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Abstract— Hygiene and feeding are activities of daily living
(ADLs) that often involve contact with a person’s face. Robots
can assist people with motor impairments to perform these
tasks by holding a tool that makes contact with the care
receiver’s face. By sensing the forces applied to the face with
the tool, robots could potentially provide assistance that is more
comfortable, safe, and effective. In order to inform the design
of robotic controllers and assistive robots, we investigated the
forces able-bodied people apply to themselves when wiping and
shaving their faces. We present our methods for capturing and
modeling these forces, results from a study with 9 participants,
and recommendations for assistive robots. Our contributions
include a trapezoidal force model that assumes participants
have a target force they attempt to achieve for each stroke
of the tool. We discuss advantages of this 3 parameter model
and show that it fits our data well relative to other candidate
models. We also provide statistics of the models’ rise rates, fall
rates, and target forces for the 9 participants in our study. In
addition, we illustrate how the target forces varied based on
the task, participant, and location on the face.

I. INTRODUCTION

The aging population, rising healthcare costs, and shortage
of healthcare workers in the United States create a pressing
need for innovations that make personalized care more
affordable and effective [1], [2]. Making contact with a care
receiver’s body is critical to many important caregiving tasks
for people with physical disabilities. This is clearly illustrated
by common definitions of activities of daily living (ADLs).

”The term ’activities of daily living’ refers to a set
of common, everyday tasks, performance of which
is required for personal self-care and independent
living. [3]”

A person’s ability to perform activities of daily living
(ADLs) is predictive of his or her ability to live indepen-
dently. ADLs include feeding, toileting, transferring, dress-
ing, and hygiene [3]. Notably, each of these tasks typically
involves contact with the care receiver’s body. In order for
robotic caregivers to physically assist with these critical
tasks, they will very likely need to make contact with the
user’s body.

When a robot is in contact with a person’s body, the con-
tact forces become especially important due to considerations
such as safety, comfort, and effectiveness at the task. This
leads to the following question: What forces should robots
apply to a care receiver’s body when providing assistance?
One approach to addressing this question is to use the
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Fig. 1. Shaving a Face Using a Handheld Tool: A participant uses the
handheld tool with an electric shaver fixture to shave his face. The laptop
with the webcam allows him to view his face while performing the task.

forces that able-bodied people apply to themselves while
performing tasks as a model for assistive robots. People
have the ability to control the forces they apply, and receive
feedback from both sides of each contact (i.e. feedback from
the hand that is holding the tool and the location on the
body where the tool is being used). As such, it is reasonable
to assume that able-bodied people tend to apply forces to
themselves that they find comfortable, safe, and effective.
By emulating these forces, robots may also be perceived as
applying forces that are comfortable, safe, and effective.

Within this paper, we take this approach in the context
of wiping and shaving. We first present our methods for
capturing and modeling the contact forces that able-bodied
people apply to themselves when wiping and shaving their
faces. We then analyze the forces resulting from a study with
9 participants, and provide recommendations for the design
of assistive robots based on this analysis. We selected wiping
and shaving because they are relevant to hygiene, which is a
type of ADL. Our results may also generalize to other types
of robotic assistance since many tasks involve contact with
a person’s head (e.g., scratching an itch or blowing one’s
nose).

In section II, we discuss related research in force capture
and analysis of safety for robots. We discuss our force
capture system in section III, which consists of both a data
capture studio and a procedure for registering the 3D data so
that the results can be interpreted across multiple subjects.
Section IV describes the study we ran to test the data capture
system. In section V, we detail a technique for analyzing the
stroke force using a trapezoidal model. We also investigate
the positional dependence on force in section VI. Finally, we
provide recommendations for assistive robots in section VII.



II. RELATED WORK

Within this section, we discuss related research in charac-
terizing forces and robotic safety.

