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Abstract— We present a novel fabric-based multimodal tactile
sensing skin with three sensing modalities: force, actively heated
temperature sensors to measure heat transfer and passive,
unheated temperature sensors. In our evaluation, the skin
recognized two materials during pressing and sliding tasks.
Our method thermally distinguished pine wood from aluminum
after detecting the contact force. With a support vector machine
(SVM) classifier trained on 0.25 s of data, our method achieved
a recognition accuracy of 96% for the pressing task and 73%
for the sliding task.

I. INTRODUCTION

Multimodal tactile sensing can provide valuable informa-
tion for robot manipulation in unstructured environments
with proximity to people. Force-based sensing has been
used to recognize the stiffness/compliance and movement
of objects [1]. Actively heated temperature (active thermal)
sensing shows promise for recognizing materials based on
their thermal properties and unheated temperature (pas-
sive thermal) sensing can be effective at recognizing heat-
generating objects such as the human body [2]. As shown in
[3], multimodal tactile sensing can enable robots to recognize
materials that may be difficult to distinguish using a single
modality.

In this work we present a multimodal tactile sensing skin
prototype that could be used to cover a robot’s entire arm.
This builds upon our previous work with a single rigid
multimodal sensor attached to a handheld data acquisition
device [4]. In contrast to other multimodal tactile sensing
skins [5], [6], we implemented both active and passive
thermal sensors and used a fabric-based design. We used
the skin to perform two representative manipulation tasks.
Finally, we present our results of material recognition with
the skin on samples of pine wood and aluminum using both
thermal modalities.

II. DEVICE DESCRIPTION

Figure 1 shows the fabric-based multimodal tactile sensing
skin prototype. The skin has 5 force sensing taxels, 1 at the
end (area = 9 cm2) and 4 around the circumference (each
of area = 17 cm2). Each taxel has 7 fabric layers as shown
in Fig. 1 (bottom) and has two active and passive thermal
sensors.

A. Hardware Specifications

The skin’s force sensing modality uses fabric-based tactile
sensors as described in [7]. Each force sensing taxel features
a layer of resistive fabric sandwiched between two layers of
conductive fabric. Each of these taxels has four fast response
10 kΩ thermistors (EPCOS B57541G1103F). Two are heated
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Fig. 1: Top: multimodal fabric-based tactile sensing skin
prototype covering a 3D printed cylinder. Bottom: design
of fabric-based skin.

by a 15 mm wide carbon fiber resistive heating strip [8]
for active thermal sensing while the other two are used for
passive thermal sensing, similar to our work in [2].

Fig. 2: Model used to evaluate thermistor spacing.

B. Spacing of Discrete Thermal Sensors
Because the active and passive thermal sensing modalities

rely on thermistors of small cross-sectional area (0.015 cm2)
compared to our force sensing taxels, we consider them point
sensors. To gain insight into the spacing for the thermistors
along the circumference of the cylinder, we developed a
planar model for the number of point sensors that will
make contact when the cylinder touches a flat surface.
Figure 2 shows a rigid cylinder of radius R covered with
the deformable tactile sensing skin of thickness t. During
contact, the skin compresses a distance d with a small applied
force. The model yields

kc = bn
π

arccos(1− d

R+ t
)c (1)

where n is the number of point sensors evenly spaced
around the circumference of the skin and kc is the minimum
number of point sensors that will contact the surface. For



Fig. 3: Experimental procedure for the pressing and sliding
tasks.

our prototype, R = 17 mm, t = 5 mm and d = 3 mm which
yields kc = 1 for 6 ≤ n ≤ 11. Thus our model predicts that
for our design with n = 8 thermistors, at least one should
make contact when the cylinder touches a flat surface.

III. EXPERIMENTS

Figure 3 illustrates the experimental procedure we used to
evaluate the skin. Our objective was to distinguish aluminum
from pine wood during two tasks that robots could do
while performing manipulation in cluttered environments [1]:
pressing a stationary object and sliding an object so that it
moves. We covered a 3D printed rigid cylinder with the skin
and attached it to a 50 cm long wooden dowel to represent a
robot arm. We performed each task shown in Fig. 3 with 10
material samples each of aluminum and pine wood. In the
first task, we pressed the skin to each material sample for
4 s. In the second task we placed the sample in a movable
clamp and used the skin to push and slide it a distance of
20 cm in approximately 2 s. In both cases, we held the skin
and rigid cylinder flat against the sample. We used a force
detection threshold of 0.1 N to determine the start of contact
and recorded data at 100 Hz. To ensure that the active thermal
sensors were in a thermal steady state before each task, we
waited for 60 s before moving on to the next sample.

IV. ANALYSIS AND RESULTS

To determine which heat transfer sensor came in contact
with the material during a trial, we analyzed data from
active thermal sensors that exhibited a negative change in
temperature at each time step for 1.25 s. We ensured that the
corresponding force sensing taxel measured a force greater
than 0.1 N. This provided evidence that the thermistor was
in contact with the material sample, which was at ambient
temperature. Based on this approach, we determined that one
or two active thermal sensors were in contact with the sample
during each trial, a range that agrees our model in Section II-
B. Because we tested the skin with the cylinder flat against
the surface, we assumed that both the active and passive
thermal sensors at a particular circumferential position would
simultaneously contact the sample. Based on this, with each
active thermal sensor time series used, we also used data
from the passive sensor in the same circumferential position.
Figure 4 (left, middle) shows the first 1.25 s of active and
passive thermal sensor data (mean ± standard deviation)
collected with 10 material samples each of aluminum and
pine wood for the pressing and sliding tasks.

Fig. 4: Left, middle: thermal sensor data (mean ± standard
deviation) recorded with 10 material samples each of alu-
minum and pine wood during two manipulation tasks. Right:
recognition accuracy with varying contact time.

Based on our previous work in [2], we used a binary
support vector machine (SVM) classifier with a linear kernel
to recognize aluminum vs. pine wood based on the active
and passive thermal sensor data and the time derivative of the
active data. We truncated the data to begin at the estimated
onset of contact using a force threshold of 0.1 N. To study
the effect of contact duration on our recognition accuracy, we
truncated the time series to include the first 10, 25, 50, 75,
100 and 125 samples corresponding to the first 0.10, 0.25,
0.50, 0.75, 1.00 and 1.25 s of contact respectively. Figure
4 (right) shows the SVM’s recognition accuracy over the
time duration considered for both the pressing and sliding
tasks. With 3-fold cross-validation, the average recognition
accuracy for the pressing task was 96% with 0.25 s of data
and 92% with 1.0 s of data. For the more challenging sliding
task, the accuracy was 73% and 84% for 0.25 s and 1.0 s
of data, respectively. This demonstrates the feasibility of our
fabric-based multimodal skin that could cover a robot’s arm
and provide information about the environment.
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