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Abstract— During robot-assisted dressing, a robot manipu-
lates a garment in contact with a person’s body. Inferring the
forces applied to the person’s body by the garment might enable
a robot to provide more effective assistance and give the robot
insight into what the person feels. However, complex mechanics
govern the relationship between the robot’s end effector and
these forces. Using a physics-based simulation and data-driven
methods, we demonstrate the feasibility of inferring forces
across a person’s body using only end effector measurements.
Specifically, we present a long short-term memory (LSTM)
network that at each time step takes a 9-dimensional input
vector of force, torque, and velocity measurements from the
robot’s end effector and outputs a force map consisting of
hundreds of inferred force magnitudes across the person’s
body. We trained and evaluated LSTMs on two tasks: pulling
a hospital gown onto an arm and pulling shorts onto a leg.
For both tasks, the LSTMs produced force maps that were
similar to ground truth when visualized as heat maps across
the limbs. We also evaluated their performance in terms of root-
mean-square error. Their performance degraded when the end
effector velocity was increased outside the training range, but
generalized well to limb rotations. Overall, our results suggest
that robots could learn to infer the forces people feel during
robot-assisted dressing, although the extent to which this will
generalize to the real world remains an open question.

I. INTRODUCTION

Survey data suggests that at least one million people in
the United States require daily assistance with activities such
as feeding, bathing and dressing [1]. Robotic assistance for
these and other activities of daily living (ADLs) offers the
potential for improved quality of life by improving inde-
pendence, privacy and efficiency. In this paper we focus on
robot-assisted dressing, where a robot manipulates a garment
in contact with a person receiving assistance.

While clothing often appears innocuous, garments can
apply high forces to the human body and cause discomfort
when pulled taut. The forces applied to the human body are
also indicative of key aspects of the dressing task, such as
which parts of the body are covered by the garment and
whether or not the garment is caught on a part of the body.
Directly measuring these forces through wearable sensors or
instrumented clothing would be prohibitive. Since dressing is
often intended to visually occlude parts of the body, visually
estimating these forces would also be challenging. In this
paper, we investigate the possibility of a robot inferring
these forces using only measurements from its end effector
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Fig. 1. A force map estimated during a robot-assisted gown dressing
task, using only the force, torque, and velocity measured at the end effector
(shown in green). The semi-transparent cloth gown allows the force map
underneath to be viewed.

(see Fig. 1). Specifically, our approach uses a 9-dimensional
measurement vector, consisting of the 3-dimensional forces
and torques applied to the robot’s end effector by the cloth
and the end effector’s 3-dimensional Cartesian velocity.

Due to the complex mechanics relating the robot’s end
effector to the forces applied by the garment, we use a
data-driven approach. We use a physics-based simulation
to synthesize thousands of dressing examples during which
we record measurements at the robot’s end effector and
the forces applied to the human body. We then use these
data to train task-specific recurrent neural networks (RNNs)
that infer the magnitudes of applied forces on the human
body given end effector measurements over time. For ex-
ample, at each time step, one of our networks estimates
a 600-dimensional force map based on a 9-dimensional
measurement vector. In this paper we demonstrate that, in
spite of the low-dimensional input, high-dimensional output,
and complex interactions involved, this inference can be
performed in real time with compelling results which bodes
well for future applications'.

II. RELATED WORK

Our approach is inspired in part by the notion that a human
can use a lifetime of experience performing a task for him or
herself to infer what someone else is feeling when assisted.
This is related to work on mirror neurons [2]. The physics-
simulation gives robots the opportunity to observe and learn
forces applied to the human body during dressing.

TAll code can be found at:
learning-forces

https://github.com/gt-rad/



Fig. 2.
assisted shorts dressing task.

A full force map estimated along a human leg during a robot-

A number of researchers have considered the problem of
robot-assisted dressing. Often, the resulting systems have
relied on visual data to make inferences about the state of
cloth and dressing interaction. Kogatani et al. have proposed
techniques for estimating human cloth topological relation-
ships and cloth dynamics from motion capture and RGB-D
data [3], [4], [5]. Twardon and Ritter considered RGB-D
based cloth boundary detection for garment grasping [6].

