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Abstract— Activities of daily living (ADLs) are important
for quality of life. Robotic assistance offers the opportunity
for people with disabilities to perform ADLs on their own.
However, when a complex semi-autonomous system provides
real-world assistance, occasional anomalies are likely to occur.
Robots that can detect, classify and respond appropriately to
common anomalies have the potential to provide more effective
and safer assistance. We introduce a multimodal execution
monitor to detect and classify anomalous executions when
robots operate near humans. Our system builds on our past
work on multimodal anomaly detection. Our new monitor
classifies the type and cause of common anomalies using an
artificial neural network. We implemented and evaluated our
execution monitor in the context of robot-assisted feeding with
a general-purpose mobile manipulator. In our evaluations, our
monitor outperformed baseline methods from the literature.
It succeeded in detecting 12 common anomalies from 8 able-
bodied participants with 83% accuracy and classifying the
types and causes of the detected anomalies with 90% and
81% accuracies, respectively. We then performed an in-home
evaluation with Henry Evans, a person with severe quadriplegia.
With our system, Henry successfully fed himself while the
monitor detected, classified the types, and classified the causes
of anomalies with 86%, 90%, and 54% accuracy, respectively.

I. INTRODUCTION

Activities of daily living (ADLs), such as feeding and
hygiene related tasks, are important for living independently
and having a high quality of life [1]. Robotic assistance could
help people with disabilities perform ADLs on their own.
This notion is motivated by a number of examples, such
as, robot-assisted shaving [2], dressing [3], and feeding [4].
Particularly in feeding, many specialized commercial systems
are now available, such as the Bestic arm [5], Obi [6],
and Mealtime partner [7]. Introducing greater autonomy
into systems for robot-assisted feeding has the potential to
improve their effectiveness. For example, visually tracking and
autonomously moving utensils to the mouths of users could
make the systems easier to use, simplify system setup, and
enable a more diverse set of users to benefit from assistance.
General-purpose robots also have the potential to provide
feeding assistance along with other forms of assistance,
instead of being single-purpose robots [8].

While greater autonomy and general-purpose robots have
the potential to improve assistance, they also increase the
complexity of robotic systems. This increase in complexity
can lead to a higher likelihood of anomalies when providing
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Fig. 1: Henry Evans, a person with severe quadriplegia,
successfully used our robot-assisted feeding system in his
home to feed himself while our execution monitor was
running.

assistance in the real world. While physically assisting a
person with disabilities, anomalies could decrease system
safety, effectiveness, and usability. Previously, we presented
an execution monitor that uses multimodal sensing to detect
anomalies [9]. In this paper, we focus on the problem of
classifying and responding to common anomalies. We also
present an evaluation of our robot-assisted feeding system
with a person with severe disabilities in his own home. Our
robot-assisted feeding system incorporates autonomy and
makes use of a general-purpose mobile manipulator, a PR2.

Our execution monitor consists of a data-driven anomaly
detector and classifier (Fig. 2). For the detector, we combine
two multimodal anomaly detectors, referred to as HMM-D
[9], that use multivariate hidden Markov models (HMMs)
and dynamic thresholds to determine anomalies. Our anomaly
classifier uses a multilayer perceptron (MLP) with selected
input features extracted from HMMs, raw sensory signals, and
a convolutional neural network (CNN). To use unexpected
changes of signals, our system extracts conditional probabili-
ties of each signal over others and then extract its temporal
changes using temporal pyramid pooling as addressed in [10].
We also extract bottleneck features, the output of the CNN
given an image. After detection, an MLP fuses these features
and estimates the most probable class of the anomaly among
12 classes selected through fault tree analysis (see Fig. 3).

We evaluated the detection and identification performance
of our execution monitor using a robot-assisted feeding
dataset where a PR2 fed 8 able-bodied participants. We
then evaluated our feeding and execution monitoring system
with Henry Evans, a person with quadriplegia in California,



USA (see Fig. 1). The robot recorded haptic, auditory,
kinematic, and visual data from a variety of sensors during
the feeding task. Our execution monitor successfully detected
and identified a variety of anomalous executions, such as
the spoon missing the person’s mouth, unexpected collisions
during feeding, and a loud utterance from the care receiver
or a nearby caregiver. Our method resulted in substantially
higher classification accuracy when compared against six
other baseline classification methods from the literature.

