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Abstract— We introduce ROS Commander (ROSCo), an open
source system that enables expert users to construct, share,
and deploy robot behaviors for home robots. A user builds a
behavior in the form of a Hierarchical Finite State Machine
(HFSM) out of generic, parameterized building blocks, with a
real robot in the develop and test loop. Once constructed, users
save behaviors in an open format for direct use with robots, or
for use as parts of new behaviors. When the system is deployed,
a user can show the robot where to apply behaviors relative to
fiducial markers (AR Tags), which allows the robot to quickly
become operational in a new environment. We show evidence
that the underlying state machine representation and current
building blocks are capable of spanning a variety of desirable
behaviors for home robots, such as opening a refrigerator
door with two arms, flipping a light switch, unlocking a door,
and handing an object to someone. Our experiments show
that sensor-driven behaviors constructed with ROSCo can be
executed in realistic home environments with success rates
between 80% and 100%. We conclude by describing a test
in the home of a person with quadriplegia, in which the person
was able to automate parts of his home using previously-built
behaviors.

I. INTRODUCTION

Creating general-purpose robots capable of performing
a wide variety of tasks in home environments remains a
significant challenge. First, the variety of tasks that people
would want a general-purpose home robot to perform is
potentially vast. As evidenced by the number of applications
available for personal computers and smart phones, people
can use general-purpose consumer technology in diverse and
unexpected ways. Second, real homes exhibit large variation
that can degrade robot performance. Even something as
prosaic as drawer handles can vary widely in size, shape,
materials, and appearance, all of which can impact a robot’s
ability to operate drawers.

How can home robots scale to handle such large task and
situation variability? Proposed solutions to this challenge
include approaches as diverse as formal task planning, logic-
based reasoning, learning by demonstration (kinesthetic and
by observation), learning using unstructured data sources
such as the Internet, or sharing capabilities using the “App
Store” model [17]. In contrast, our own work is inspired
by the success of expert software tools that simplify the
creation of complex artifacts (e.g., tools for photo editing and
computer-aided design (CAD)), and by the observation that
hierarchical finite state machines (HFSMs) underlie many
state-of-the-art demonstrations of robot capabilities.
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Fig. 1. Examples of robot behaviors constructed using the ROS Comman-
der system and encapsulated as HFSMs: opening a fridge, unlocking with
a button, opening a drawer, flipping a light switch, handing off an object.

In this paper, we introduce a system called ROS Com-
mander (available at [7]) or ROSCo, which allows the rapid
creation and usage of new behaviors structured as HFSMs.
First, it allows expert users to construct robot behaviors
via a graphical user interface, using a collection of generic,
parameterized building blocks created specifically for mobile
manipulation applications. Second, users who do not wish to
construct behaviors can automate their environments through
a separate interface that allows the association of environ-
ment parts with pre-constructed behaviors. In this paper, we
use our system to provide evidence for the following claims:

• HFSMs constructed from a relatively compact set of
low-level building blocks, and without direct access to
code, are powerful enough to encapsulate many useful
behaviors in home environments;

• By integrating perceptual (visual or tactile) cues, HF-
SMs can be executed with a high success rate and
repeatability;

• HFSMs can be adapted to changes in the environment
or new environments in many cases by using a combi-
nation of perceptual cues and simple adjustments from
the user.

The interface to our system, shown in Figure 2, allows
users to create HFSMs by selecting appropriate modules,
providing them with parameters suitable for the task to create
states, and connecting those states appropriately. The set of
low-level building blocks includes modules for perception
(e.g., detection of faces, fiducial markers, or tactile events),
navigation, manipulation (e.g., arm motion planning, trajec-



Fig. 2. The HFSM editor that we propose (right side) is paired with ROS’s rviz with interactive markers (such as 6-DOF rings-and-arrows controls
around grippers) for posing and controlling the PR2 (left side). Combined, we believe that these interfaces will allow quick iterative development of novel
parameterized abilities for the PR2.

tory following, or Cartesian end-effector control) and others
(e.g., torso movement or head movement).