Others have used vision systems for robot-assisted dress-
ing control tasks. Tamei et al. used motion capture to
extract a low-dimensional cloth state representation based
on the topological relationship between a mannequin and
the garment. They then computed the arm motion for a dual
arm robot to pull a T-shirt over the mannequin’s head using
reinforcement learning [7]. Klee et al. proposed a goal pose
based system for a robot to assist users with dressing tasks.
Using a turn taking strategy guided by a vision module, the
robot and a user take turns improving their relative positions
until a robot goal pose becomes feasible. They demonstrated
this system with a Baxter robot assisting a user in donning a
hat [8]. Gao et al. propose an approach for which Gaussian
mixture models captured from RGB-D data approximate the
movement space of a user’s upper body joints. They then
calculated poses for a robot to hold a garment within reach
of a user to facilitate dressing of a sleeveless jacket [9].

While the use of vision as the primary form of input data
has been common, the use of force data, if present, has been
limited. Yamazaki et al. described an approach for assisted
dressing failure detection through optical flow and force
data [10]. Recently, Gao et al. have proposed a stochastic
path optimization approach for personalized robot-assisted
dressing that leverages both force and visual information
[11]. Kapusta et al. have also shown that haptic data from a
robot’s end effector can be used to make predictions about
the future state of a dressing task [12].

We use long short-term memory (LSTM) networks to
perform estimations with time series data. LSTMs were first
introduced by Hochreiter and Schmidhuber, and have since
seen several improvements [13]. For instance, we use the
forget gate proposed by Gers et al., which allows the network
to learn to reset memory over time [14]. LSTMs have been
used successfully throughout many applications, including:
machine translation, generating cursive writing, and speech
recognition [15], [16], [17].

Fig. 3. A force map consists of force magnitudes at discrete points along
each limb which are shown here in white. We space these limb points
approximately 2cm apart from each other with 300 points along the arm and
400 along the leg. For every time step, the LSTM estimates the magnitude
of force applied at each of these points.

TABLE I
MEASURED AND ESTIMATED FORCES DURING SIMULATION AT TIME ¢.

f.;  Magnitude of true force applied at limb point 7

ftf j The 5™ collision force between the cloth and the limb
T 3-dimensional force applied at the robot’s end effector

fu Unprocessed force mag. at limb point ¢, estimated by LSTM

Aviles et al. used dimensionality reduction and an LSTM
to visually estimate force applied by a robotic surgical tool
to tissue over time. Their algorithm uses stereo images of
the tissue and the motion of the surgical tool as input and
outputs a single scalar force at each time step [18]. Berenson
proposed an iterative Jacobian-based method to manipulate
deformable objects without an explicit object model [19].
Similar to Berenson’s work, our LSTM-based approach does
not have access to a model of the deformable garment, yet
is able to learn how this cloth interacts with a human body.

III. FORCE MAP ESTIMATION

In this work, we focus on the problem of estimating the
magnitudes of the forces applied to a human limb by a cloth
garment during a robot-assisted dressing task (see Fig. 2).
We refer to several different forces which we differentiate
using superscripts as shown in Table 1.

A. Problem Description

We define a force map as an N-dimensional vector of
force magnitudes at fixed locations along a simulated limb.
We use a set of uniformly distributed points, which we refer
to as limb points, to represent these fixed locations (Fig. 3).

We denote this force map at a time step 7' by fp =
(fra> fro - fr.n] Where fr.; is the magnitude of force
at the 7™ limb point. We expect this force map to be densely



sampled across the limb such that f;. has several hundred
dimensions. At time 7', there can be a set of collisions
between the cloth and the limb where the j% collision
consists of a vertex along the cloth mesh with position @, ;
that applies a force, f7 ;, onto the limb (Fig. 4). Since these
collisions may occur anywhere on the limb, we map the force
magnitude of collisions to nearby limb points. We provide a
more thorough formulation of this mapping in Sec. IV-B.
In this work, we aim to learn a function that estimates f
given a sequence of measurements seen thus far. At each time
step t € {1,...,T} we use a 9-dimensional measurement
vector, ¢¢, consisting of the 3-dimensional force, f”, and
torque, 7, measured at the robot’s end effector along with
the 3-dimensional Cartesian velocity, v, of the robot’s end
effector, i.e. ¢r = [f, T¢, v¢]. Thus, we define the estimation
problem as finding a function h that accurately estimates f,

given ¢1.1, ie. fr =~ h(p1.1).
B. LSTM

We use LSTMs to perform this estimation problem, and
hence serve the role of the function #. An LSTM is a type
of recurrent neural network (RNN) [13]. We use an LSTM
structure similar to that presented by Gers et al. in which the
activation of memory cells are defined using three gates: an
input gate, a forget gate, and an output gate [14].