A. Force Characterization

Redmond et al. collected forces and torques of subjects
writing, opening/closing a jar, brushing teeth, and using a
phone by instrumenting the devices [4]. They used root-
mean-squared (RMS) statistics of the force magnitudes to
characterize the distributions of recorded forces and to com-
pare the tasks. To better understand the relationship between
forces and the removal of plaque during toothbrushing, Van
der Weijden et al. captured the forces of the task by having
subjects use an instrumented toothbrush [5]. They measured
the mean of the average individual force to be 3.2N±1.1N.
Wells and Greig analyzed the forces and moments of holding
objects like power drills and screwdrivers by describing the
situation geometrically, though they did not collect forces
during use [6]. Force statistics in haptic interactions have also
been collected in surgical tasks [7], as well as stair climbing
and sit-to-stand transitions [8]. Previously we have captured
the motions and forces associated with opening doors and
drawers using a portable force and motion capture system
[9] [10].

B. Robotic Safety

Research has also been conducted to characterize the phys-
ical dangers associated with robotics systems. The majority
of severe accidents involving industrial robotics technology,
which tends to be heavier, more powerful, and less tailored
to human interaction than the robot used in our research, in-
volve crushing of a victim by the robot against a fixed object,
often when the operator was alone, and only 20% occurred
during normal operation [11]. A number of groups, including
the International Standards Organization (ISO) [12], have
sought to establish guidelines for the design and control of
safe robots for human interaction [13]–[16]. In particular,
Haddadin et al. examined the potential for injury from a
lightweight 7-DoF robot arm using a standardized crash test
dummy in unconstrained blunt impacts, and porcine cadavers
in cutting and stabbing impacts [17]. By examining the force
required to cause fractures in both weak and strong bones
in the face (660 N to 4000 N), they found that velocities
between 0.5 and 1.0 m/s could be dangerous, even for robots
with 5 kg of reflected inertia. A significant potential for
injury is posed by sharp impacts, though they were able
to mitigate this danger using active collision detection and
reaction with their robot arm [18].

III. IMPLEMENTATION

In this section we discuss our setup and process for
collecting force data.

A. Data Capture Studio

We used an OptiTrack infrared optical motion capture
system to track the 6-axis position and orientation of objects
instrumented with four reflective markers. A set of these

Fig. 2. A handheld tool for ADL task data collection: (a) ADL tool
head (shown here is a face wiping tool covered with washcloth). (b) Six-axis
force/torque sensor (ATI Nano25-IP65). (c) Handle. (d) Counter weight. (e)
Tracking target.

markers was attached to a handheld tool along with a
force/torque sensor so we could track the force and position
of contact when used by a person to perform ADL tasks
(Fig. 2). The tool handle and adapter plates are fabricated
from plastic using a 3D printer. A modular design allows us
to create tools for various ADL tasks by attaching different
tool heads using screws (Fig. 2). We sample force/torque
sensor data at 100 Hz.

Using the orientation of the tool provided by the motion
capture system, we compensated for gravity by subtracting
out the force vector exerted by the head of the tool on the
force sensor. We found that strain on the force sensor would,
over time, offset the center of the force readings by a constant
amount. To account for this effect, we biased the sensor at
the beginning of each trial relative to the force reading of
the sensor when the tool is motionless.

We also capture and reconstruct a 3D representation of
the participant’s head. A tracking target is rigidly attached
and registered to a Kinect (Microsoft) sensor and mounted
on a wheeled tripod (Fig. 3). This setup allows us to quickly
and stably move the sensor around the participant to collect
different perspectives of his or her face in the same global
frame. We also attach a tracking target to the participant’s
head using a head band. Although the relative motion of the
participant’s head is available, the location of the tracker and
head band was not controlled.

To get a reconstruction of the subject’s full head in 3D,
we collect point clouds from eight positions all around the
participant’s head. Each point cloud is transformed into
the head tracker’s frame and the background is removed
based on the location of the points with respect to the head
tracker. Since the error in the Kinect’s calibration is relatively
large, we use a feature-based registration technique for more
accurate splicing (Alg. 1). Starting with the cloud from the
front-face perspective, each successive cloud is registered
and concatenated to the full cloud. The three clouds on the
right side of the face are registered first, followed by the
left three, and finally the back. Overlaps between successive
clouds are found by finding all points in each cloud within
3cm of the points in the other. The iterative closest point
(ICP) algorithm is used to find the transformation between
the overlapping clouds where the distance metric includes
both point distances and color distances in HSV space.