In our application, we use an HFSM representation for a
number of reasons. Compared to classic AI STRIPS-styled
representations, the resulting behaviors of HFSMs can be
more predictable from a user’s perspective as demonstrated
in video game [3], [8] and movie character design–a poten-
tially important property for user interaction. Furthermore,
as behaviors generated by users are potentially open-ended,
this style of HFSM driven behavior-based robotics does not
require users to build explicit models for physical interaction
before having robots perform useful actions.

Our experiments show that by constructing HFSMs using
states created by generic ROSCo modules, our system can
generate a variety of robust autonomous behaviors. We
present trials where we execute each of 6 behaviors 10 times,
with 80% to 100% success rates. These behaviors include
opening a refrigerator with two arms, flipping a light switch,
unlocking a door with a push switch, opening a drawer, and
handing objects over to a person.

The work presented here is motivated by the long-term
vision of a powerful yet accessible tool for building and
adapting robot behaviors. As with packages such as Pho-
toshop or Final Cut Pro, used for processing still images
and videos, specialized tools can go far in empowering
both roboticist and non-roboticist users in the creation of
robust and versatile behaviors. End-users are the ultimate
domain experts; a “Photoshop for Robotics” [29] tool could
allow them to use their intimate environment knowledge
for creating and customizing appropriate robot behaviors.
Leveraging this potential could accelerate the deployment
of mobile manipulators in unstructured home settings, and
enable them to perform a wide variety of tasks.

II. RELATED WORK

Enabling general purpose robots to perform a wide variety
of tasks in complex human environments has been a long-
standing challenge within robotics, with many proposed
approaches. We will review recent proposed solutions that
use primarily task-based planning or task learning, as well
as those that use specialized interfaces.

Task-based planning methods attempt to move beyond
step-by-step instructions by computing appropriate action
sequences based on task level goals such as “Pick up the
cup and place it in the dishwasher” along with detailed action
representations. Such systems allow robots to perform differ-
ent types or variations of tasks by relying on the flexibility
of the planner and its available action set [23], [30], [31],
[16], [20], [12]. Planning approaches for manipulation go as
far back as the Handey system [30] for flexible pick-and-
place tasks. More recently, the CRAM toolbox [15] provides
a more heterogeneous collection of tools for knowledge-
based representation and task-level reasoning. In comparison,
ROSCo behaviors are created for cases outside the domains
of typical task planners, where there are not good action or
object models to plan with; this is a common situation for
most home environments.

In contrast, learning approaches train generalized models
with data from a wide variety of sources, in order to
mitigate knowledge-engineering problems often encountered
with task planning [32], [34], [28], [35], [19], [37]. A
number of approaches [34], [28], [35] use a combination of
reinforcement learning and Dynamic Movement Primitives
[25] to learn demonstrated dynamic motions such as playing
pool [34], playing with a ball-in-cup toy [28], and hitting a
ball [35]. Cakmak and Thomaz [19] investigate guidelines for
designing asking behaviors for improving robot skill learning
from human kinesthetic demonstrations. Finally, Tenorth et
al. [37] investigate using the web as an information source for



robot learning. While the focus of ROSCo is not on learning,
and is instead on integrating heterogeneous, generally-useful,
generic modules, we believe that many of the existing ideas
from skill learning could be integrated as smarter, more
general ROSCo building blocks.