One issue that arose as we designed LSTM networks for
this estimation problem is a tendency for the LSTMs to
estimate a very low, yet nonzero, force for limb points that
were not in contact with the garment. This made it chal-
lenging to determine where contact was actually occurring
along the limb and interfered with visualization of the force
maps for evaluation. One approach to account for this issue
would be to implement an arbitrary threshold below which
all estimated force magnitudes would be set to 0. However,
selecting a threshold is not straightforward.

Instead, at each time step ¢, our LSTM estimates both
an unprocessed force map, ft“, and a contact map, X;.
The contact map is used to make a binary classification of
whether or not contact is occurring at each limb point. When
creating our training set, for each ground truth force, ft) j»at
limb point j, the accompanying contact map element, x; ;,
within the training set is set such that,

0.1 if ft,j > 0,
—0.1 otherwise.

Xt,j = 1

In order to avoid bias between learning the contact map
versus the force map, we weight the contact map values so
they are near the values we expect within the force map (i.e.
~ 0.1). If we set the values within the contact map too large,
then the LSTM learns to minimize the large errors within the
contact map, but fails to minimize errors that occur in the
force map. When the LSTM estimates a contact map, X, at
time ¢, we can use this contact map to estimate which limb
points are actually experiencing contact with the cloth (i.e.
the j™ limb point is in contact with the cloth when Xt,j > 0).

To estimate the true force map at a time step 7', we provide
the LSTM with a set of measurements, ¢1.7, for all previous

il

Fig. 4. Visualization of a single point of contact between the cloth gown
and the arm. While the cloth is pulled along the arm at time 7', the ith
collision point has a global position, & ;, and exerts a force, f% ;» onto
the arm. ’

time steps. Given ¢;.p, the trained LSTM then estimates
an unprocessed force map and contact map, [ ft“, )Zt], for
each time step t = 1,...,7. When visualizing real time
force map estimations, we only consider the estimation for
the most recent time step, f%, XT}. Finally, the estimated
contact map provides intuition into which limb points are
experiencing contact and hence we use this information to
compute the estimated force map, f.. We define the elements
of this force map such that for each limb point ¢,

0 if Xp,; <Oor ff, <0,
fr,; otherwise.

Jri= )

f is then a vector that represents an estimated force
magnitude at each limb point with force set to zero for limb
points not in contact with the cloth (X7, < 0) and force
magnitudes that were estimated to be negative ( f%)i <0).
Our task-specific LSTMs consist of 3 layers, each with
50 cells. The LSTM layers use a tanh activation function
and we initialize the LSTM’s parameters using Glorot’s
uniform distribution [20]. The network’s output layer is fully
connected with linear activations. Altogether, the LSTM has
52,400 recurrent connections. It is worth noting that our
approach does not rely on any parsers or encoders, nor
does it require any dimensionality reduction since our LSTM
directly estimates an entire force map at each time step.

IV. PHYSICS-BASED SIMULATION

We examine two robot-assisted dressing scenarios: pulling
a hospital gown onto an arm and pulling a pair of shorts
onto a leg, which we refer to as the gown task and shorts
task, respectively. Our simulator extends work by Yu et al.
in which they designed a simulator to model real world data
from a robot pulling a hospital gown onto human partici-
pant’s arms [21]. Each simulation was built in OpenGL with
NVIDIA PhysX? for physics and cloth simulation. PhysX
is robust to large forces applied to the cloth and is based
on position-based dynamics. We made several modifications
to the base PhysX software, including: calculating collision
forces, improving friction calculations to better match real
world data, and implementing friction for cloth self-collisions

INVIDIA
physx-sdk

PhysX: https://developer.nvidia.com/



to allow wrinkles and folds within the garments. A more
thorough account of these modifications can be found in [21].

Simulating the 6-dimensional force and torque measure-
ments relies on accurately modeling complex cloth dynamics
and collisions. Because of this, we optimized the simulator
using CMA-ES according to data collected from a real robot-
assisted dressing task with human participants, as described
in Yu et al. [21], [22]. We model the human arm and leg
as spheres connected by conical frustums which allow for
fast collision detection. We dimensioned the human limbs
according to a 50% male. The limbs are rigid bodies fixed
in place throughout a trial. We selected limb poses such that
the robot must apply a reasonable amount of force in order
to successfully perform the dressing task. The garments are
represented as triangle meshes based on measurements of a
real hospital gown and pair of shorts.