Algorithm 1 HEADRECONST(pcfront, {pclefti }, {pcrightj })
pcfull ← pcfront

for pclefti in {pclefti } do
pcleftol , pcfullol ← FINDOVERLAP(pclefti , pcfull)

Breg ← ICP(pcleftol , pcfullol )

pcleftreg ← TRANSFORM(pclefti , Breg)
pcfull ← pcfull + pcleftreg

end for
// Repeat for {pcrightj }
return pcfull

Fig. 3. Capturing 3D Point Clouds of a Participant’s Head: Moving a
Kinect sensor around a participant to collect 3D point clouds. 1 The pose
of the Kinect and the pose of the participant’s head are tracked using the
mounted tracking targets.

B. Data Registration

Although the positions of the tool at any point in time
can be found consistently with respect to the head tracker’s
frame, the rigid transformation between the tool tip position
and the head reconstruction often shows an error of a 1-3cm
due to poor registration and/or error in the reconstruction.
To reduce this error we first created a point cloud of contact
locations for reference. We processed the force-position data
to form a point cloud representing the location of the tool
tip at all times the force magnitude is greater than 0.5N.
We manually register this cloud for each subject to a model
head reconstruction using a 6-DOF click-and-drag interface
which allows us to position and rotate it to find the rigid
transformation. We use the curvature and extent of the
contact cloud as a reference for lining it up to the model’s
cloud. Each point is then projected to the closest point in the
head reconstruction of the model. This last transformation
keeps poor registration from resulting in low weights in the
regression.

IV. EXPERIMENTAL DESIGN

We conducted an experiment with able-bodied students to
capture the force distributions they apply when performing
two types of ADL tasks: wiping debris off their faces
and shaving their faces. We recruited 9 students (male=4,
age=20-25) from the Georgia Tech campus through email
lists and word of mouth. The male participants performed
the shaving task prior to the wiping task, and the female
participants performed the wiping task only. We required par-
ticipants to be at least 18 years of age and to speak English

fluently. The self-reported ethnicity of these participants were
Caucasian (6), African American (1), and other (2).

For both tasks, we asked each participant to use his or
her dominant hand to hold the tool in whatever manner was
comfortable. Since a normal mirror may reflect the IR light
emitted from the IR cameras and may interfere with the
optical tracking system, we placed a laptop with a webcam
(Logitech Webcam Pro 9000) in front of the participant so
he or she could see his or her face (Fig. 1). Before they
began, the experimenter asked the participant to hold the
tool about an inch away from his face and called this the
“start position”. The task began when the experimenter said
the word ”begin”. We asked the participant to verbally tell
us when they were finished and to hold the tool back at the
starting position. We did not impose a time limit because we
wanted the participant to use the amount of time they might
normally take.

A. Shaving Task
In the shaving task, we asked the male participant to use

an electric shaver (approximate contact area: 2.9cm x 5.6cm
= 16.2cm2) attached to the handheld tool to shave his face.
Before each experiment began, we placed a brand new set
of shaver blades on the shaver head. We also cleaned and
sanitized the cover and the shaver head using Barbicide wipes
(King Research, Milwaukee, WI). The experimenter asked
the participant to shave how he normally would have if he
had used a tool similar to the handheld tool (Fig. 1).

B. Wiping Task
In the wiping task, we asked the participant to use a moist

towel attached to the handheld tool to remove talcum powder
from an area of his or her face. The plastic base of the
wiping head was inspired by two fingers held together side by
side (approximate contact area: 2.3cm x 3.7cm = 8.5cm2).
We asked the participant to use his or her dominant hand
to perform the task. To simulate debris, we applied talcum
powder to an area of the participant’s face. We selected
talcum powder since it is commonly used in personal hygiene
and cosmetics, and it does not leave stains on the skin after
being wiped off. We selected the side of the face on the
same side of his or her dominant hand. We used a new
cosmetic sponge to apply the powder to the participant’s face
and provided a new face mask to prevent inhalation of the
powder. For each participant we attached a new towel to the
wiping tool using a new rubber band and moistened the towel
before each trial.