Perhaps more related to ROSCo are methods that use
visual programming, where programming constructs are rep-
resented as visual symbols that can be manipulated (for
an overview see [9], [18]). Visual representations are at-
tractive as they can potentially make programs more easily
understandable. However, such advantages can disappear
when the visualization is too fine-grained, displaying too
many irrelevant details. Block-based programming systems,
which define a variety of procedural programming constructs
and coordination primitives, such as RoboLab [36] (used
as a basis for the popular Lego Mindstorms kit) and Mi-
crosoft Robotics Studio’s Visual Programing Language [10],
designed primarily to acclimate nonprogrammers to pro-
gramming concepts, can suffer from this symbol explosion
problem when used to construct larger programs. Flow-based
methods, interfaces that use blocks to manipulate the flow
of data through a graph, can be demonstrated by systems
such as RobotFlow [6], Matlab’s LabVIEW, and Ecto [1].
Visual programming is more appropriate in this domain as
information processing graphs tend to not grow as large as
graphs representing programs.

Visual programming has also found success in a different
class of interfaces, designed specifically to accelerate the
process of behavior creation in robots. Missionlab [13] was
designed for creating new behaviors for reactive mobile robot
navigation. The Robonaut 2 Command and Control Interface
[24] is a more recent example, used for mobile manipulation
with the Robonaut robotics platform. ABB’s RobotStudio,
created as a system for designing manipulator behavior in
structured factory environments, uses tools that define end-
effector paths based on CAD models of components. With
Gostai Studio [2], the aim is more towards creating a tool
that can be used for editing the structure of HFSMs, with
states manually coded by users. While ROS Commander
(ROSCo) similarly edits HFSMs, users provide parameters
to individual states instead of having to write code.

In the video game and movie industries, state machines
(FSMs), HFSMs, and behavior trees (which are more re-
strictive but believed to be more intuitive) [22] are used rou-
tinely for character behavior generation with great success.
Methods used by Massive software [5] are responsible for
generating the behavior of large crowds of virtual agents
that have been used in many major films. The Kismet
[4] state machine editor was used for designing many of
the agents in the game Unreal. Xait [11], Havok [3], and
Unity3D [8] are more recent commercial offerings that
also enable authoring and customization of agent behavior.
As game developers have also found FSMs to be a good
trade-off between reasoning capability and simplicity, the
overall structure of robot programs and video game agents
can appear to be quite similar. However, ROSCo behaviors
require different fundamental building blocks, as robots must,

in addition to difficulties faced by artificial agents, face issues
such as unstructured environments, noisy sensors, and faulty
actuation.

III. ROS COMMANDER

The goal of ROSCo is not just to provide a new, open-
source interface for creating HFSMs. It is also to examine
a broader research question: that of finding sets of general,
parameterizable states that can span a large variety of tasks
that are useful in home environments. In contrast to task
planning or learning-based approaches (who deal with new
tasks through more capable planners, richer datasets, or
smarter learning algorithms), ROS Commander depends on
general building blocks and software tools guided by skilled
human users to generate new varieties of behaviors.

ROSCo is both a user interface for building robot be-
haviors and also a tool for exploring the versatility and
robustness of HFSMs constructed from relatively simple and
accessible building blocks. In our framework, heterogeneous
software modules can use wildly different perceptual, plan-
ning, and actuation spaces, and can thus encompass a wide
range of approaches without having to reformulate them to
fit into restrictive overarching architectures.

In this section, we introduce the user-facing component
of ROS Commander and describe the general process of
creating a new behavior, with a number of detailed examples.
In the following sections we will explore the robustness of
the resulting behaviors, as well as methods for deploying
them into new environments.

A. Robot Behavior Creation: Basic Concepts
Our user interface for authoring behaviors is shown in

Figure 2, as used on a PR2 robot. The ROSCo interface (on
the right) is used for visually editing the current behavior’s
state machine and the parameters of its states. It is commonly
used in conjunction with Rviz (shown on the left), a
standard component of ROS used for visualizing sensor data
and the state of the robot, as well as for controlling the robot
through interactive markers [21].

Visually, the ROSCo interface for editing state machines
is divided into three primary areas (right side of Figure 2).
The large main panel on the bottom left displays nodes
(states) and edges (transitions) in the HFSM currently being
constructed. At the top is a tabbed grid with buttons for se-
lecting first the category (such as Manipulation, Interaction,
Learning, etc.) and then the individual desired building block
(such as Speak, Move Head, etc.) for adding to the HFSM.
Finally, on the right is a panel of properties that displays the
parameters of the currently selected node and its connectivity,
as well as controls for executing nodes and saving changes
to them.