A. Task Variation

We incorporated variability into the garment’s initializa-
tion by applying a small uniform force to each vertex along
the garment for a short duration of time prior to a trial. At
each time step ¢, we collect the measurements, ¢, along with
all ground truth collision positions x; and force magnitudes
S that occur between the cloth and the simulated body.

When recording training data for the gown task, we added
variations that we expect in a real world robot-assisted
dressing task. For instance, the initial location of the human’s
limb relative to the robot’s end effector could vary for each
dressing attempt. Additionally, the robot’s end effector may
vary in velocity and follow a nonlinear path while providing
dressing assistance. To this end, between sequences, we
varied the human limb location, the velocity of the end
effector’s motion, and the path that the end effector follows,
for both dressing tasks. To vary the human arm location with
respect to the robot’s end effector we centered the human arm
at the origin and then randomly varied its position 5 cm
along the x axis, 20 cm along the y axis, and 10 cm
along the z axis (see Fig. 5 for axes), which we denote by
(£5cm, £20cm, £10cm). We selected these position ranges
such that the cloth and human limb would be guaranteed to
make contact during the simulation.

We initialized the robot’s end effector at a fixed location
above the arm and had it follow a nonlinear randomized
cubic Hermite spline path (as shown in Fig. 5) with 7
to 10 control points that deviated from a linear path by
(£3cm, £2cm, £5cm). Moreover, while the end effector
maintained a constant speed during a dressing sequence, we
varied the speed from 10 cm/s to 15 cm/s between dressing
sequences. It is worth noting that while the magnitude of
the end effector’s velocity remains constant over time, the
three individual components of the velocity do change as
the end effector progresses through the spline path. The
shorts dressing task varies in a similar fashion with the leg
fluctuating from the origin by (+5cm, +7.5cm, +£5c¢m), the
spline path varying by (£3cm, +2cm, +5cm) with 9 to 11
control points, and the end effector speed varying between
15 cm/s and 20 cm/s. Due to the 45° angle of the foot, the

Fig. 5. Example of a random spline trajectory followed by the end effector
during both a gown and shorts dressing task. The green control points define
the spline trajectory and white points show samples on the interpolated path.

end effector’s unvaried path drops down closer to the leg
when passing over the foot, as seen in Fig. 5.

B. Generating the Ground Truth Force Map

As described in Sec. III-A, we define a force map as
a collection of force magnitudes at uniformly distributed
limb points. The collisions between the cloth and limb
will not align perfectly with our set of limb points as
these collisions can occur at any location along the limb.
As such, our approach proportionally distributes the force
magnitude of each collision to the k nearest limb points.
At the current time step 7, it identifies the k nearest limb
points to the jth collision location, T and distributes the
magnitude of collision force |f7 ;| to them. Specifically, it

1
_ 4 c ; th
adds ] (1 s dp) | f# ;1 to the magnitude of the [

nearest limb point, where d; is the Euclidean distance of the

k
I'™ limb point from . jand Y [ — =1
i p=1%p

1 k—1
I=1

For this work, we used k¥ = 5 as we found that mapping
a collision force to the nearest five limb points created a

smoother force map and improved the LSTMs’ performance.

V. EVALUATION

For each task, we collected a training set consisting of
5000 dressing sequences and a test set of 1000 sequences.
These sequences were randomized in limb position, end
effector speed, and end effector path, as presented in Sec. IV.

We used Keras, a neural network library, to implement an
LSTM for each dressing task [23]. We trained the LSTMs
with stochastic gradient descent and adaptive learning rates
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Fig. 6. A sequence for the simulated gown task where the top arm represents the ground truth force map and the bottom arm depicts the LSTM estimated
force map. The end effector used a fixed speed of 15 cm/s with an arm position offset of (Ocm, 20cm, Ocm).

Ground truth

-

Estimated
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Fig. 7.
speed was 20 cm/s with a leg position offset of (Ocm, 4.5cm, Ocm).

using RMSprop and a mean squared error loss function [24].
We used batches of 16 sequences and trained for a total of 10
epochs. We performed all training on an Amazon EC2 server
with 36 cores and 64 GB of memory, taking approximately
2.5 hours to train each of the two LSTMs.

As defined in Sec. III-B, the LSTM estimates both an
unprocessed force map and corresponding contact map at
each time step, which are used to produce the estimated force
map. This amounts to estimating a 600-dimensional output
vector for the gown task and an 800-dimensional vector for
the shorts task at each time step.