II. RELATED WORK

Execution monitoring has been well-studied in robotics for
detecting and classifying anomalous executions [11]. Bjreland
introduced a monitoring system that detects, classifies, and
corrects anomalous executions using a predictive model
[12]. Pettersson introduced another monitoring system which
detects and indicates anomalies in robot behaviors without
restricting the detection method to a predictive model [13].
Unlike this previous work, our execution monitor observes
the status of a task-relevant object and a person.

Anomaly detection has been investigated for various
assistive devices. For example, Geravand and et al. introduced
a fall detector that monitors force-torque data to predict and
prevent falling during mobility assistance [14]. Colombo et al.
showed environmental anomaly detection (e.g. wet floors, road
block, or a change in environment) using a visual modality
with a robotic walker, DALi [15]. We also introduced an
anomaly detector that checks multimodal sensory signals to
monitor robot assistance, such as robot-assisted feeding [9].
Our new system monitors more modalities (e.g., sound source
direction, force on skin) and classifies anomalies. Unlike our
old system, we have also successfully tested our new system
with a person with disabilities.

Anomaly classification is also known as fault isolation
or diagnosis [16], [17] and is part of the fault detection
and isolation defined by IFAC SAFEPROCESS committee
in 1993. As we discuss below, the classification has been
used to determine the source of anomalies while running
manipulators or mobile robots [18]. Based on Pettersson’s
classification [11], we can classify relevant work into three
groups: causal analysis, expert systems, and data-driven
classification. Causal analysis finds the cause of an anomaly
based on the relationship between the fault and the cause
(e.g., a signed directed graph [19]). Expert systems are widely
applied in industry to isolate the cause of an anomaly using
“IF THEN” rules or Fuzzy logic [20]. These two approaches
often make use of extensive, detailed programming by domain
experts. On the other hand, a data-driven approach is feasible
if anomaly data are available. Several researchers have applied
neural network-based classifiers for anomaly classification
to robotic manipulation tasks, such as [21], [22]. Yamazaki
et al. performed a database search for the closest anomaly
type given a detected failure in a robot-assisted dressing task.
[23]. We also use a data-driven classifier to fuse multimodal
sensory data and classify anomalies of known classes.

Multimodal fusion and classification are also a closely
related area. Ngiam et al. introduced a multimodal fusion

Fig. 2: Overview of the multimodal execution monitor.

Fig. 3: Fault tree analysis for the robot-assisted feeding task.

method that generates a shared representation between
modalities using a single network [24]. They discussed three
different levels of fusions: early, intermediate, and late fusion.
In this paper, we use late fusion with an MLP. Sung et
al. showed a multimodal classification method that finds a
desired trajectory from a feature space where one or more
modalities are separately embedded [25]. We also embed
multimodalities into a space after concatenating modalities.

III. ANOMALY DETECTION

A. Anomaly Definition

The Oxford English Dictionary defines an anomaly as
“something that deviates from what is standard, normal,
or expected”. As such, an anomaly can be recognized
by several other terminologies: a fault, an outlier, or an
unforeseen situation [26], [27]. Ogorodnikova classified the
causes of anomalies into 3 groups: engineering, human, and
environmental conditions [28]. Although robotic assistance
might benefit from robots that are able to identify the cause of
an anomaly, causal inference is difficult due to the complexity
of real-world manipulation.

Instead, we focus on the detection and classification
of representative anomalies that are more likely to occur
during the direct task at hand. For robot-assisted feeding, we
identified 12 anomalies through fault tree analysis which is
a deductive analysis approach for resolving system hazards
into their causes. Fig. 3 illustrates the results of our fault tree
analysis. In the figure, depth 1 and 2 represent the types and
causes of anomalies, respectively. The three colors used in
depth 2 represent the causal groups from [28], [29].

