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Multimodal Tactile Perception of Objects
in a Real Home

Tapomayukh Bhattacharjee1, Henry M. Clever2, Joshua Wade3, and Charles C. Kemp2

Abstract—When operating in human environments, such as
homes, robots could use tactile sensing to better perceive objects.
A challenge that has not been sufficiently addressed is the
influence of an object’s surroundings on tactile perception. Prior
research has focused on perception of objects in laboratory
settings. Yet, a number of factors found in homes can affect
multimodal tactile sensing. For example, the time-varying ther-
mal characteristics of an object’s surroundings, such as sunlight,
HVAC, and refrigeration, can affect thermal sensing. Likewise,
the placement of an object with respect to other objects and
surfaces will affect force sensing and alter the way an object
moves when pushed. In order to investigate these and other
issues, we had a mobile robot reach out and push 47 different
objects found in a real home over a three day period resulting in
1340 pushing episodes. We then characterized the performance of
data-driven methods (k-NNs, SVMs, HMMs, and LSTMs) for a
variety of tactile perception problems using the first two seconds
of force, thermal, and motion sensing data collected by the robot.
We paid particular attention to the ability of these methods to
generalize what they have learned to different robot velocities,
times of day, and object instances. Our results demonstrate the
value of multimodal tactile sensing and data-driven methods for
tactile perception from short-duration contact, and also illustrate
the great diversity of real-world phenomena relevant to tactile
sensing.

Index Terms—Haptics and Haptic Interfaces; Force and Tactile
Sensing; Perception for Grasping and Manipulation

I. INTRODUCTION

INFERRING properties of objects or distinguishing objects
in the real world by touch has many interesting challenges.

In laboratory settings, we have previously seen encouraging
results for haptic perception with force and motion sensing
[1], as well as thermal sensing [2] separately. Our objective
in this work is to use these multimodal sensing modalities
together for inferring properties of objects in a real home.
For this, we used data-driven approaches using signals from
a multimodal sensing module at the end effector of a robot
which made contact with in-situ objects in a real home where
three people live. However, in a real home, factors like sunlight,
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Fig. 1: A mobile robot with a linear actuator and a multimodal tactile
sensor attached at its end touching objects such as a bottle inside
refrigerator, a light switch, and a fruit on a countertop.

HVAC, and refrigeration can affect thermal sensing, whereas
an object’s physical interaction with surfaces and other objects
in its vicinity due to manipulation can affect force sensing. It
can also change the object’s movement pattern when pushed.

One of the important aspects of haptics is that sensing
depends on action. For example, changing the velocity of
a robot arm when pushing an object can alter the forces
generated (force sensing) or the way the object moves (motion
sensing). Collecting data at a different time of the day can affect
thermal sensing because the same object can be at a different
temperature. Our focus in this work is on generalizing the
haptic perception performance across various robot velocities,
times of day and object instances using force, thermal, and
motion sensing modalities.

For haptic perception, we use various widely used and state-
of-the-art data-driven methods. We use k-nearest neighbors
(k-NNs), support vector machines (SVMs), hidden Markov
models (HMMs), as well as long short-term memory networks
(LSTMs). We want robots to infer various properties of an
object. Inferring whether an object is soft or hard, or if the
object moved during manipulation can help devise strategies
such as, avoiding a hard object but pushing through a soft
object which moved, to reach a goal [1]. Detecting an object
which moved may also help in deciding if the robot should
move the object to access a new location or avoid it [3]. We are
also interested in material based haptic labels because knowing
the material of an object is informative [2].

In addition to inferring object properties, we also want
robots to distinguish various objects. To distinguish objects, we
identified 50 tasks relevant to ADLs (Activities of daily living)
and IADLs (Instrumental activities of daily living) such as
‘putting a towel on rack’, ‘fetching a bottle from refrigerator’,
‘pushing a door handle on door surface’ to open the door, etc.
Thus, conditioned on the task, we want robots to distinguish
a target object (tactile foreground) from a background object
in its vicinity (tactile background) that the robot may come in
contact with while performing the task. We are also interested in
analyzing if robots can distinguish different object parts given
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an object (such as ‘chair cushion’ given chair, or ‘mattress’
given bed).