Below, we describe how the LSTM performed on data
which are similar to that collected for training and compare
differences among the two tasks. We then analyze how our
LSTM-based approach generalizes to unseen scenarios, such
as higher end effector velocities, or rotations of the human
limb. Finally, we present qualitative (visual) results of the
estimated force maps in various scenarios, and present a few
cases in which the estimated force maps deviate from the
ground truth.

A. Visualizations

For both tasks, the LSTMs produced force maps that
were noticeably similar to ground truth when visualized
as heat maps across the limbs. Specifically, we visualized
force maps by mapping each force magnitude to a constant
color spectrum, as shown in Fig. 2, and interpolating colors
between points along the limb. Within this paper, we present
frames from a number of representative trials to help convey

A sequence for the shorts task with the top and bottom legs showing the ground truth and estimated force maps respectively. The end effector’s

the performance of our approach. We also have generated
videos that accompany this paper.

The arm rarely gets caught in the gown sleeve as the arm
either successfully enters the sleeve, or misses the sleeve for
most dressing attempts. Contrary to this, the shorts frequently
get caught on the foot during the shorts dressing task, which
causes large forces as the end effector continues to pull.

Fig. 6 shows a sequence of frames for a hospital gown
dressing scenario in which the gown is successfully pulled up
the forearm. Low forces are applied to the fist and forearm
initially, while larger forces are applied to the elbow and
upper arm as the task progresses. Fig. 7 shows a similar
sequence for the shorts dressing task. However, the shorts
get caught on the heel of the leg early on, which causes
large forces to be applied as the end effector continues to
pull and stretch the cloth. Fig. 8 visualizes a scenario in
which the arm gets caught in the sleeve of the gown. Due to
the large size of the gown, larger forces are still not applied
until the latter end of the sequence. Fig. 9 depicts a sequence
in which the shorts are successfully pulled up the leg without
getting caught. Fig. 10 shows a sequence during which the
arm misses the sleeve opening of the gown. Lastly, Fig. 11
presents a sequence for which a higher speed of the robot’s
end effector led to errors in the estimated force maps.

B. Root-Mean-Square Error (RMSE)

In addition to visualization, we computed a root-mean-
square error (RMSE) metric between the estimated and
ground truth force maps, averaged across every time step
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Fig. 8. A visual sequence of the gown task for which the sleeve of the gown gets caught on the fist. The arm is positioned at an offset of (Ocm, 11cm, Ocm)
and the end effector has a speed of 20 cm/s which is greater than the range of speeds used to train the LSTM.

Ground truth

Estimated

Fig. 9. A shorts dressing sequence for which the shorts are successfully pulled over the foot and up the leg without getting caught. We use an end effector
speed of 15 cm/s and a leg position offset of (Ocm, 7.5cm, Ocm).

Ground truth

Fig. 10. A simulated gown task sequence for which the arm misses the sleeve of the gown. We set the end effector speed to 15 cm/s and arm position
offset to (Ocm, 20cm, 7.5cm).

Ground truth

Estimated

Fig. 11. A gown task sequence which visualizes a scenario in which, for a few time steps, the estimated force maps differ from the ground truth force
maps. We use an end effector speed of 20 cm/s which is outside the range of velocity magnitudes that the LSTM has been trained on. The arm is positioned
at an offset of (—5cm, 15cm, Ocm).



End Effector Speed Variation in the Gown Task
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Fig. 12. The figure shows the RMSE between the estimated force maps, ft, and the ground truth force maps, f,, for several speeds beyond what the
LSTM has seen. RMSE values are averaged over 128 sequences (N=128) with varied limb positions and spline trajectories.
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Fig. 13. The RMSE between the estimated force maps, f;, and the ground truth force maps, f,, for numerous rotations of the simulated forearm rotated
around the elbow and foot rotated around the ankle. For the gown task, we limit rotations along the positive Z-axis to prevent collisions between the arm
and end effector. Additionally, the forearm is parallel to the X-axis. As such, we do not rotate around this axis as it would not impact the arm’s pose.
RMSE values are averaged over 128 sequences (N=128) with varied limb positions and spline trajectories.

for all 1000 test sequences. We compute this RMSE as,

RMSE :\/Tl]\f Zj Zjv(ft,i - ft,i)2

where 7' is the total number of time steps in a sequence, N is
the number of limb points, and f, ; is the force for limb point
1 at time t. This metric provides the benefit of presenting
results in units of Newtons and is motivated by the use of
MSE as a loss function for the LSTM. Note that we only
compute the RMSE for errors between the estimated force
maps, ft, and ground truth force maps, f;, and not between
the contact maps. For the gown dressing task, we computed
an average RMSE value of 0.00673 N over all test sequences.
We also computed an average RMSE value of 0.0488 N for
the shorts dressing task. We use these values as a baseline
for evaluating the LSTM’s performance in generalizing to
unseen scenarios in the following section. For comparison,
both of these baseline values approximately double to 0.0148
N and 0.102 N, respectively, if we use a zero collision force
map estimation for all test sequences, i.e. ft,i =0.