Typically, to build robot behaviors, users first place the
robot in front of a person, object or mechanism that it
will need to interact with, such as a door, drawer, or light
switch. The next step is to select a tool that creates the
desired state machine element in ROS Commander, specify
that element’s parameters, and add it to the current state



machine. In addition, for tools where the robot’s motions
are more easily specified through demonstrations, users can
demonstrate the movement using teleoperation tools in Rviz,
and use the state of the robot at various points during the
demonstration to set the parameters for the selected tool. This
process of selecting a tool, specifying parameters for it, and
testing the results on the physical robot is then repeated until
completion of the behavior.

For example, to create a state that replays a joint trajectory,
users first select the “Joint Trajectory” button in ROS Com-
mander, then pose the robot as desired, clicking “Record”
at key poses. After recording a set of joint space poses,
they might adjust the timing between key poses or execute
motions to check their performance on the robot. When
satisfied, they can add the trajectory to the state machine
as a state. Similarly, the same testing process can be applied
to the state machine wholesale to check interactions between
the various states and the environment.

For saving and running the final result of behavior cre-
ation, ROS Commander uses the SMACH (State MACHines)
library [17]. ROS Commander state machines are compiled
into Python SMACH state machines, which allows direct
execution on the robot.

B. General Design Principles

A few important guiding principles were used in the design
of ROSCo. First, that behaviors should be easy to modify and
test while being constructed. In a similar manner to debug-
ging in most programming environments, we have made it
possible to step through the loaded behavior, executing one
node at a time to observe its effects on the robot and on the
objects manipulated. We believe that this ability is crucial
in home robotics, as the environment can contain many
unknowns. For example, it might not be apparent to users
why a one-armed door opening behavior would not apply
sufficient force for opening a magnetically sealed refrigerator
door until execution time; by stepping through the behavior,
the problem becomes apparent, and can be fixed through
additions at the problematic phase of the behavior.

Second, as with image processing software such as Pho-
toshop, tools should span varying levels of built-in intelli-
gence to provide both greater autonomous assistance (when
possible) and also the ability to accomplish a wider variety
of arbitrary tasks in low-level, manual fashion. The tools
provided by ROSCo range from those that create simplistic
joint movement states, to those that use Cartesian controls,
on up to those that provide autonomous motion planning for
the robot’s arms and base, with dynamically-updated obstacle
maps. This approach makes it more likely that behaviors
can be created for arbitrary tasks, albeit with less generality,
even when capabilities with greater autonomy fail or are
not available. For instance: when creating a behavior to
hand over an object to a person, a more-intelligent-seeming
behavior could use face detection to offer the object at an
appropriate position relative to the detected face. However,
if the detector is known to not work with face side views, it

would still be possible to use a static joint trajectory motion
as a backup strategy.

Third, we use the PR2 arm’s physical compliance so that
motions generated can be more tolerant errors. For example,
by using compliance an arcing motion used for opening
cabinet doors of one particular size can be expected to have
a reasonable chance of opening cabinets with slightly larger
or smaller doors.

C. Adding Perceptual Data
For many desired robot behaviors, robustness and gener-

ality require closing the loop by processing sensory data and
extracting information needed to complete the task. In ROS
Commander, states that process perceptual data either control
execution of other states, or create 3D frames that serve as
references for other states. These two modes greatly increase
the range and flexibility of behaviors that can be created
using ROSCo.

For example, defining a Cartesian movement with respect
to a frame produced by the face detection module enables
behaviors such as handing over an object in the robot’s
gripper to an appropriate pose for hand-off, relative to
the person whose face was detected. When users execute
the behavior, the desired motion of the robot’s grippers is
expressed with respect to the coordinate system defined by
the face, allowing the behavior to generalize across changes
in face positions with respect to the robot.