II. RELATED WORK
To the best of our knowledge, robotic tactile perception

of real home environments remains an unexplored area of
research. Researchers used data collected in households for
analyzing grasping [4] by humans and organization behaviors
in the kitchen [5]. Researchers also developed data acquisition
devices to collect multimodal data from objects in real home
bathrooms [6] and sample surfaces [7]. Gandhi et al. deployed
unmanned aerial vehicles to crash into objects in indoor
academic campus environments to learn a navigation policy
[8]. Most of the related work on haptic perception has focused
on using exploratory probing behaviors (squeezing, tapping,
sliding, etc.) to extract information from contact with objects in
laboratory settings (see Sections II-A and II-B). In this work,
we focus on extracting information using a simple linear motion
with a linear actuator on a mobile robot pushing objects in a
real home with two seconds of contact. In addition, few related
studies have looked into generalizing the haptic perception
performance to new robot and environment conditions which
are different from the conditions used during training. For this
paper, we focus on related work with force and thermal sensing
modalities.

A. Single Modality : Force or Thermal
Researchers have used force sensing to classify objects based

on their material property, shape property, functional property
etc. [1], [9], [10], [10]–[14]. For a more detailed survey, refer
to [1], [3]. Though thermal sensing is relatively unexplored in
robotics compared to force sensing, there have also been studies
on hardware development [15], [16] and material recognition
using only thermal sensing. For a detailed overview of such
material recognition studies, please refer to [2], [6], [17], [18].

B. Multiple Modalities : Force and Thermal
1) Hardware Development: Researchers developed multi-

modal sensors using various techniques such as a capacitive
and thermal sensor [16], conductive rubber based force sensors
and temperature sensors [19], a polymer-based tactile and
thermal sensor [20], capacitive tactile sensors with temperature-
dependent semiconductors [21], and a tactile and thermal sensor
using single pressure-conductive rubber sheet [22].

2) Object Recognition: Researchers have also used force and
thermal sensing together for object recognition. Using force and
thermal sensing, Takamuku et al. [23] successfully classified 5
materials and Engel et al. [24], [25] achieved 90% accuracy over
50 trials for recognizing 5 materials. Caldwell et al. [26] used
force and thermal sensing to infer texture, stiffness and object
profile, temperature and thermal properties of 7 materials using
exploratory behaviors. Xu et al. [27] used multimodal sensor
feedback to identify various materials with a BioTAC sensor
[28]. Chu et al. [28] attached two BioTAC sensors to a robotic
gripper and assigned 24 adjectives to 60 objects using four
exploratory behaviors. They used discrete HMMs to construct
a feature vector of likelihoods and used binary SVM classifiers
on the feature vector for classification [29]. Schmitz et al. [30]

used power grasping of objects and multiple modalities for
object recognition with deep learning. Hoelscher et al. [31]
used both thermal and force features for recognizing 49 objects
and found thermal features to be the most informative.

III. RELEVANT HAPTIC LABELS

A. Inferring Object Properties

1) Compliance and Mobility: We want robots to infer an
object’s compliance and mobility through physical interaction.
Specifically, we perform three kinds of classification tasks:
(a) ‘Hard’ vs. ‘Soft’, (b) ‘Moved’ vs. ‘Unmoved’, and (c)
‘Hard-Unmoved’ vs. ‘Soft-Unmoved’ vs. ‘Hard-Moved’ vs.
‘Soft-Moved’.

2) Material: We are also interested in material property
based haptic labels. We sampled 67 object parts relevant to
ADLs and IADLs in the bedroom, kitchen and bathroom of a
household. These object parts are made of 14 different materials.
Our objective is to perform binary classification between every
binary combination of these 14 materials (inspired by ‘tactile
foreground’ and ‘tactile background’ [6]) thus leading to 91
such comparisons. The 14 materials are ‘Foam’, ‘Aluminum’,
‘Wood’, ‘Steel’, ‘Dry Wall’, ‘Plastic’, ‘Glass’, ‘Paper’, ‘Porce-
lain’, ‘Granite’, ‘Cardboard’, ‘Fiberglass’, ‘Vegetable Matter’,
and ‘Fabric’.

B. Distinguishing Objects

1) Tactile Foreground vs. Tactile Background: During a
manipulation task while moving a target object (tactile fore-
ground), a robot may come in contact with another object
(tactile background) in its immediate vicinity [6]. We have
identified 50 such comparisons for the objects relevant to
ADLs and IADLs in a household environment, such as ‘rack
vs. towel’, ‘book cover vs. book spine’, ‘TV vs. TV remote’,
‘kitchen faucet vs. kitchen backsplash’, ‘chair cushion vs. chair
frame’, ‘socket vs dry wall’ etc. Our objective is to see if our
algorithms can distinguish objects in each of the 50 foreground-
background pairs.

