft, and all other objects to be rigid. For
objects that could be pushed aside by the robot’s motion, we
also fixed them with a clamp or a heavy weight, so that we

Fig. 2. Set of objects.

could have both movable and fixed conditions. We collected
a dataset of 5 trials for each of the 18 different objects, 10
of them in both fixed and movable conditions, 4 of them
in only fixed conditions and the remaining 4 in movable
conditions. Fig. 3 shows three images from one trial of the
robot interacting with a plant. It also shows the data from
the forearm sensor, visualized as an image.

B. Preprocessing, Feature Selection, and Dimensionality Re-
duction

We recorded data from the forearm taxel array at a 100Hz
sampling rate. We truncated this time series data to begin
at the estimated onset of contact between the robot and
the object. We then represented the data at every time step
as a gray-scale image, as shown in Fig. 3. We converted
this image to a binary image representing the taxels in
contact by applying a threshold to each taxel. Note that
this hand-tuned threshold was not same for all objects. This
was done to account for some of the more rigid or coarser
objects for which a covering was put over the otherwise
bare skin-sensor to ensure its safety. Then, we computed
connected components to segment the contact regions. For
the connected component with the largest area, we computed
three features. Figure 4 depicts the complete experimental
protocol.

Fig. 5 shows the three features. The first feature was
the maximum force that the robot applied to the object
at every time step. Second, we estimated the area of the
contact between the arm and the object as the number of
taxels in the connected component. Third, we estimated the
distance the 3D position of the centroid of the connected
component traveled in the world frame from its 3D position
at the onset of contact. We assumed that the robot’s torso
did not move throughout the trials and used the forward
kinematics from the robot’s torso to the contact location
center on the robot’s forearm to estimate the 3D positions and
distance. We expected these three features to be informative
about the object’s softness and movability. For example,
with increasing force applied to a soft, fixed object, we



Fig. 3. Sequence of images that illustrate our data collection for our experiments on inferring mechanical properties of objects (foliage). Each image
shows a picture of the robot Cody, and a visualization of the data from the forearm skin sensor as a 24X16 image (dark pixels correspond to larger forces).
The leftmost picture shows a non-contact situation, the middle one corresponds to the situation just after the onset of contact while the rightmost picture
shows the situation when the robot has pushed the foliage to the maximum extent consistent with its motion-limits.

Fig. 4. Schematic representation of the Experimental Protocol.

Fig. 5. Example of the three features that we computed from the data from the forearm skin sensor and used for classification of object properties. The
leftmost picture shows the maximum force over time (in Newtons), the middle one shows the contact area over time while the rightmost picture shows the
contact motion (in meters). The green lines are the features for a movable object while the blue lines are the features for a fixed object.

would expect the contact area to increase. Likewise, we
would expect the 3D position of the contact to travel when
encountering movable and soft objects. When making contact
with a rigid and fixed object, we would expect the maximum
force to go up.

We created 40 element vectors for each of the feature time-
series by uniformly sub-sampling the 100Hz measurements.
We then concatenated the resulting vectors of maximum
force, number of taxels in the contact region, and motion
of the centroid of the contact region to form a feature vector
of length 120 for each trial considering the first 1.2s time-
window after the onset of contact. To reduce the influence

of noise and overfitting, we computed a low dimensional
representation of the data with principal component anal-
ysis (PCA) before classification with a k-nearest neighbor
classifier (k-NN). In our classification experiments, we used
a maximum of 20 principal components for dimensionality
reduction.

IV. RESULTS AND DISCUSSION

A. Classification Results

We used a k-NN classifier to test the classification accu-
racy for two different classification problems. In each case,
we picked the number of principal components and the value



Fig. 6. Classification into 4-categories.

for k by performing a grid search over these two parameters
and picking the values associated with the highest leave-one-
out cross-validation accuracy.

Fig. 6 shows the confusion matrix for the classification
into four categories: 1) Rigid-Fixed, 2) Rigid-Movable, 3)
Soft-Fixed, and 4) Soft-Movable. The classification accuracy
was 80% with k = 2 and dimensionality 20. Many of the
classification errors were between the Rigid-Movable and
Soft-Movable classes.

Fig. 7 shows the confusion matrix for a two category
classification problem where we used the data to classify an
object as either fixed or movable. The classification accuracy
was 91.43% with k = 4 and dimensionality 3.

Fig. 8 shows the confusion matrix for recognizing the spe-
cific object that the robot interacted with. The classification
accuracy was 72.14% with k = 1 and dimensionality 7.

The next subsections analyze the effect of various con-
ditions, parameters and features on the classification and
recognition accuracy.

B. Effect of Taxel Resolution

We performed the four category classification experiment
and the object recognition experiment for different spatial
resolutions of the taxels.

Table I shows the leave-one-out cross-validation accuracy,
the values for the number of neighbors and the dimension-
ality of the subspace that resulted in the highest accuracy
for each taxel resolution. Fig. 9 shows the best classification
accuracy that we obtained for the different resolutions. Com-
pared to 1 taxel/meter, 112 taxel/meter resolution improved

Fig. 7. Classification into 2-categories.

the classification accuracy by 24.44% for the four category
classification problem and by 25.01% for object recognition.