The AR ToolKit [27] module works similarly but also
allows users to define custom reference frames, which we
refer to as task frames (a concept introduced by Ballard
in [14]). These frames are defined relative to detected AR
Tag markers, and are used as frames for defining task-
relative motions. For example, in a behavior where the robot
navigates to a drawer and opens it, we store the position
of the robot’s base and also the gripper poses required for
opening the drawer as poses relative to a frame defined at
the center of the drawer (bottom left panel of Figure 4). The
system supports using the task frame’s last known position
even when there is not a live estimate of the tag’s position.
This property enables mobile manipulation behaviors that use
the strategy of first coarsely moving to a known map location,
then adjusting arm trajectories using finer pose estimates
once the pose of a known tag has been estimated (a strategy
we have used successfully in previous work [26]).

In this work we have used AR Tags to illustrate the
robustness and generality of robot behaviors once affixed
to a perceptual cue in the environment. AR Tags and other
fiducial markers are relatively non-intrusive, and can provide
many benefits in the short term [33]. In the longer term, we
envision them being gradually replaced by instances of state-
of-the-art object and place recognition algorithms that do not
require any modification of the user’s environment.

Finally, for tactile perception where the output is the
presence or absence of an event, ROSCo creates a state
that acts as a container that can stop the execution of states
or state machines inside it. For example, to generate a
guarded (move-until-contact) motion, users can create an arm
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Fig. 3. HFSMs for three prototypical behaviors with states colored based
on which phase of the task they represent. Dotted orange boxes are states
that put the robot into a pre-navigation pose. Red states are navigation
states. Dotted blue states are pre-manipulation states. Blue states perform
the manipulation action for that behavior. Finally, grey states place the robot
back in its starting pose.

movement state inside a tactile perception (event detection)
state. When this executes, the movement will be stopped as
soon as the robot’s tactile sensors make contact.

D. Example ROS Commander Behaviors in Detail

We now illustrate the anatomy of three typical ROSCo
behaviors (Figure 3) to show how different states produced
by ROSCo modules interact.

The first behavior navigates to a light switch and turns on
the lights. It starts out by placing the robot in a canonical
pose for navigation: first straightening the head, with the state
move head ang1, and then tucking the arms, state tuck0. This
is followed by a coarse navigation step that uses the robot’s
navigation stack (navigate0), which can autonomously navi-
gate the robot to a chosen goal, planning paths that avoid
obstacles along the way. While the navigation stack gets
the robot close to the desired base pose, the resulting pose
errors are too large for manipulation. Thus, we rely on a
more primitive state (navigate refined0) that refines the base

position, moving directly to the goal.
After positioning the robot, this behavior puts the robot

in a pose appropriate for manipulation by untucking the
arms (tuck1), then lifting the PR2’s upper body to the height
needed by moving the spine (move spine1). Finally, a joint
trajectory command places the robot’s arms in an appropriate
start position for operating the light switch (joint sequence0).

Now readied for manipulation, the behavior points the
Kinect at the last known position of the AR Tag (look at0)
to get a better estimate of its pose. The detector for the AR
Tag runs concurrently as an independent ROS process on the
robot; pointing the Kinect at the tag increases the likelihood
that the sensor obtains a good view, and thus a good estimate
of the tag’s position. This behavior then closes the gripper
(gripper0), reaches forward, and swipes up, flipping the light
switch (swipe up) with a Cartesian movement that uses the
task frame estimated by the AR ToolKit detector.

In the last stage, the robot puts itself back into a canonical
pose with a joint trajectory movement that pulls back the
gripper (joint sequence1) and tucks its arms back in (tuck2).