We asked the participant to mimic how they might nor-
mally clean the area of the face using a similar tool until
there is visibly no more powder remaining (Fig. 4). While
users do not generally use such devices to wipe their faces,
the user does have control over the force applied by the tool
to his or her face and we designed the tool to emulate a piece
of cloth wrapped around two fingers.

C. Procedure
We performed our experiment in the Healthcare Robotics

Lab in a 4.3m x 3.7m room. Two experimenters (the second



Fig. 4. Wiping a Face Using a Handheld Tool: A participant uses the
handheld tool with a moist towel to remove the talcum powder on his face.
In this task he is removing the powder on his cheek.

and third authors of this paper) conducted all of the trials
and remained in the room throughout the experiment to
ensure the participant’s safety. One experimenter proctored
the experiment by reading a script. The participant was first
welcomed to the lab and introduced to the experimenters.
Then the participant was asked to sign a consent form, fill out
a demographic survey, and fill out a pre-task questionnaire.

The experimenter then asked the participant to sit at
a chair which had been placed at a fixed location. The
experimenter asked the participant to affix a tracking target
to his or her head using a specially designed headband.
They were asked not to touch or move the headband or the
tracking target during the entire experiment. To collect data
for the 3D head reconstruction discussed in section III-B, we
captured 3D point cloud data at eight positions around the
participant. During the process of capturing the point cloud
data, the experimenter asked the participant to sit still and
keep a neutral facial expression. Afterward, the experimenter
explained the use of the tool to perform the ADL task.

During recruitment we asked the male participant not to
shave his face 24 hours prior to the appointment time of
the experiment, and to bring the shaving tools they normally
would use to shave his face. At the end of the shaving task,
we asked the participant to go to the rest room and finish
shaving his face using the tools he brought with them. Each
participant performed a practice trial to allow themselves
to get comfortable using the handheld tool and the test
procedure. We kept a sanitized plastic cover on the shaver
during practice. Each male participant performed the shaving
task once.

We asked all participants to perform the wiping task three
times. Before they began any of the three tasks, we put
talcum powder on both the cheek, nose, and the chin of
the participant’s face. In each trial asked them to wipe the
talcum powder off only one of the three regions. We counter
balanced the ordering of the trials across participants prior
to data collection.

V. A TRAPEZOIDAL MODEL OF STROKE FORCE

We have analyzed the data produced in the experiment to
characterize the forces involved in the tasks and the sources

Fig. 5. Talcum powder regions: We applied talcum powder to the cheek,
chin, and nose before the wiping trials began.
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Fig. 6. Wiping Force Profile: Force magnitudes of a subject during a full
wiping trial of the cheek with the handheld tool.

of variance. Figure 6 illustrates that participants, when wip-
ing the face, generally break the task down into a series of
strokes. For our analysis, we identified the beginnings and
endings of these strokes using a contact threshold of 0.5 N
and discarded all strokes shorter than 0.2s in duration.

The shapes of the strokes are similar across both the
individual’s strokes and across users: contact is made, the
force ramps up, the force fluctuates at a consistent level,
and then it ramps down. To quantify this structure, we
have created a trapezoidal model of the magnitude of the
contact force in a stroke. It models these three regimes
using a piecewise linear function of time. The middle regime
is defined by a constant force magnitude. For our model,
we assume that the person attempts to achieve this force
magnitude during the stroke, and thus refer to it as the target
force, ft.

