Autonomous Active Learning of Task-Relevant Features
for Mobile Manipulation

Hai Nguyen, and Charles C. Kemp

Healthcare Robotics Lab, Georgia Institute of Technology, USA

Abstract—We present an active learning approach that en-
ables a mobile manipulator to autonomously learn task-relevant
features. For a given behavior, our system trains a Support
Vector Machine (SVM) that predicts the 3D locations at which
the behavior will succeed. This decision is made based on
visual features that surround each 3D location. After a quick
initialization by the user, the robot efficiently collects and labels
positive and negative examples fully autonomously.

To demonstrate the efficacy of our approach, we present results
for behaviors that flip a light switch up and down, push the top
or bottom of a rocker-type light switch, and open or close a
drawer. Our implementation uses a Willow Garage PR2 robot.
We show that our approach produces classifiers that predict the
success of these behaviors. In addition, we show that the robot can
continuously learn from its experience. In our initial evaluation
of 6 behaviors with learned classifiers, each behavior succeeded
in 5 out of 5 trials with at most one retry.

I. INTRODUCTION

Although mobile manipulators are becoming more capable,
creating robust perceptual algorithms that tolerate real-world
variation continues to be a challenge. One promising approach
to this problem attempts to simplify perception in unstructured
environments by identifying task-relevant features [6} [§]]. In
contrast to approaches that seek to infer and represent much
of the world’s state, methods that use task-relevant features
recover only parameters that are needed by task-specific con-
trollers.

Within this paper, we present an active learning approach
that enables a mobile manipulator to autonomously learn task-
relevant features. In this initial work, we consider the prob-
lem of reliably finding and recognizing positions on known
mechanisms that predict success. Our approach makes several
assumptions. First, we assume that the robot can execute a set
of behaviors, each of which only requires a 3D location in the
robot’s frame of reference as initial input. We have previously
demonstrated that this is a reasonable assumption for a variety
of useful mobile manipulation behaviors [12]]. Second, we
assume that the robot has a way of reliably detecting whether
or not a behavior it has executed was successful or not. Third,
we assume that for each behavior, B, there is an inverse
behavior, B~!. If B successfully executes, then successful
execution of B~! will return the world to a state that allows
B to execute again.

Given these three assumptions, our active learning method
enables a mobile manipulator to autonomously learn which
3D locations are likely to result in successful execution of a
behavior. More specifically, the robot learns to classify visual
features associated with 3D locations as being associated with

Fig. 1. Left: Willow Garage PR2 operating a drawer, light switch and rocker
switch using learned task-relevant detectors. Right: Results from learned
detectors during execution.

success or failure of a given behavior. By learning a direct
mapping from perception to behaviors through experience, the
robot automatically handles issues such as calibration errors,
variations in the pose of the robot due to imprecise navigation,
lighting changes and sensor noise. In contrast to many works
in perception, our method is designed specifically to recognize
locations on the same object across task variations instead of
focusing on generalization across instances of the same object.

To construct an appropriate task-relevant detector for a
particular behavior, our system uses a Support Vector Machine
(SVM) to discriminate between the appearances of 3D points
associated with success versus failure. We use active learning
heuristic proposed by Shohn and Cohn to train an SVM
for each behavior [16]. During training, this active learning
method proposes which 3D point to experiment on next, which
reduces the number of examples required. It also enables the
robot to continue learning after training. The robot can adapt
to situations that it has not encountered before by invoking the
same active learning method. If the robot fails at runtime, it
can hypothesize new likely locations, test and learn from its
experience in the process.

To demonstrate the efficacy of our approach, we present
results for behaviors that flip light switches up and down, push
the top or bottom of a rocker-type light switch, and open or

close a drawer. Our implementation uses a Willow Garage PR2
robot. We show that our autonomous training system is able to
produce classifiers that predict the success of these behaviors.
In addition, we show that the robot can continuously learn
from its experience. In our initial evaluation of six behaviors
with learned classifiers, each behavior succeeded in 5 out of
5 trials with at most one retry.

II. RELATED WORKS
A. Task-Relevant Feature Detection

Recently, there has been recognition in the mobile manipula-
tion community of the importance of exploiting task structure
to reduce the complexity of operating in the real-world. This
point was argued by Katz et al in [7]. Dang and Allen [2]] show
evidence that many manipulation tasks are well approximated
using sequences of rotations and translations. Additionally,
work in articulated object perception [6]], tool tip detection
[8l], door handle detection [9]], behavior-based grasping [5],
and corner detection for towel folding [[11] demonstrates that
in many tasks a small set of simple features are sufficient
to support object manipulation. Unlike our approach, these
methods required hand-coded and hand-trained task-relevant
feature detectors.