B. Detection Framework

Our system detects anomalies with HMM-D detectors,
which we introduced in [9]. HMM-D is a binary (one-



class) detector that learns a model from non-anomalous task
executions and detects anomalies when the log-likelihood
of a sequence of input signals is lower than a time-varying
threshold. HMM-D dynamically changes the threshold de-
pending on the progress of a current task execution. In this
study, we used 25 hidden states for HMMs and 25 Gaussian
radial basis functions for the threshold selection.

In contrast to our previous work, our new system uses two
HMM-D anomaly detectors, each responsible for modeling
a different set of sensory features. If either detector detects
an anomaly, then the system detects an anomaly. In practice,
we found that decomposing anomaly detection in this way
resulted in improved system performance. The two detectors
use the following sensory features:

• 1st Detector: sound energy, 1st joint torque, accumulated
force, and spoon-mouth distance

• 2nd Detector: spoon speed, force, desired spoon displace-
ment, and spoon-mouth distance.

Before training each of the two HMM-D detectors, we first
extract hand-engineered features from raw sensory signals
after resampling and scaling, as described in [9]. Each detector
uses four hand-engineered features that we found resulted in
improved detection performance1 based on cross-validation
tests (see Section V-D).

We trained each HMM-D detector using the Baum-Welch
algorithm as defined in the General Hidden Markov Model
library (GHMM) (http://www.ghmm.org/). This training
results in a set of HMM parameters λ which includes
a transition probability matrix A ∈ R25×25 and Gaussian
emission probabilities B. We then found parameters for the
dynamically-changing threshold, which is defined by the
expected log-likelihood µ̂ and its standard deviation σ̂.

IV. ANOMALY CLASSIFICATION

We introduce a supervised data-driven classifier that
identifies representative anomalies from multimodal features.

A. Feature Extraction

Our monitoring system extracts two groups of multimodal
features, temporal and convolutional features (see Fig. 4).

1) Temporal features: In our recent work under review [30],
we found that particular types of anomalies tended to be more
apparent in a subset of modalities. Consequently, the extent
to which the feature from particular modalities is unexpected
could be useful when classifying anomalies. It could be
also helpful to determine the largest anomaly given multiple
anomalies. To measure the unexpected change in a feature,
our system estimates the likelihood of each feature with
respect to the other features given by the HMMs used in
anomaly detection. We refer to this estimate as a conditional
likelihood. The conditional likelihood of a feature Xi is

P (Xi|XS\{i}, λS) =
P (XS|λS)

P (XS\{i}|λS)
(1)

=
P (XS|λS)

P (XS\{i}|λS\{i})
, (2)

1Area under curve (AUC) for a receiver operating characteristic curve

where XS is a set of features in the HMM, λS is the HMM’s
parameters, and λS\{i} is a part of λ that excludes the
elements related to Xi.

In this paper, we use multivariate Gaussian emissions in
HMMs. The marginal distribution of a multivariate Gaussian
distribution is a Gaussian: P (x1, ..., xn) = N (µ1:n,Σ1:n)
given X ∼ N (µ,Σ) [31]. Thus, the denominator of Eq.
(1) can be converted to the denominator of Eq. (2). For
computational convenience, we use the logarithm of (2), i.e.,
li = logP (Xi|XS\{i}, λS). At each time step t, we extract a
total of 8 conditional log-likelihoods from two 4-dimensional
HMMs and concatenate these to create a feature vector vt

in R8,
vt = {l11, l12, l13, l14, l21, l22, l23, l24}, (3)

where the superscript shows the identity of the HMM.
To represent the temporal change of this feature vector, we

perform 3 levels (1-4-8) of temporal pyramid pooling [10]
given the last 8 time steps of feature vectors v[t−8∆t:t]. Fig.
5 shows this pooling process for which we partition the
feature vectors into 3 cells and pool the minimum value per
feature (i.e., conditional log-likelihood of each feature). The
pooling from 3 cells give 3 vectors, v1, v4, and v8. We then
concatenate the vectors to form a single vector [v1,v4,v8]
in R24. For this paper, we chose minimum pooling since a
drop in likelihood would indicate an unexpected change in
the features.