We have observed that most mobile manipulation behav-
iors we have designed for the PR2 have a similar structure.
Behaviors often start with placing the robot into canonical
poses, then navigating. After getting close to the object to
manipulate, the behaviors put the robot in a pre-manipulation
pose conducive to that task, then perform the manipulation
action. Finally, such behaviors often end with placing the
robot back in its starting state. The drawer opening behavior
shown in Figure 3 also has this canonical structure.

With the object hand-off behavior in Figure 3, we have a
slightly different structure, with no navigation states present
and no need for putting the robot into a canonical pose for
navigation. The behavior starts out with the robot looking
straight ahead, then trying to detect a face. If it does not see
a face, the behavior transitions to a text-to-speech node to
tell users that it cannot see their face and will not be handing
the object over. In case the robot does see a face, the state
machine later on transitions into a gripper event node that
encapsulates a sleep node, resulting in a state that sleeps for
a specified amount of time (60 seconds) unless it detects an
event on the robot’s gripper, whereupon it stops the sleep
and releases the object.

IV. DEPLOYING ROBOTS IN NEW HOMES: ASSOCIATING
BEHAVIORS WITH LOCATIONS

Once a behavior is constructed, the user can save it
onto the robot for reuse. We have already described how
the addition of execution reference frames obtained from
perception modules can make execution robust to variations
in the exact pose of the robot relative to the manipulated
mechanism. The same approach can be used to generalize
behaviors to different instances of a mechanism, increasing
applicability to different locations inside a user’s home, or
even in a different home.

Once a user has a robot behavior available, either previ-
ously constructed by themselves or simply downloaded from
a library, they can choose to apply it to various instances of



Fig. 4. Associating behaviors with new locations. Using as a reference point an AR ToolKit tag placed near the drawer (Left), the user can define a
task frame centered on the handle (Right), and then start the appropriate behavior.

a mechanism. For example, to use a pre-constructed drawer
opening behavior, users would affix an AR tag close to the
drawer, and, using a simple GUI, select the location of the
task frame relative to the AR tag, thus defining how the pre-
constructed behavior should be executed relative to the tag.
In the case of drawer opening, this essentially consists of
showing the robot the offset between the tag and the real
drawer handle. The process is illustrated in Figure 4.

Given perceptual cues attached to relevant parts of the
environment, a user can select a set of behaviors to be exe-
cuted in the task frames provided near those cues. Typically,
the first run of a newly deployed behavior can fail due to
incorrect positioning of the reference frame or errors from
various other sources. In this case, users would only need
to modify the offset between the perceptual cue and the
desired task frame using the visual interface, and try again.
As mentioned, we envision state-of-the-art object recognition
algorithms gradually replacing cues such as AR tags as they
become more robust in unstructured environments.

This interface is inspired by the process of a user (em-
ployer) giving the new robot (employee) a tour of the house,
pointing out relevant parts of the home and the tasks to
be performed. It is not as simple for the user as a fully
autonomous robot that can expertly operate in a completely
new environment out-of-the-box. However, as autonomous
systems that can handle thousands or even millions of
different homes out-of-the-box still pose significant research
questions, we believe this approach can be a practical solu-
tion for the deployment of robots into new homes on a much
shorter time frame.

V. ROBOT EXPERIMENTS

In this section, we evaluate the performance of several
example behaviors created with ROSCo. Since we began
development in the beginning of summer 2011, we have en-
gaged potential users to better address their needs. Examples
of use include a person with quadriplegia generating gestures
for the PR2, and robot developers enabling a Turtlebot (small
mobile robot) to pick up a block with a custom arm. For the
following experiments, however, the behaviors were created

Task Successes Failures

Drawer Opening 10 0
Refrigerator Opening 9 1
Unlocking a Door 9 1
Handing Over an Object 9 1
Turning On the Lights 1 10 0
Turning On the Lights 2 8 2
Turning On the Lights 3 9 1

TABLE I
SUCCESS RATES FROM ALL TRIALS.