Mathematically, we define our model as

f trap(t) =


(ft − 0.5) t

tr
+ 0.5 t ≤ tr

ft tr ≤ t ≤ tf
(ft − 0.5) t−tend

tf−tend
+ 0.5 t > tf

(1)

where the parameters are illustrated in Figure 7.
In order to fit our trapezoidal model to stroke data, we

perform a nonlinear least squares fit. The fit is performed by
first sampling over a uniform distribution of initial values for
the three model parameters (ft, tr, tf ). For each seed triple, a
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Fig. 7. Trapezoidal Model: An illustration of the parameters fit to each
stroke. The three parameters are the target force ft, the rise time tr , and
the fall time tf .

nonlinear curve-fitting optimization technique is used to find
a local optimum least-squares fit (lsqcurvefit in Matlab). The
best fit over all initial conditions is chosen as the parameters
for that particular stroke. We fit a trapezoidal model to every
stroke for each subject for each of the three wiping tasks and
the shaving task. Our model fixes the bottom corners of the
trapezoid to the beginning and ending of each stroke at 0.5
N.

A. Model Advantages

Modeling each stroke using a trapezoidal model presents
several advantages over other modeling methods. First, the
target force has a clear interpretation for robots, since it can
be used as a reference force for a robot’s force controller.
Similarly, ramping up can be related to the rise time of a
robot’s force controller. Second, the model captures salient
properties of each stroke that can be hidden with other
models. For example, modeling the raw force magnitudes
using a single distribution conceals the time structure of each
stroke and the contribution of individual strokes. It is also
not conducive to interpretation as having a target force, since
ramping up and down biases the distribution and summary
statistics to lower values. Likewise, principal component
analysis (PCA) does not lead to a clear interpretation in terms
of target force, since each basis function represents the entire
stroke. Third, this 3-parameter model has a comparatively
good fit to the force magnitudes from our experiment. Figure
11 illustrates how this technique models the original data.

B. Fitting Error

We report mean squared error (MSE) for the trapezoidal
fit in Table V-C, and also compare it to the MSE for
other reconstruction techniques. The largest MSE is 0.14 for
shaving, which is a small error relative to the shaving forces
and the measurement capabilities of our force-torque sensor.

We compared this fitting error to using a horizontal line
centered at the mean value of each stroke (mean line model),
and two low-dimensional PCA models. For the PCA models,
we took all strokes for a given task, resampled them to
create 100 dimensional vectors, and then performed PCA.
We report MSE for a PCA model with 2 components and
3 components. Figure 8 shows the mean and top PCA
components for the cheek wiping task.

Wiping
Cheek Chin Nose Shaving

Minimum (N) 0.59 0.59 0.56 0.55
Lower quartile (N) 1.56 1.33 1.29 0.89
Median (N) 2.39 1.98 1.92 1.89
Upper quartile (N) 3.14 2.70 3.21 2.68
Maximum (N) 5.45 5.37 7.75 8.20

TABLE I
STATISTICAL CHARACTISTICS OF TARGET FORCES ACROSS SUBJECTS,

EXCLUDING SUBJECT 9.
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Fig. 8. PCA Analysis: The mean and top three eigenvectors (EV) from
the PCA performed on resampled strokes for the cheek wiping task. Since
the eigenvectors are unitless, we scaled them relative to each other by
multiplying by the corresponding singular values, then uniformly by a
constant to bring them into the same scale as the mean.

The trapezoidal model fit our data an order of magnitude
better than the mean line model. It fit better than the 2
component PCA model, but not as well as the 3 component
model.

C. Statistics for the Trapezoidal Model Parameters

Table V-C also reports the rise and fall rates which are
computed by dividing the target force by the rise and fall
times.

Figure 9 provides a statistical characterization of the
distribution of target forces across the strokes across all
users. We treat subject 9 as an outlier for the wiping tasks
and excluded his data in the overall statistics, since subject
9’s forces far exceeded the distributions for the other eight
subjects.

VI. FORCE CONDITIONED ON FACIAL LOCATION

We have also investigated the relationship between force
and position on the face. As Fig. 9 shows, the variance in
forces across users is far greater than the variance within each
user. In order to reduce this population-wide variance, we
divide each participant’s force data by the mean of his or her
target forces. We then use this normalized force magnitude
f̂ to find the expected force magnitude at each point p on
the face E[f̂ |p].