In addition to the conditional log-likelihood features,
we include 7 additional features that can be useful in
identifying the cause of an anomaly. These include: frontal
sound amplitude, sound source direction (azimuth angle)2,
x-direction force, y-direction force, contact force on the whole-
arm tactile sensing skin, distance between the robot’s torso
and the person’s mouth, and spoon-mouth angular difference.
For each feature, we pool a minimal or maximal value over
the last 20 time steps, which we refer to as min-max pooling
(see Algorithm 1). This pooling enables us to extract the
unexpected change of each feature since the 7 features are
usually static in non-anomalous executions. We empirically
decided on 20 time steps for the pooled features, ve in R7, to
include only recent feature changes. The final feature vector
VT = [v1,v4,v8,ve] is of length 31 (= 8× 3 + 7).

Algorithm 1: Min-max Pooling

Data: A sequence of observations, x
Result: Pooled value
if |min(x)| > |max(x)| then

return min(x) ;
else

return max(x) ;

2) Convolutional features: The interpretation of visual
information can help to better classify anomalies during
feeding. Our algorithm extracts the output of a convolutional

2We localize the source of sound using interaural time differences [32].



Fig. 4: Illustration of our anomaly classification network. The MLP outputs the most probable class of an anomaly using
temporal and convolutional features. The size of the FC1-FC4 layers are 1024, 128, 128, and 256, respectively.

Fig. 5: Illustration of the temporal pyramid pooling process.
The boxes show the 3-level temporal partition of a sequence.
The output feature vector is of size 8× 3 = 24.

neural network (CNN) as bottleneck features [33], for images
collected by the PR2. The features can represent the existence
of objects around the work space. In this paper, we use
the VGG16 CNN model which has been trained on the
ImageNet dataset with 1,000 classes [34]. When an anomaly
is detected, our network takes as input a 224x224 RGB image
of the person captured from the wrist-mounted camera. Note
that the PR2 always positions the camera in front of the
person to ensure his or her face is in the captured image (see
captured images in Fig. 4). We then flatten output features
(∈ R512×7×7) to a vector VC which is input into a multilayer
perceptron (MLP) (see Fig. 4). In this work, we used Keras,
a deep learning library [35], with the Tensorflow back end
to load the VGG16 network and extract bottleneck features.

B. Multilayer Perceptron (MLP) Classification

The execution monitor uses a multilayer perceptron (MLP)
to classify the types and causes of anomalies given the
multimodal temporal and convolutional features. An MLP is
a feedforward artificial neural network with fully-connected
layers. The right side of Fig. 4 presents our MLP structure.
Our MLP consists of three fully-connected layers with

rectified linear units (ReLU). A softmax function is applied
to the final layer for multiclass classification.

Before fusing the temporal and convolutional features,
we feed the convolutional features through the first fully-
connected layer of our MLP. We then concatenate the temporal
features (∈ R128) and the first layer’s output (∈ R128) to a
vector (∈ R256) similar to common CNN-LSTM models [36].
Fig. 6 shows the distribution of the concatenated multimodal
features using data from trials with 8 able-bodied participants.
We display the first two principal components from a principal
component analysis (PCA).

To train this network, we used only positive (anomalous)
feeding trials. It is difficult to label exactly when an anomaly
has started to occur and the anomaly detector’s sensitivity can
influence the timing of detections. To account for this, we
first set the thresholds of the HMM-D detectors to maximize
detection accuracy given a training dataset. We then collected
the temporal and convolutional features when the system first
detected an anomaly. We also collected additional feature
sets over 10 time steps before and after the time at which the
detection occurred to account for variation in the timing of
anomaly detections. Before concatenating the features at each
time step, we performed feature-wise scaling for the temporal
features to have zero mean and unit variance. We trained the
MLP classifier initialized with uniformly distributed random
weights using a stochastic gradient descent (SGD) optimizer
with RMSProp. We then fine tuned it with a conventional
SGD optimizer. To avoid overfitting, we added dropout and
L2-regularization to each layer [37].