2) Object Parts given Object: Finally, we analyze if robots
can distinguish different object parts given an object. This could
be useful in assistive manipulation scenarios such as assisting
a human sitting on a chair or lying in a bed. Knowing whether
the robot made contact with ‘chair cushion or chair frame
given its manipulating near a chair’ could be useful in devising
manipulation or control strategies used by the robot. Similarly,
knowing if the robot is in ‘contact with bed frame or the
mattress or pillow on the bed given its performing a task near
the bed’ could provide relevant and useful information to the
robot’s manipulation task. We identified 13 such comparisons
involving two to three object parts given an object in the
bedroom, kitchen, and bathroom of a household.

IV. GENERALIZATION TASKS

We focus on generalizing the classification results using
force and thermal sensing modalities across different velocities,
times of day, and instances.
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Fig. 2: Multimodal sensor module and Teensy 3.2 microcontroller
Hardware for analog-to-digital conversion (ADC) and buck converter
to power active thermal sensor.

A. Generalizing Across Velocity
We want to see if results obtained using data-driven methods

trained on data collected at one velocity from various objects
can generalize to data collected from the same set of objects
at another velocity. We varied the robot-arm velocity to two
distinct velocities.

B. Generalizing Across Time of Day
We want to see if results obtained using data-driven methods

trained on data collected at one time of a day could generalize
to data collected at another time on another day. We collected
the data from the same set of objects at two different times
over a period of three days.

C. Generalizing Across Instance
We want to see if results obtained using data-driven methods

trained on a set of objects in one specific category with a
particular velocity can generalize to another object in the same
category with the same velocity. We focused this analysis on
the ‘Hard vs. Soft’ and ‘Moved vs. Unmoved’ classification
problems. We used a ‘leave-one-object-out’ cross-validation
scheme to test for generalization, meaning that data from the
same object does not overlap both training and testing sets.

V. METHODS
A. Experimental Setup

Our experimental setup consists of a multimodal sensor
attached at the end of a linear actuator on a mobile robot (a 2-
DOF Parallax Arlo robot base), and the real-home environment
which includes the objects.

1) The Multimodal Sensor: Figure 2 shows the multimodal
tactile sensor module with force, audio, acceleration, active
and passive thermal sensing modalities. Individual sensors are
attached to a 3D printed base. Two Teensy 3.2 microcontrollers
and a buck converter on a separate module provide power to
and read data from the sensors using the microcontrollers’ built
in analog-to-digital converters (ADCs). We did not perform
any analysis with the audio and acceleration sensing modalities
in this paper.

The fabric-based force sensor is based on the design in [32].
It reads force data at 1kHz. We used a voltage dividing reference
resistor, Rref = 1 kΩ. Because the fabric-based electrodes are
small compared to the touched objects, we assumed the contact
would cover the entire sensor’s area. In this work we used the
fabric-based force sensor to detect the start of contact with a
force threshold of 0.1 N.

The active thermal sensor uses a self-heated 10 kΩ
B57541G1103F NTC thermistor [33], with adjustable voltage
input from a digitally-controlled buck converter (see Fig. 2). We
use a closed-loop temperature controller to heat the thermistor
to 55 ◦C prior to contact with the object. The sensor reads
data at 100 Hz. Once the fabric-based force sensor detects
contact, this closed-loop temperature controller turns off by
holding the desired buck converter voltage, Vdes, constant. This
is necessary to ensure that the temperature controller does not
cancel potentially-informative temperature changes resulting
from contact.

The passive thermal sensor uses a second 10 kΩ
B57541G1103F NTC thermistor [33] similar to the active ther-
mal sensor reading data at 100 Hz. The passive thermal sensor
is powered by a constant 3.3 V input from the microcontroller
rather than a higher voltage buck converter.

2) The Environment: The environment was the household of
one of the co-authors of this paper where three people live. It
consisted of objects in the bedroom, bathroom, and the kitchen
of the household, relevant to ADLs and IADLs. There were
12 objects with 22 object parts in the bedroom, 9 objects with
15 object parts in the bathroom, and 26 objects with 30 object
parts in the kitchen, as shown in Fig. 3.