Wiping
Cheek Chin Nose Shaving

MSE 3D PCA (N2) 0.04 0.03 0.06 0.11
MSE trapezoidal (N2) 0.06 0.04 0.11 0.14
MSE 2D PCA (N2) 0.08 0.09 0.15 0.20
MSE mean line (N2) 1.30 0.61 1.35 0.61
Mean rise rate (N/s) (Standard deviation) 13.3 (10.8) 12.3 (8.7) 11.4 (6.7) 9.8 (6.7)
Mean fall rate (N/s) (Standard deviation) 12.0 (15.7) 8.3 (13.5) 14.1 (17.9) 11.4 (13.3)
Mean strokes count (Standard deviation) 15.1 (6.6) 9.4 (5.0) 12.8 (5.4) 81.5 (32.1)
Mean stroke duration (s) (Standard deviation) 0.96 (0.61) 0.94 (0.60) 0.77 (0.51) 1.67 (2.38)

TABLE II
EXTRA TRAPEZOID MODEL FITTING STATISTICS.
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Fig. 9. Target Force Distributions: Box plots of the minimum, maximum, median, and quartiles of stroke target forces for each subject, for each task.
The boxes on the left for each task characterize the distribution of trapezoid heights for each subject. The box on the right for each task is a summary of
the across-subject distribution, excluding subject 9. This distribution is normalized by resampling the number of each subject’s forces to an equal number
so as to eliminate per-subject bias. Subjects are sorted by the median target force of the wiping cheek task.

E[f∗|p] =
∫

f̂ P(f̂ |p) df̂ (2)

P(f̂ |p) =
∑

u P(f̂ , p, u)∑
u P(p, u)

(3)

We use non-parametric kernel density estimation to compute
the regression, similar to the Nadaraya-Watson estimator
[19]. An important modification is required because each
participant’s data set should be weighed equally. Equation 3
shows how we reintroduce the nominal participant variable u
by marginalizing it out. Factoring the probabilities and using
a kernel density estimate to model them, we are left with

E[f̂ |p] =
∑

u
1

N(u)

∑
(pi,f̂i)∈D(u) f̂i Kp(p− pi)∑

u
1

N(u)

∑
(pi,f̂i)∈D(u) Kp(p− pi)

(4)

Kp(p− pi) = exp(−1

2

||p− pi||2

h2
p

) (5)

where Kp is the standard squared exponential kernel and hp

is a kernel bandwidth parameter. The inner sums iterate over
the set of data pairs

D(u) = {(pi, f̂i) | ||p− pi||2 < 3hp, f̂i ≥ 0.5} (6)

The term 1
N(u) weighs each participant’s contribution to the

regression equally by dividing by the number of data points
from his or her data set. Using the dimensions of the tools as
a reference, we set the bandwidth parameter to hp = 2cm.

The prior probability on the position distribution is pro-
portional to the denominator of (4).

P(p) ∝
∑
u

1

N(u)

∑
(pi,f̂i)∈D(u)

Kp(p− pi) (7)

This unitless distribution indicates relatively where contact
is being made more frequently. In the figures, points with
low frequency (P(plow) ≤ 0.5maxp[P(p)]) are not colored



Fig. 10. Force Dependence on Position: Top: Expected value of normalized force magnitude across all users at a given point on the face E[f̂ |p].
Forces are all normalized using the means of the target forces. This means a value of 1.0 corresponds to the mean target force for each subject. Bottom:
Distribution of contact forces P(p). A red hue indicates regions where subjects made contact with for the most amount of time while a blue hue indicates
regions where the time was half of the time spent in the red regions.

Fig. 11. Trapezoidal Fit: Models have been fit to each of the swipes in
this excerpt of a shaving force profile.

so as to eliminate smoothing at the boundaries. Figure 10
presents the results of the density estimation.