During real time experiments, our system extracts features
and performs anomaly classification only after an anomaly
has been detected.

V. EVALUATION

We evaluated our multimodal execution monitor with a
robot-assisted feeding system that performs scooping and
delivers a spoon of yogurt to the mouth of participants. We
conducted our evaluations with approval from the Georgia
Tech Institutional Review Board (IRB).



Fig. 6: Distribution of multimodal features after concatenating the outputs of the FC2 and FC3 layers described in Fig. 4.
We plot the features on the first two principal components using principal component analysis (PCA). The images come
from a separate camera used to record the trials, not the camera used by the execution monitor.

A. Instrumental Setup

Our robot-assisted feeding system uses a PR2 from Willow
Garage, which is a general-purpose mobile manipulator. The
PR2 consists of an omni-directional mobile base and two
7-DOF back-drivable arms with powered grippers. We run a
1 kHz low-level PID controller with low gains and a 50Hz
mid-level model predictive controller from [38] without haptic
feedback. We designed 3D-printed handles so the PR2 can
grip both a spoon and a bowl. We also affixed a spill guard
and bars for wiping the spoon to the bowl. After scooping
yogurt, the robot can drag the spoon across the bars to clean
off yogurt from the bottom of the spoon (see Fig. 7).

We mounted multiple sensors on the robot for multimodal
sensing during feeding assistance. We mounted a force/torque
sensor (ATI Nano25) between the handle and the spoon to
measure the forces and torques applied to the spoon by the
user at 1 kHz. To estimate the location of a user’s mouth, we
mounted an RGB-D camera (Intel SR300) on the right arm’s
wrist (see Fig. 1). We also use the Intel SR300’s 2-channel
microphone array to measure and localize sounds. To sense
collisions with the robot’s body, we covered the robot’s left
arm with fabric-based whole-arm tactile sensors introduced
in [39]. These tactile sensors provide both contact locations
and forces. Our monitoring system only uses the sum of all
the estimated force magnitudes from the tactile sensors.

B. Robot-Assisted Feeding System

Our robot-assisted feeding system performs three au-
tonomous subtasks (see Fig. 8). A user is able to command
the robot to perform the ‘scooping’, ‘clean spoon,’ and
‘feeding’ subtasks using a web-based graphical user interface
(GUI). Given the ‘scooping’ command, a PR2 estimates the
location of the bowl held by its right arm and then scoops a
spoon of yogurt using predefined motions. To avoid spilling

Fig. 7: Left: A bowl with an attached handle, guard, and
wiping bars to avoid spilling food. Right: A tool for feeding
that has a flexible silicone spoon and force-torque sensor.

yogurt, the user can then command the ‘clean spoon’ subtask,
which involves the PR2 dragging the back of the spoon over
the wiping bars. Given the ‘feeding’ command, the robot
estimates the user’s mouth location using the SR300 camera
and then moves the spoon to the user’s mouth, inserts it, and
retracts it. At any time during the feeding task, the user can
stop the robot by clicking anywhere on the screen and then
resume feeding by re-executing the previous subtask.

C. Simulated Anomalies

We asked able-bodied participants to produce 12 repre-
sentative anomalies for the evaluations of our feeding and
execution monitoring system. Fig. 6 shows the anomalies
produced by the participants. Prior to participants producing
simulated anomalies, we showed a demonstration video of
several possible anomalies and instructed them on what to
do. We then encouraged participants to produce any of the
anomalies at any time with any variation. When we collected
data with Henry Evans, a person with severe quadriplegia, we
asked his wife and primary caregiver, Jane Evans, to produce
some of the anomalies after seeing the demonstration video.