B. Learning Methods in Manipulaion

Even though the use of learning-based methods can result
in more general detectors, labeled training examples are often
time consuming and expensive to obtain. To get around this
problem some researchers have used data from the web or sim-
ulation [9, [15]. Alternatively, systems can use data generated
from self-experience [14} 13 [13} [10], which is the approach we
have taken. A challenge in this setting is the cost of obtaining
labeled examples, which we overcome by having autonomous
methods of detecting success and failure for each behavior.

The work of Sukhoy and Stoytchev [17] is especially
notable for its similarity to our approach. They have presented
a system that uses an uncertainty sampling scheme to actively
learn the appearance of door bell buttons. We extend that class
of work with an approach that uses a different active learning
algorithm, works with a mobile manipulator operating in situ
devices, and can use more general behaviors that result in
persistent changes to the state of the world.

III. APPROACH

We pair an SVM classifier with a multiscale PCA derived
feature representation. The SVM classifier gives us a simple
criteria for active learning, is resistant to overfitting, and is fast
to evaluate. We pick the multi-scale PCA descriptor here as
it is fast to calculate, data derived and does not make strong
assumptions about scene contents.

A. Autonomous Training

1) Initialization: Our initializtion method is motivated by
the idea that a person could take the robot on a tour and point
out task-relevant locations using a laser pointer while speci-
fying relevant behaviors. The robot could then autonomously

Training Loop for Given Behavior Training Loop for Inverse Behavior

Feature . yes
[—————— ?
Extractor 3d point

T label
Inverse

Success
int
LR pctive SVM
Behavior

Deector
A Detector T

label

t
Active SVM [22YPUTL Behavior

Feature
Extractor

Fig. 2. Tllustration of the classifier co-training procedure where we train the
inverse behavior upon success of the primary behavior and vice versa. Dashed
orange boxes on the two behaviors and success detectors highlight that these
modules are provided as input to our system.

navigate back to these locations and learn to robustly perform
the behaviors through practice.

The process itself associates locations within an occupancy
grid map with behaviors that can be applied, sets a target
base position, and seeds the SVM learner with two starting
examples, one positive and one negative. We first position the
robot in front of the mechanism to be operated. Using a green
laser pointer [12], we then provide an initial rough estimate
for each behavior of a good 3D location. The robot samples
3D points around this designated location and executes the
specified behavior at these points continuing until the robot
gathers at least one positive and one negative point.

2) Training Procedure: During execution, when our robot
navigates to the target base location stored in its map, there
will likely be errors introduced in the relative position of the
robot with respect to the mechanism. To capture this effect
in our dataset, we designed our training procedure to sample
from this distribution of positioning errors.

For our training procedure, we instruct the user to manually
move the robot to four additional locations in the map a small
distance away from the location collected during initialization.
Then, at each step, our training procedure navigates the robot
to one of these preset practice locations, then back to the
mechanism location to empirically sample a new view.

After sampling a view, we use the SVM learning algorithm
to repeatedly query for labeled data points. We stop querying
either when we gather a maximum of 6 points from the view
or once the active learning process converges. We impose this
conservative maximum limit to prevent the learning heuristic
from converging early as points in a given view are highly
correlated to each other in their appearance. This process then
runs until all practice locations converge. Where convergence
for a location is defined as the iteration when we first sample a
view where our active learning heuristic immediately declares
convergence.

We illustrate this active SVM learning process in Figure
Notably, in the training of each behavior’s classifier we also
need to gather data for its inverse as without this co-training
process, attempts to reverse the state of the world using a naive
procedure can dominate the time required for learning.

3) Behavior Execution Procedure: After the above process
converges, we now have a trained system that can detect task-
relevant points. Our procedure begins with feature extraction
then loops until the robot is successful at the given behavior.
At each iteration, the robot first classifies points predicted
to be successful. Then, using a kernel density estimator, the
robot selects the mode of this cloud of points predicted to
be successful in the 2D image. If execution fails, the robot
adds the failing data point into the current training set, retrains
the classifier, and repeats the procedure. Here, in contrast
to systems where the execution process is independent of
data gathering and training, the robot has the opportunity to
improve its classifier if errors are made during execution.