VII. RECOMMENDATIONS FOR ASSISTIVE ROBOTS

We have motivated this investigation with the idea that
robots could use our models to better interact with humans.
Within this section, we discuss ways in which our results can
be used by assistive robots and designers of assistive robots.

A. Customization and Control of Forces

The distributions of target forces for some subjects were
distinctly different from others (Fig. 9). The variance in many
distributions is relatively small and some distributions do
not overlap with one another. Since we carefully controlled
the wiping task, some of this variation is likely due to
personal preference, rather than task requirements. These
results suggest that people might prefer assistive robots
that enable them to tune contact forces to their personal
preferences.

B. Rise and Fall Rates

Using the rise and fall rates presented in Table V-C, a
force controller could attempt to track a trapezoidal force
profile as it strokes with a tool across the face. We found
statistical significance (p < .001) that the rise rate across all
strokes for wiping is greater than the rise rates for the shaving
task. This might suggest that people were more careful when
increasing the force of the razor than they were when pulling
the razor away and using the wiping tool. Emulating this type
of capability depending on the task may also be desirable in
assistive robots.

C. Varying Force Based on Location

Figure 10 indicates that the applied forces varied in
consistent ways with respect to the contact location on the
person’s face. For example, when wiping the cheek, subjects
applied lower forces near the top of the check next to the
eyes. Also, individuals applied lower forces along the bridge
of the nose compared with the sides of the nose. When
shaving, subjects tended to apply more force to the region
of the neck underneath the chin than to the cheek and jaw
bone. The position distributions reveal that individuals spent
more time along the jaw bone and the bridge of the nose
when wiping and shaving. Robots could potentially use this
type of information to avoid making contact or applying high
forces to irrelevant or sensitive locations, such as the eyes
during shaving. The extent to which more nuanced variation
in the force would be beneficial is an open question.

Also, we did not control for different face geometries.
As a result, the locations of the nose, ears, and other facial
features might be slightly different across subjects in the data.
However, we believe the extent of the error added does not
detract significantly from our results, since the smoothing



Fig. 12. Robotic Shaving with Force Sensing: Henry Evans shaves
himself with a Willow Garage PR2 robot. In this test, the subject was able to
obtain nicks and abrasions, motivating the need for intelligent force sensing.

parameters in the density estimation are likely larger than
the error in face correspondence.

D. Maximum Forces

The maximum target forces provide evidence about the
forces that are sufficient to perform the tasks and the range of
forces that are comfortable. Robot designers could use these
forces as guidelines for the forces that an assistive arm should
be able to apply. Robots could also restrict the forces they
apply during a task. Figure 9 shows that for the inliers, the
target forces for all tasks fall at or below 8.2 N. The extent to
which these forces generalize to other tasks, tools, and people
remains an open question that merits further research.

E. An Example Using a Force Threshold

Our work has been motivated in part from the Robots for
Humanity project, a collaboration between the Georgia Tech
Healthcare Robotics Lab, Willow Garage, Prof. Bill Smart,
and Henry Evans. As part of this project, we have developed
an assistive shaving system for the Willow Garage PR2 robot
that Henry Evans, who has quadriplegia, has used to shave
his cheek and chin (see Figure 12). In his first test of this
system, Henry abraded and nicked his skin. We recorded the
forces during this test, and found that he was applying high
forces to his face (∼ 25N). We then developed a behavior
which would back the arm away from his face if the force
exceeded a threshold of 10N. We based this threshold on a
pilot study of able-bodied people shaving that used methods
similar to the methods in the current paper. In a test of
this new system, Henry triggered this threshold a few times,
but adapted his use of the system to mostly stay below the
threshold while performing the task. He successfully shaved
his cheek and chin, but did not abrade or nick his skin in the
process. Our results in the current paper further support 10N
as a reasonable threshold, and we have continued to use it
during more recent tests.

Our experience to date suggests that modeling the contact
forces applied by able-bodied users during tasks can usefully
inform the design of assistive robots and their behaviors. This
approach has the potential to improve the safety, comfort,
and effectiveness of assistive robots, and, hence, the lives of
people with motor impairments.
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