D. Evaluation Process

We first evaluated our monitoring system with 8 able-
bodied participants. We recruited able-bodied participants—3



Fig. 8: An image sequence of the entire scooping and feeding process with Henry Evans in the living room of his home.

males and 5 females—whose ages ranged from 19 to 35.
They were all novice users who did not have any experience
with our feeding system. Each participant performed 20
non-anomalous and 24 anomalous executions over a total
of 1.5 hours in a closed experiment room. The 24 anomalous
executions consisted of all 12 anomalous cases being recorded
two times. In total, we collected data from 160 non-anomalous
and 192 anomalous feeding trials. During non-anomalous
executions, we asked participants not to move their upper
bodies and arms to approximate a lack of movement due to
disabilities. To quantify the performance of our system, we
performed leave-one-person-out cross-validation by training
our execution monitor with 7 participants’ data and testing
the monitor with the 1 participant remaining.

We also included 508 hand-labeled images, which includes
12 anomalies, from 2 extra participants—average 33 years old
of 2 females—who were not included in the above dataset
but were recorded when piloting the experiment. We also
performed data augmentation in which we added Gaussian
random noise to individual signals for the temporal features
and random rotations, translations, and magnifications of
images for the convolutional features. We trained and tested
our execution monitor using an Amazon EC2 server with 4
cores, 61GB of memory, and an NVIDIA K80 GPU.

We also tested our system with Henry Evans at his home
in California, USA over a span of 4 days. This was our first
test of our system with a person with disabilities. Our lab
has an ongoing long-term collaboration with Henry Evans
and his wife and primary caregiver, Jane Evans. Henry Evans
is severely impaired, but he can move his head and a finger
sufficiently well to operate our system’s web-based GUI using
an off-the-shelf head tracker and a mouse button. Henry is
unable to speak and has difficulty eating. He frequently eats
yogurt, which he specifically requested when we initiated
our work on robot-assisted feeding. On the first day, we
began with safety training and then allowed Henry to practice
with the feeding system until he became comfortable using
it. Henry then performed 20 non-anomalous feeding trials
during which he was able to successfully eat yogurt each time.
For the following three days, he participated in 5 sessions
during which we used the anomaly detection and classification
systems trained on the data from the 8 able-bodied participants.
In each session, Henry performed 10 non-anomalous and 12
anomalous yogurt feeding trials in random order for about 1
hour in total. A caregiver, Jane Evans, produced ‘sound by
user’ and ‘touch by user’ for him.

E. Baseline Methods for Anomaly Classification

Our proposed method consists of an MLP with both
temporal and convolutional features, or MLP(T+C). Below
we present six alternative methods for performing anomaly
classification. We compare each of these methods to our
approach in Section VI. Note that we ran each classification
method with the same anomaly detector.
• Random: This method randomly determines the type and

cause of anomalies.
• SVM(R): A support vector machine (SVM) classifier with
a radial basis kernel. Type and cause of anomalies are
determined with raw data used for temporal features.

• SVM(H): The same SVM structure with histogram of
oriented gradients (HOG) features extracted from images.

• SVM(T): The same SVM structure with temporal features.
• MLP(T): MLP with only temporal features.
• MLP(C): MLP with only convolutional features.

VI. RESULTS

We first investigated how the use of multimodal signals
helps to classify anomalies. Fig. 9 shows the distribution of
multimodal signals observed from the robot-assisted feeding
tasks with 8 able-bodied participants. The blue region shows
the mean and standard deviations of 7 features from 160 non-
anomalous feeding executions. We can observe clear patterns
that were subsequently used to train the HMMs for anomaly
detection. The red curves show an anomalous execution in
which a spoon collided with a user’s mouth due to a system
fault. We can observe a short bump in ‘force on spoon’ from
the collision around 1.5s. The unexpected change may be
sufficient to detect the anomaly, but it is difficult to estimate
its cause among the other causes. Instead, as we can see in
Fig. 6, the use of multimodal sensory signals helps separate
anomalous events into different regions.