Node Type Light S. Drawer Fridge Hand-off Total

Velocity Priority 1 3 4 1 9
Face Detect 1 1
Freeze Frame 1 1 2
Gripper 1 3 5 1 10
Gripper Event 1 1
Joint Sequence 2 1 2 2 7
Look At 1 1
Move Head 1 2 2 1 6
Move Spine 1 1 1 3
Navigate 1 1 1 3
Navigate Refined 1 3 2 6
Position Priority 1 1
Tuck 3 3 2 1 9

TABLE II
STATE TYPES USED BY EACH BEHAVIOR.

by an expert user (the primary developer of the system and
first author).

We tested the behaviors constructed with our system
through experiments on a PR2 robot: a mobile manipulator
produced by Willow Garage with two compliant arms and an
omnidirectional base, as well as a large suite of sensors. We
used a head-mounted Kinect sensor for estimating the pose of
AR ToolKit tags. Our experiments took place at the Georgia
Tech Aware Home, a three-story, 5040-square-foot home
used as a test facility for household technologies. Unlike
many other facilities used for this purpose, the Aware Home
is a full-fledged house, not a simulated living space, and
is complete with two kitchens, two bathrooms, two dining
rooms, two offices, four bedrooms, and a basement.

The ROS Commander-generated behaviors that we tested
include two-armed refrigerator opening (as one is not strong
enough), drawer opening, unlocking a door with a push



button, turning on the lights with a light switch, and handing
an object to a person (Figure 1). We selected these behaviors
because we believe they are both representative of a large
class of behaviors that would be useful in the home, and also
relatively challenging, since they involve both navigation and
manipulation. Each of these behaviors, with the exception of
object hand-off, works in a similar manner to the mobile
manipulation behaviors described in Section III-D: there is a
coarse, autonomous navigation phase with a goal defined by
that behavior’s task frame, followed by a refined navigation
step, untucking of the arms, manipulation, and finally tucking
again. To test giving an object in the gripper to a person, we
positioned the robot in front of a Georgia Tech student seated
on a couch in the living room and repeatedly handed him
different objects. Success for object hand-off is defined as the
behavior executing through its nominal path of states and the
person receiving the object. We show a table summarizing
the frequency which different types of states are used in Table
II (with state names explained on our website [7]).

Each trial of a mobile manipulation behavior begins with
the robot being driven manually to a random location in the
space that contains the mechanism it needs to operate on.
For the refrigerator and push button, this space includes the
hallway, kitchen, dining, and living room, as those rooms are
all one contiguous space. For the light switches and drawer,
this space includes the room that the mechanism is in. After
being driven to a random location, we select the behavior
being tested on a web interface and record the results.

We performed two sets of trials. First, we tested the
robustness of our behaviors by executing drawer opening,
refrigerator opening, unlocking a door, and handing over an
object each 10 times. Behaviors in this set of test attained a
90% to 100% success rate. Next, we tested the ability of our
behaviors to generalize to different mechanisms by testing
the light switch behavior 10 times each on three different
switches in the Aware Home. With the switches, we had an
80% to 100% success rate. We present the results of these
trials in Table I.

Overall, we had five failures. In one trial of refrigerator
opening, the robot’s arms collided with the door while
untucking, due to a bad localization estimate. In another trial,
the robot failed to push on the correct part of the switch
to unlock the door. We believe that this is due to small
tracking errors in the Cartesian controllers; such errors could
be mitigated by improved controllers, or by visually tracking
and correcting the gripper pose. With the object hand-off
behavior, the failure was due to the ROS process for tucking
the arms freezing at the end of the behavior, which did not
actually affect the robot’s execution of the behavior.

In the second set of trials on light switches, we had two
failures due to the navigation package’s planner not finding
a path, which happened because of incorrect sensor data
reporting nonexistent obstacles at the robot’s desired goal
location. The last light switch failure was due to the gripper
getting stuck while the robot attempted to slide it along the
wall. Failures such as these could be mitigated by adding
autonomous re-tries to the state machine.