C. Effect of Time Window

We also investigated the effect of varying the time-window
of the sensor data on the classification accuracy. To do
this, we used the same methods, except that we uniformly
sampled 40 measurments of each feature type over a shorter
time-window. Fig. 10 shows that a shorter time-window
of 0.8 seconds resulted in substantially lower classification
accuracy. This is unfortunate, since faster estimation could
improve the robot’s efficiency. Estimation over shorter pe-
riods of time might be possible with faster motions. Note
that for our experiments the robot forearm joint velocity was
around 0.35 rad/s prior to contact . Other measurements,
such as higher frequency tactile information and different
modalities, such as shear force and temperature, might enable
more rapid estimation. For example, the surface texture of an
object could potentially be sensed soon after initial contact.
On the other hand, determining whether or not an object
will slide depends on the applied force. So, we would expect
that there would be some delay as the force applied by the
robot ramps up and potentially overcomes static friction. For
an object to be considered movable in our experiments, it
needed to be moved by the robot’s stereotyped motion.

D. Effect of Feature Scaling

Researchers often argue that proper scaling of different
feature vectors might be necessary for high performance
[28]. To analyze this aspect, we employed several scaling
schemes to our original data, which were in units of taxels
(contact region area), Newtons (maximum force), and Meters
(displacement of the contact region center), to see how the
performance was affected by the choice of scaling function.
We used four different scaling methods as described by Eqs.
1-5 denoted as Methods I to V respectively. Methods I to IV



Fig. 8. Object Recognition.

TABLE I
EFFECT OF TAXEL RESOLUTION.

Taxels/m Classification Parameters Classification Accuracy Recognition Parameters Recognition Accuracy
1 k = 3,PCs = 10 64.29% k = 1,PCs = 14 57.14%
2 k = 5,PCs = 6 67.14% k = 1,PCs = 5 58.57%
7 k = 14,PCs = 19 65.71% k = 1,PCs = 4 57.14%
28 k = 8,PCs = 11 71.43% k = 1,PCs = 7 63.57%
112 k = 2,PCs = 20 80% k = 1,PCs = 7 72.14%

given by Eqs. 1-4 scale all three features within a uniform
range. However, Method V, given by Eq. 5 scales up the
contact motion feature to the range of the other two features
such as contact area and maximum force. We tested this since
both the contact area and maximum force features are in a
comparable range of values while the values for the contact
motion feature were much smaller as seen from Fig. 5.

Sf = (f −mean(f)) /max(f) (1)

Sf = (f) /max(f) (2)

Sf = (f −mean(f)) (3)

Sf = (f −mean(f)) /Std dev(f) (4)

∀f ∈ {Max. Force, Contact Area, Contact Motion}

The results of the 4-category, 2-category classification
accuracy and object recognition performance, with feature
scaling, are given in Table II.

Sfcontact motion =
fcontact motion ∗max(f)

max(fcontact motion)
(5)

∀f ∈ {Max. Force, Contact Area}

Results from Table II show that Method V has the
highest 4-category classification accuracy while Method I



Fig. 9. Effect of Taxel Resolution on Cross-Validation Accuracy.

and II have the highest 2-category classification accuracy.
The highest object recognition performance was obtained
using the original units without additional scaling. Also,
the accuracy enhancement for classification algorithm was
negligible compared to the unscaled feature based results.
None of the scaling schemes showed a consistent increase
in accuracy for all the object classification and recognition
cases when compared to the unscaled data. Overall, scaling
the original units did not have clear benefits.

E. Effect of Different Features

Lastly, we analyzed the effect of individual features and
their combinations on the performance of the classification
and object recognition tasks. We implemented the algorithm
with different combinations of features for both 4-category
and 2-category classification schemes as well as object recog-
nition scheme. Table III shows the cross-validation accuracy.

Table III shows that using both maximum force and
contact area features gave better overall performance. The
addition of contact motion feature did not improve the
performance considerably. If only one feature was to be used,
the probable choice would be to use the maximum force over
time feature. Also, the choice of a particular feature had little
effect on the performance of the 2-category classification
scheme. The lack of influence due to the motion feature
may be due to the robot’s stereotyped motion. Although
the robot’s compliance resulted in different contact motion
over time, the motions resulted from the same controller
commands over time, and thus had a form of temporal
consistency.

V. CONCLUSION
In this paper, we developed an object classification and

recognition algorithm using haptic information obtained from
interactions of a tactile sensing forearm with environment
objects. Our algorithm classified objects into one of the four
categories: Rigid-Fixed, 2) Rigid-Movable, 3) Soft-Fixed,
and 4) Soft-Movable. We extracted features such as time-
trends of maximum force, contact area and contact motion

Fig. 10. Effect of Time-Window on Cross-Validation Accuracy.

from the haptic interactions and preprocessed those to show
the information from the onset of contact. We computed a
low-dimensional representation of the data using Principal
component analysis and used a Nearest Neighbor classifier
for classification and recognition purposes. Results showed
that the classification and recognition algorithms worked
well. We studied the effect of the skin-sensor resolution
on the performance of the algorithm. It showed that the
skin-sensor with higher resolution (384 taxels) enhanced the
performance of the algorithm compared to 1 taxel resolution.
We also analyzed the effects of time-window of haptic
interaction, feature-scaling, and selection of specific features
on the overall performance. These studies could provide
useful intuitions on the various aspects of this task at hand
and might serve as valuable guidelines for our future work
in this domain.
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