We also evaluated the overall effectiveness, or accuracy,
of our execution monitoring system. To do so, we used
the feeding data from the 8 able-bodied participants and
performed leave-one-person-out cross validation. Our anomaly
detector achieved 83.27% accuracy in detecting anomalous
trials throughout all 352 feeding trials. We then used all
anomalous data from the 8 able-bodied participants to train
and test our anomaly classifier. Fig. 10 shows the comparison
of our proposed method against the 6 baseline methods. Our
proposed method had a classification accuracy of 81.37%
which was 5% higher (p = 0.0097 from t test) than the
next best method, SVM(T). Compared to the MLP(T), our
proposed method resulted in 17% higher accuracy due to the
inclusion of the convolutional features.
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TABLE I: Five-point Likert type questionnaire items. The last
column provides answers for strongly disagree (sd), disagree
(d), neither (n), agree (a), and strongly agree (sa).

Question answer
The system successfully accomplished tasks. sa
I felt safe while using the system. sa
The system was simple and easy to use. sa
The anomaly detection helped me feel more safe. a

Fig. 11 shows a confusion matrix for our classifier’s
performance with respect to the 12 known anomalies. Our
proposed method successfully determined the causes of most
anomalies except for the ‘system freezing’ event. In this
work, we reproduced ‘system freezing’ by randomly killing
the model predictive controller process while the robot was
moving its arm to a location. However, our classification
success for this event was limited by the fact that our system
only successfully detected the anomaly 5 out of 16 times in
training. This may be due to the lack of effective features,
since no signal changes while in the freeze status, except
‘desired spoon displacement’ and our method did not monitor
sensory streams related to the internal state of the robot.

In our first test with Henry Evans, he successfully fed
himself with the robot for all 20 consecutive trials. That is,
he ate 20 scoops of yogurt produced by Chobani, LLC. We
then evaluated the execution monitor through 5 additional
sessions, each of which included 10 non-anomalous and
12 different causes of anomalous executions in random
order, for a total of 50 non-anomalous and 60 anomalous
executions. Our monitoring system achieved 86.36% detection
accuracy over all 110 executions with Henry. Our system
also successfully detected two unintentional real anomalies
caused by researcher mistakes and camera faults in the new
environment. Our classifier successfully determined the types
of anomalies with 90.51% accuracy (i.e., ‘tool collision,’ ‘tool
miss,’ ‘sound,’ or ‘body collision’). However, it classified
the specific causes of anomalies with only 53.44% accuracy,
which is roughly 30% lower than the cross-validation accuracy
in our lab environment. In this evaluation, we did not train
on any data collected from Henry.

Notably, our results with Henry Evans only used training
data from able-bodied users in a controlled laboratory setting.
The system’s overall performance generalized reasonably well
given that we conducted this test in Henry’s home and that
his impairments influence the way he eats. We expect that
training on user-specific data and on more data with greater
variation could improve results for in-home use.

At the end of our evaluation, we asked Henry to fill out a
survey with 22 questions (five-point Likert type questionnaire
items) based on [40], and 2 open-ended questions. Table
I provides the questionnaire results that we found most
informative. As can be seen from the table, Henry reported
that he found the system to be effective, safe, and easy
to use. His responses from the 22 questions indicated that
the anomaly detection function positively contributed to his
experience of using the robot, helping him feel safer, and
effectively alerting him of problems. In an email following



the experiment, Henry also recommended several ways to
improve the system, such as increasing the rate at which it
feeds yogurt and giving the user the ability to finely adjust
where the spoon moves with respect to the mouth.

VII. CONCLUSION

We introduced a multimodal execution monitor for a
robot-assisted feeding system. The feeding system employs
a general-purpose mobile manipulator (a PR2 robot) and
provides a high-level web-based interface for people with dis-
abilities. In a test with able-bodied participants, our execution
monitor successfully detected and classified anomalies while
outperforming 6 baseline methods. We also found multimodal
features beneficial for classifying the causes of anomalies.
In addition, we evaluated our system in the home of Henry
Evans, a person with severe quadriplegia. Henry successfully
used the system to feed himself, and the system detected and
classified anomalies.
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