B. Experimental Procedure

Our experimental procedure consisted of a teleoperation
phase and an autonomous phase. First, in the teleoperation
phase, we used a joystick controller to manually position the
mobile robot at a location feasible for reaching a specific
object before starting the trials. Then in the autonomous phase,
for each experimental trial, the robot autonomously reached
towards the object to push it. We define a trial as a single
manipulation behavior of linear actuator extending and pushing
an object and then bringing the actuator back. We set the
robot-arm linear actuator to move at a specific velocity (‘slow
: 3 cm/s’ or ‘fast : 6 cm/s’) until it reached a contact force
threshold of 5 N. We programmed the robot-arm to be in
contact with the object for 5 seconds or until the robot arm
pushes the object for 2 cm, whichever is earlier. After the
contact duration, the linear actuator fully retracted and waited
for 20 seconds for the thermal sensors in the multimodal sensor
module to reach a consistent initial condition prior to beginning
the next trial. Note that for objects with large surface area, we
sampled the space such that at every trial, the robot collected
data from a different part of the object surface. For objects
with small surface area, we collected data from the same spot
over multiple trials. The waiting period of 20 seconds also
ensured that the object was at the same initial temperature for
the next trial.
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Fig. 3: Objects touched in Bathroom: 1. Bottle 2. Countertop 3. Door Knob 4. Door Hinge 5. Door Surface 6. Mirror 7. Toilet Bowl 8. Toilet
Seat 9. Toilet Tank 10. Toothbrush 11. Towel Rack Frame 12. Towel Rack Towel 13. Tub Faucet 14. Tub Wall 15. Wall. Objects Touched in
Bedroom: 16. Bed Frame 17. Bed Mattress 18. Bed Pillow 19. Book Cover 20. Book Pages 21. Book Spine 22. Bottle 23. Cabinet Drawer 24.
Cabinet Knob 25. Chair Cushion 26. Chair Frame 27. Clothes 28. Door Knob 29. Door Hinge 30. Door Surface 31. Lamp 32. Table 33. TV
Remote 34. TV 35. Wall Socket 36. Wall Surface 37. Wall Switch. Objects touched in kitchen: 38. Backsplash 39. Blender Base 40. Blender
Container 41. Bottle 42. Bowl 43. Cabinet Surface 44. Cabinet Handle 45. Chair Cushion 46. Chair Frame 47. Countertop 48. Expresso
Machine 49. Cup 50. Food Box 51. Food Can 52. Fridge 53. Fruit 54. Fridge Bottle 55. Fridge Fruit 56. Fridge Jug 57. Fridge Pot 58. Fridge
Surface 59. Oven Frame 60. Oven Window 61. Paper Towel 62. Pot 63. Sink Faucet 64. Toaster 65. Towel 66. Trash can 67. Water Pitcher.

C. Data Collection and Preprocessing
We collected data from all the objects over a period of three

days. Our first day’s data collection started at 11.50 AM and
continued until 6.50 PM, the second day from 9 AM until
10.45 PM, and the third day from 9.40 AM until 10.40 PM.
During the data collection, we collected data from the same
object at different times of the day (either ‘Morning - early
Afternoon’ or ‘Afternoon - late Night’).

For each object part at one specific time, once we manually
positioned the robot’s mobile base at a particular location, the
robot autonomously reached to touch a given object 5 times
with ‘slow’ velocity (3 cm/s) and then 5 times with ‘fast’
velocity (6 cm/s). If the object moved during ‘slow’ velocity
trials, we reset the object back to the original position before
the ‘fast’ velocity trials. We did this to ensure uniform initial
conditions for the first trial in each of the ‘slow’ and ‘fast’
group of trials. We collected 20 trials ( 5 trials x 2 velocities
x 2 times) for each of the 67 object parts, totaling 1340 trials.
For each, we collected time-series vectors of force (f), motion
(relative position of the robot arm after onset of contact) (m),
active thermal (h), and passive thermal (t) modalities. We
sampled force and motion signals at 1000 Hz to match the
frequency of active and passive thermal signals (100 Hz). Note,
when we used combinations of features, we normalized each
feature by subtracting the mean and dividing by the variance
of the feature across all the data.

Two experimenters (co-authors) independently labeled the
objects for material-based labels, ‘hard’ or ‘soft’ labels,
and ‘moved’ or ‘unmoved’ labels. We convened after the
experiments and found no disagreements. For material-based
labels, we noted both the ‘surface material’ (i.e. paper label)
and the ‘dominant material’ (i.e. glass bottle) for each object,
but used the dominant material label for analysis. We also
measured the stiffness of the objects using a compression
spring. The compression spring was unable to measure the
stiffness for very hard objects with k > 100, 000 N/m. Both
the experimenters tended to classify objects with k < 10, 000

N/m as ‘soft’ and objects with k > 10, 000 N/m as ‘hard’.
The label ratio was skewed towards hard objects, at 83%, and
towards unmoved objects, at 75%. Note, this is a property of
both the home and the objects (objects relevant to ADLs and
IADLs in the bedroom, bathroom, and kitchen of that specific
home).