B. Classification

Our classification task in this work is to distinguish between
3D points that lead to success and those that lead to failure
given that 3D point’s associated appearance information. As
is standard in supervised classification, given a dataset of
labeled examples D = {(z1,41), ...(xn, yn)}, with 7; € RM
representing the feature vector and y; € {—1,1} where —1
and 1 lead, respectively, to success and failure, we want to
be able predict y; for (x;,y;) ¢ D. In our problem, each z;
contains local 2D appearance information associated with a
candidate 3D point. To solve this classification task, we follow
a discriminative approach using an SVM.

In our setting, we will typically have an unbalanced dataset
problem with our dataset containing many more negative than
positive examples. Since the SVM misclassification cost term
is defined over all samples, it becomes possible to minimize
the objective by trivially misclassifying all the positive sam-
ples. To prevent this issue, we use an SVM formulation which
separates misclassification costs from the positive and negative
class [1]]:

1 _
§WTW+C+Z§H—C > &

min
wib yi=1 yi=—1
st gi(wiex) +b) >1-&

&>0,i=1,...,1 ()
Where ¢(x) represents the standard SVM kernel function. In
the above, the normal SVM misclassification cost constant C'
has been separated into CT and C'~ which are, respectively,
costs due to negative and positive misclassifications. In this
work we set C~ to be 1, and C'* to be the number of negative
examples over the number of positive examples.

1) Active Learning Heuristic: At each step ¢ of our training
procedure, our goal is to select from a pool of unlabeled
3D points a point for our robot to label by executing its
corresponding behavior. To do so efficiently, as suggested
by Schohn and Cohn [16]], we select the point closest to
the current decision boundary provided that it is closer than
the currently selected support vectors. In [16], the authors
showed empirically that this combination of stopping criteria
and heuristic often allows the resulting SVM to obtain better

performance than using the entire dataset itself while using
fewer examples.

Using this heuristic, at each step ¢, we define the previous
iteration’s dataset as D;_ 1, the set of support vectors as
Xvy = A{x§v,..., 2%}, the pool of possible query points as
X1 ={2%,...,29,}, and the SVM distance function, which
measures distance to the decision boundary, with d(x;) =
|wT¢(x;) + b|, then pick the closest point to the decision
boundary from the set of query points that are all closer to
the decision boundary than the support vectors using:
d(x¥)

§ 2

argmin
x]Vxs d(x{)<d(x5V)

i

2) Features: We extract 2D features for classification by
using a color high resolution image, a point cloud, and a
reference 3D point p € R3. To capture local 2D appearance,
we take the 2D projections into the camera of a point from
the point cloud, proj(pS), and capture square windows of
pixels of successively increasing size centered at the 2D point.
These windows are then scaled down to a fixed size number
of pixels. By using this image pyramid representation, we
capture the point’s local context at multiple scales. We then
use Principle Components Analysis (PCA) to project the set of
image windows down to manageable number of coefficients.

As it is computationally expensive to search every point
in the entire point cloud, and we want to constrain the
area being classified using a prior distribution we define a
Gaussian distribution N'(p, ¥) to guide our search process.
For this distribution ¥ = diag(v,, vy, v,) with vg,v,, and v,
being, respectively, variances in the X, y, and z direction. The
Gaussian mean, p, is set as the mean of known past successes.
We then extract features at points sampled without replacement
from the captured point cloud according to the PDF of this
distribution.

IV. IMPLEMENTATION
A. Learner Parameters

Our sensor processing pipeline begins with capture of a
3D point cloud from the PR2’s narrow angle projected stereo,
and a 5 megapixel color image from the Prosilica camera. We
then sample points to extract features as described in Section
For each 2D projection of a 3D point sampled we
capture a series of local image regions from the color high
resolution image with square window sizes of 41, 81, 161,
and 321 pixels. Each window, in turn, is then scaled down to
a square window of size 31x31 pixels creating an RGB image
strip of size 31x124 pixels for each data point. To reduce this
11532 valued vector to a manageable size, we calculate a set
of 50 PCA basis vectors, for each action, using points sampled
from the first image taken during initialization.

For classification of the above feature vector, we use an
SVM with a radial basis function kernel. To set the hy-
perparameters of this kernel we used grid search with a
training/testing set split on a labeled training set obtained
through human labeled feature points extracted from a scan
of a light switch.