Fig. 5. Behaviors executed by Henry Evans (leftmost image), a person
with quadriplegia, at this home: opening a refrigerator, opening a drawer,
turning on the lights, and placing an object.

These trials show the performance of basic state machines
designed for each task, without any attempts at adding addi-
tional logic and branches for increasing robustness. Because
each behavior is a hierarchical state machine, autonomous re-
tries and even calls to states that ask for human-in-the-loop
assistance to get robots un-stuck can be added to behaviors
as needed.

We have also performed preliminary tests with these
behaviors in the home of Henry Evans, a person with
quadriplegia who can use computers by moving a mouse
cursor with a head tracker, and also by clicking the left
mouse button through limited use of his hand. With guidance,
Henry was able to associate pre-constructed behaviors with
mechanisms in his house, using the interface for associating
behaviors with locations (discussed in Section IV).

Henry’s primary challenge was in positioning the task
frame for each behavior in the 3D interface. This is because
placing the task frame on an obvious spot, such as the center
of the drawer handle as it appears in the Kinect’s point cloud,
might not work due to issues such as poor robot calibration
or limitations of the sensor. However, adjusting the saved
location of the task frame slightly until the behavior worked
was typically enough to overcome such issues. We enabled
Henry to autonomously succeed in opening a refrigerator
then grasp a bottle using teleoperation. He also placed that
bottle on a table in his home, opened a drawer, and turned
on a light switch (Figure 5).

We used nearly identical behaviors at Henry’s home as
in the Aware Home, which shows that our behaviors as
created can generalize across fairly different environments.
There were some minor differences: the behaviors in the
Aware Home use a more general head-pointing behavior that
can point the Kinect at the last known location of the AR
tag prior to manipulation. At Henry’s, this was stored as a
static set of pan-tilt angles, only because the more general
behavior had not been created yet. While, based on this data,
we are not yet in a position to make a strong claim for
the behaviors’ ability to generalize, the results suggest that
behaviors constructed using ROSCo can be ported with small
adjustments to different homes.



VI. CONCLUSION & FUTURE WORK

In this paper we have introduced ROS Commander
(ROSCo), a system for building robot behaviors. A user
can construct behaviors by combining parameterized states
drawn from a set of building blocks. The capabilities of these
building blocks cover aspects such as base navigation, arm
navigation and manipulation, and head and torso movement.
Behaviors constructed using ROSCo have the underlying
structure of HFSMs, using the building blocks described
above as individual states. The addition of perceptual cues
to a behavior can greatly increase robustness: for example,
by addressing variations in robot pose relative to the target
at the start of execution. Examples from our system include
modules creating states that generate reference frames for
execution based on AR Tags in the environment, or modify
execution based on tactile events.

We have used ROS Commander to build and test a variety
of behaviors applicable in home tasks. These behaviors
include opening a fridge using two arms, opening a drawer,
unlocking a door, flipping a light switch, and handing an
object off to a person. All of these behaviors were tested in a
realistic home environment, and the switch flipping behavior
was also tested on multiple, slightly different switches.
Overall, the results showed that the proposed set of building
blocks can be combined in an HFSM framework that is
general (can be used for many different task), robust (be-
haviors are executed with a high success rate) and versatile
(behaviors can generalize to different instances of the target).

While the current system was designed for operation
by trained end-users, the behaviors demonstrated in this
paper were all constructed by a roboticist. In future work,
we would like to investigate how non-roboticists interact
with our system, and which changes, if any, are needed
to enable the creation of useful robot capabilities by end-
users. More advances can potentially result from the use
of smarter building blocks with greater autonomy, such as
those that can detect task failure, or through the sharing of
preconstructed behaviors on the Internet. Given a variety of
different behaviors for a task, it is likely that at least one
behavior would work for any particular instance, with the
caveat of possibly requiring minor parameter changes that
can be performed by the end-user. If this is true, widespread
usage of such tools can potentially enable an explosion in
robot competency with household mechanisms.
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