D. Data-driven Haptic Perception
We used four data-driven algorithms for classifying the

objects according to haptic labels. We selected these data-
driven machine-learning algorithms based on their wide usage
and suitability for time series. We used various combinations
of the force, motion, active and passive thermal time-series
vectors as the features for performance analysis. For each
algorithm, we used the same set of corresponding parameters
with which we found success after exhaustive grid search in
their corresponding parameter space in [2], [3] and [6].

1) Support Vector Machines: We implemented binary sup-
port vector machines (SVMs) using the scikit-learn package
[34] in Python. We used a linear kernel. To produce feature
vectors for training, we truncated each feature to 2.0 seconds
after the onset of contact (detected using the fabric-based force
sensor). For the active thermal modality, we estimated the slope
of the raw temperature data using first central difference. We
concatenated the features to obtain a 200∗ (n+1)-dimensional
feature vector where ‘n’ is the number of sensing modalities.
One feature vector corresponds to the estimated slope of the
active heat-transfer data.

2) k-Nearest Neighbors: We also implemented 1-nearest
neighbor (k-NN with k=1) using the scikit-learn package [34]
in Python. We used the same concatenated feature vector. To
reduce the effect of noise and overfitting, we computed a low-
dimensional representation of the training data with principal
component analysis (PCA) before classification with 1-NN [1],
using three principal components for dimensionality reduction.
Three principal components could account for more than 95%
of the variance of the data.



BHATTACHARJEE et al.: MULTIMODAL TACTILE PERCEPTION 5

TABLE I: Variability in the Mechanics of Interactions

Slide Roll/ Does Not
Object Slide + Contact Tip Move

Blender Container 0 1 0 19
Chair Cushion (Bedroom) 0 0 5 15
Chair Cushion (Kitchen) 0 0 1 19

Food Box 9 0 11 0
Fruit (on Countertop) 18 2 0 0

Bottle (in Fridge) 0 12 0 8
Fruit (in Fridge) 11 5 4 0
Jug (in Fridge) 0 3 0 17

Lamp 15 0 5 0
Pot 13 0 6 1

Toaster 0 5 0 15
Water Pitcher 15 0 0 5

3) Hidden Markov Models: We used a multivariate continu-
ous left-right HMM with 10 hidden states and n+1 dimensional
Gaussian emissions for each category using the GHMM toolkit
[35] in Python. With the same truncated features as Section
V-D1, we set a uniform prior to all the states. We used a
spherical covariance matrix structure for initialization. We
chose these specifications based on our previous results [1],
[11]. We trained these HMMs with the standard Baum-Welch
algorithm. For testing, we ran the Viterbi algorithm to find
the HMM with the most probable state sequence given the
observations, classifying the category as being the category
associated with this HMM [36].

4) Long Short-term Memory Networks: Finally, we also
implemented long short-term memory (LSTM) networks [37]
with the same truncated features as in Section V-D1. In this
paper, we used an LSTM structure where each memory cell
has an input gate, a forget gate, and an output gate. We
implemented a stacked-LSTM structure of 2 layers with 50
cells each. We also added a dropout layer in between the
two layers, which helps in regularization. We added a dense
output layer which was fully connected. The LSTM has a
total of 31,004 parameters. We initialized the parameters with
uniform distribution, used ’softsign’ activation functions for
the hidden layers, and ’softmax’ activation function [38] for
the fully connected output layer. Our dropout probability
was 0.2. We used ’RMSprop’ [38] as the optimizer and
’categorical crossentropy’ [38] as our loss function because our
task is a classification task. We used ’MinMaxScaler’ function
[38] to scale multivariate features for LSTMs. These parameters
and choice of functions are similar to our implementation in
[3] with which we found the best results after an exhaustive
search in the parameter space.

VI. VARIABILITY IN THE REAL WORLD
In this section, we characterize real-world variability that

could affect tactile perception. For example, due to various
sources of real-world variability, force, motion and thermal
signals from the same object can differ considerably across
different trials which poses a challenge for tactile perception.
We characterize thermal variability by qualitative observations
in the real home environment. We characterize variability
in mechanics of interactions by analyzing all experimental
videos for the different types of object movement following
robot-object interactions. Figure 4 shows examples of varied
multimodal data from the robot touching some objects.