TABLE I
TRAINING EXAMPLES GATHERED GATHERED FOR EACH ACTION.

Action Positive Ex. Negative Ex. Total
Switch On 17 43 60
Switch Off 20 31 51

Drawer Open 23 35 58
Drawer Close 23 39 62
Rocker On 49 96 145
Rocker Off 47 94 141

TABLE 11
NUMBER OF TRIES UNTIL SUCCESS (TRIED 5 TIMES PER ACTION).

15t Try 279 Try

2

Action
Switch On 3
Switch Off 5
Rocker On 2 3
Rocker Off 4 1
5
5

Drawer Open
Drawer Close

B. Light Switch Behaviors

Our light switch behavior is a series of Cartesian movement
commands using low stiffness settings where the robot first
reaches to the target point until the end effector makes contact.
After contact, depending on whether the goal is to turn the
lights on or off, it moves downward or upward, stopping after
detecting a spike in acceleration.

While moving, our procedure detects success by taking the
difference of the average intensity between a frame captured
prior to moving and another frame captured after moving. As
the light switch is fairly simple, its inverse behavior is identical
except for a change in direction of pressing.

C. Rocker Switch Behaviors

Our rocker switch procedure consists solely of a reaching
out step similar to the first step of the light switch behavior
above. As the force applied from contact during the reach
procedure is enough to activate the switch, it is the only
action that we need. This behavior also uses the same image
differencing mechanism for detecting success.

D. Drawer Behaviors

Pulling open and pushing closed a drawer requires slightly
different behaviors and success detection mechanisms. Our
pulling behavior first reaches to the drawer handle location,
moves back slightly, grasps (with the same reactive grasper
as in [4]]), then pulls. For pulling, we define failure both as
failure to grasp the handle and failure to pull, while remaining
in contact, for at least a threshold distance (10 cm). With
pushing, we define failure also as failure to acquire contact
and remain in contact with the drawer surface for a certain
threshold distance. Intuitively, this criteria classifies events
where the robot pushes against a closed drawer, or immovable
parts of the environment as failed cases.

V. EVALUATION

Prior to training we create an occupancy grid map using the
PR2’s navigation stack. We then evaluate our proposed method

by training classifiers for the six separate actions described
in the following sequence: switch lights off, switch lights
on, drawer open, drawer close, rocker switch off, and rocker
switch on.

After an initialization process (Section [III-Al]), we ran
our active learning practice procedure (Section until
convergence. For each action at each location we seed the
process with four locations in the room at places where our
robot would likely travel from to get to the mechanism to
be operated on. We allow this process to run mostly without
interference, only pausing and resuming when our robot’s
batteries run low. A brief summary of the data captured
through this process is presented in Table

To evaluate the classifier created by the above process, in
each trial, we moved the robot to a random location in the
room then started execution of the full mobile manipulation
behavior being tested. We tested each action at each location
5 times for a total of 10 trials per locations as there are two
behaviors defined per location. Within each trial we allowed
for the behavior to retry and incorporate information from
failures if it did not succeed the first time. However, since the
behavior would perform better, we discarded the information
learned within each trial each time we started a new trial.

We present results of our training process in Table [l and
Figure [V] and summarize results of the execution process is
summarized in Table [

Results from Figure [V] shows that our method was able to
identify the relevant regions to aim the light switch and rocker
switch behaviors depending on whether the task is to turn the
mechanism on or off. With the drawer handle, as grasping
closer to the edge of the handle is less likely to be successful,
our method correctly identified that the center is the better
location to try to grasp.

However, during training of the rocker switch misclassifi-
cation of whether the lights changed state or not caused our
learning process to require at least twice as many samples
until convergence as needed for the other training trials.
Encouragingly, due to the built in retraining mechanism and
knowledge from past trials, our execution process attained a
100% success rate (Table after at most two retries with
each action.

VI. DISCUSSION AND CONCLUSIONS

We proposed a process which allows a mobile manipulator
to autonomously create task-relevant feature detectors given a
behavior and its inverse. Our system solves a common issue
in behavior-based robotics where specifying the motions to
accomplish a task is easy for programmers but creating a
robust perceptual algorithm is not. Examples of problems in
this class can be seen in the operations of all three mechanisms
which we considered as each required only fairly simple
controllers.

In addition, as a consequence of online learning and having
a success classifier, our system is able to monitor future per-
formance and learn from its own mistakes, a desirable trait for
systems which operate in unstructured human environments. In

Fig. 3.