C. Generalization to Unseen Scenarios

While the LSTM performs well with scenarios similar
to the training set, we are also interested in how well our
approach generalizes since real world dressing will vary in
numerous ways. To this end, we compare the RMSE scores
between estimated and ground truth force maps for faster
end effector velocities and for when the forearm and foot are
rotated. Note that the LSTM has never seen a limb rotation,
hence the baseline is denoted by a rotation of 0°.

Fig. 12 highlights how the RMSE varies as we increase
the end effector speed for both the gown and shorts tasks.
To maintain consistency within each dressing task, we tested
each end effector speed on the same 128 randomly generated
sequences that varied in limb position and spline trajectory.

While training for the gown task, we used end effector
speeds that ranged from 10 cm/s to 15 cm/s. With a speed
of 20 cm/s, the RMSE of 0.0294 N is approximately 4.4
times larger than the baseline RMSE for the gown task. For
comparison, the dressing sequence in Fig. 6 has an RMSE
value of 0.019 N. For the shorts dressing task, we trained
the LSTM on speeds ranging from 15 cm/s to 20 cm/s. At
25 cm/s, the RMSE is ~ 3 times larger than the baseline,
and this rises to a factor of 3.6 with a speed of 30 cm/s.

Analogous to high end effector speeds, Fig. 13 depicts
this same metric for several forearm and foot rotations. Each
rotation was tested on the same 128 randomly generated
sequences with varied limb positions and spline trajectories.
However, we used an end effector speed of 12.5 cm/s and
17.5 cm/s for the gown and shorts tasks respectively. When
the forearm is rotated —15° around the Y-axis the RMSE
increases to 1.65 times the gown task baseline, whereas a
rotation of —15° around the Z-axis generates a RMSE of
0.82 times the baseline. Finally, all of the leg rotations across
all 3 axes presented for the shorts task ranged between a
factor of 0.92 and 1.46 times the shorts task baseline.

VI. DISCUSSION

In Fig. 12, we observe large error increases as end effector
speeds continue to extend beyond the range of speeds in the



training set. This provides some indication that an LSTM-
based approach may experience challenges estimating task
progression when end effector speeds exceed those used for
training. However, this increased error may also be due in
part to higher contact forces from faster velocities.

Nevertheless, the LSTMs’ RMSE performance generalized
well to new limb rotations, despite not training on any
rotations. In Fig. 13, we observe a decrease in RMSE for
some rotations. This could be influenced by some rotations
reducing the magnitude of collision forces between the gar-
ment and limb. For example, the foot flattens with negative
rotations along the Z-axis which lowers the chance of the
shorts getting caught and exerting high forces on the foot.

We note that further work is necessary to evaluate how
well real robots can use this approach to infer the forces a
person feels during assistive tasks.

VII. CONCLUSION

Inferring the forces applied to a person’s body by a
garment during robot-assisted dressing could give a robot
insight into what a person physically feels and enable the
robot to provide more effective assistance. In this work,
we showed how task-specific LSTMs can estimate force
magnitudes along a human limb for two simulated dressing
tasks. At each time step our LSTM networks take a 9-
dimensional input vector consisting of the force and torque
applied to the end effector by the garment and the velocity
of the end effector. The networks then output a force map
at each time step consisting of hundreds of inferred force
magnitudes across the person’s body.

For both dressing tasks, our approach produced force
maps that were visually similar to ground truth. We then
explored how well this approach may generalize to unseen
end effector velocities and limb rotations. A promising char-
acteristic that emerged was the LSTM’s ability to estimate
force maps during scenarios in which the human limb was
rotated. Notably, we have shown that high-dimensional force
maps can be estimated using a sequence of low-dimensional
measurements. These results suggest that robots could learn
to infer the forces that people physically feel during robot-
assisted dressing.
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