Each pair of images shows results of learned detectors just after convergence and on a test scene. Orange points indicate locations where the behavior

is predicted to fail, teal points indicate locations where the behavior is predicted to succeed, large teal points indicate locations in which the behavior will
execute, and blue points are the mean of recorded successful locations determined through localization. Row 1: Detectors for switching the lights off and
switching the lights on. Row 2: Detectors for pressing a rocker switch. Row 3: Detectors for pulling a drawer open and pushing a drawer close.

future work, we hope to address cases where there are multiple
adjacent mechanisms with similar effects next to each other
such situations where there are multiple light switches next to
each other.

ACKNOWLEDGMENTS

We thank Aaron Bobick, Jim Rehg, and Tucker Hermans for
their input. We also thank Willow Garage for the PR2 robot
and additional support. This work was funded in part by NSF
award IIS-0705130.

REFERENCES

[1] Chih-chung Chang and Chih-jen Lin. LIBSVM : a
Library for Support Vector Machines. pages 1-39, 2011.

[2] Hao Dang and Peter K Allen. Robot Learning of Ev-
eryday Object Manipulations via Human Demonstration.
IROS, pages 1284-1289, 2010.

[3] A.N. Erkan, Oliver Kroemer, Renaud Detry, Yasemin Al-
tun, Justus Piater, and Jan Peters. Learning probabilistic
discriminative models of grasp affordances under limited
supervision. In IROS, pages 1586-1591. IEEE, 2010.

[4] Kaijen Hsiao, Sachin Chitta, Matei Ciocarlie, and Gil
Jones. Contact-reactive grasping of objects with partial
shape information. In IROS, 2010.

[5] Advait Jain and Charles C. Kemp. EL-E: an assistive
mobile manipulator that autonomously fetches objects
from flat surfaces. Autonomous Robots, 2009.

[6] Dov Katz and Oliver Brock. Manipulating Articulated
Objects With Interactive Perception. In ICRA, 2008.

[7] Dov Katz, Jacqueline Kenney, and Oliver Brock. How
Can Robots Succeed in Unstructured Environments? In
RSS, Robot Manipulation Workshop, 2008.

[8] Charles C Kemp and Aaron Edsinger. Robot Manip-
ulation of Human Tools : Autonomous Detection and
Control of Task Relevant Features. In /CDL, 2006.

[9] Ellen Klingbeil, Ashutosh Saxena, and Andrew Y Ng.
Learning to Open New Doors. In RSS Workshop on Robot
Manipulation, 2008.

[10] Jens Kober, E Oztop, and Jan Peters. Reinforcement
Learning to adjust Robot Movements to New Situations.
In RSS, 2010.

[11] Jeremy Maitin-shepard, Marco Cusumano-towner, Jinna
Lei, and Pieter Abbeel. Cloth Grasp Point Detection
based on Multiple-View Geometric Cues with Applica-
tion to Robotic Towel Folding. In ICRA, 2010.

[12] Hai Nguyen, Advait Jain, Cressel Anderson, and
Charles C. Kemp. A clickable world: Behavior selection
through pointing and context for mobile manipulation. In
IROS, 2008.

[13] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evan-
gelos Theodorou, and Stefan Schaal. Skill Learning and
Task Outcome Prediction for Manipulation. In /CRA,
2011.

[14] Marcos Salganicoff, Lyle H. Ungar, and Ruzena Bajcsy.
Active learning for vision-based robot grasping. Machine
Learning, 1996.

[15] Ashutosh Saxena, J. Driemeyer, and Andrew Y Ng.
Robotic Grasping of Novel Objects using Vision. IJRR,
2008.

[16] Greg Schohn and David Cohn. Less is More : Active
Learning with Support Vector Machines. In ICML, 2000.

[17] Vladimir Sukhoy and Alexander Stoytchev. Learning to
Detect the Functional Components of Doorbell Buttons
Using Active Exploration and Multimodal Correlation.
In IEEE International Conference on Humanoid Robots,
2010.

	Introduction
	Related Works
	Task-Relevant Feature Detection
	Learning Methods in Manipulaion

	Approach
	Autonomous Training
	Initialization
	Training Procedure
	Behavior Execution Procedure

	Classification
	Active Learning Heuristic
	Features

	Implementation
	Learner Parameters
	Light Switch Behaviors
	Rocker Switch Behaviors
	Drawer Behaviors

	Evaluation
	Discussion and Conclusions