Fig. 4: This figure shows force, motion, active heat, and passive
temperature data from four objects (wall switch (blue), fruits inside
fridge (red), fruits outside (green), and heated lamp (black)). For
hard and unmoved objects, the magnitude of forces go up higher
than softer objects or objects which moved. Note, the fruit inside the
refrigerator rolled and eventually the fruit broke contact with the
sensor. Also, the heat-transfer from fruit is different when outside vs.
when inside refrigerator (different initial temperature). Similarly, the
heat-transfer from heated lamp (made of aluminum) is different from
that of an aluminum block at normal room temperature [2].
A. Thermal Variability

We collected data from an object at different times of the
day. This often resulted in an object having different initial
temperatures across trials. For example, one of the sets of
data captured in the bathroom was immediately following a
morning shower of a resident. This caused all surfaces of the
bathroom to be hotter than usual, many of them wet. The
towel was non-uniformly damp and the faucet, that the robot
pushed, had formed a layer of condensation. Another example
of thermal variability was due to the heated lamp and the
refrigerator in the kitchen. The same fruit (tomato) outside had
a different heat-transfer than when kept inside the refrigerator.
It also contained objects that formed an increasing deposit of
condensation and became warmer the longer the refrigerator
door was kept open. Yet another thermal variation was the
change of sunlight throughout the day between data collecting
sessions on a particular object or object part.

B. Variability in Mechanics of Interactions
While some physical interactions such as the robot pushing

a wall could be considered predictable, others such as push-
ing a stove pot showed interesting phenomena that would
be nontrivial to capture in a laboratory setting. Note, the
linear actuator always pushed (approached) the object in a
direction perpendicular to the object’s surface, but the resulting
movement of the object depended on its immediate environment.
We found that 12/67 object parts showed variability in the
mechanics of interactions across trials. Table I provides a
characterization of mechanical variability, defined by the
following movements:

• Slide : Movement in a direction parallel to the linear
actuator’s movement direction and normal to gravity

• Slide + Contact : Movement direction normal to gravity but
not necessarily parallel to the direction of linear actuator
movement due to contact with other objects in the vicinity

• Roll / Tip : Movement when the object rolls, tips over,
appears at risk for toppling or falling suddenly, or twists
/ bends without making contact with other objects.
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Fig. 5: Variability in mechanics of interactions. Dashed line shows the normal to an object’s orientation. The pot (a) slid, (b) rolled/tipped
due to geometrical features, (c) tipped at the edge of burner, and (d) did not move due to the backboard. Stack of books slid on (e) wooden
surface, and (f) on other book surface. A lamp (g) moved backwards and (h) tipped down due to its internal mechanics. (i) A swivel chair
twisted about a center point. (j,k) A pitcher did not move when water level increased. A food box (l) slid back in a kitchen cabinet and (m)
rolled/tipped due to another object. A fruit in the fridge (n) slid and (o) rolled/tipped due to contact with another object. (p) A fruit on
kitchen countertop slid on a towel and changed direction due to contact with a carrot behind it.

• Does Not Move : No movement
Fig. 5 (a)-(f) detail examples of notable pushing phenomena

resulting from contact interactions with the underlying surface.
For example, the pot sometimes tipped on the electric stove
burner and sometimes slid. For the tipping cases, four times
the pot snagged on some geometric feature of the burner, and
two times the pot tipped off of the burner. Other examples
include motion of books on a bedside table, and pushing a
blender container and toaster until they reached a wall behind
the counter and no longer moved.

Examples of mechanical variability in the object itself are
shown in Fig. 5 (g)-(k). The tensioning springs in the balanced-
arm lamp appeared to affect how the lamp moved when pushed.
Similarly, the presence of ball bearings in a swivel chair caused
it to twist upon pushing the cushion. Another example is the
water level in a water pitcher. On different days, the pitcher
had different levels of water in it. Sometimes, the pitcher could
not be moved by the robot’s motion with slow velocity when
the water level was high.

In Fig. 5 (l)-(p), we consider variability from contacting
other objects. During some pushes of a food box, it slid back
normally. In others, the food box tipped over a short object
behind it. When pushing a fruit in a fridge, the fruit usually
slid back normal to gravity, but sometimes changed direction
due to contact with other objects or rolled / tipped due to the
underlying surface. The fruit on the kitchen countertop never
tipped/rolled during a push. It rested on a high friction surface
(a rough towel). The bottle and jug in the fridge also showed
variability from contacting objects during pushes.

VII. RESULTS
We present results of haptic classification with various

combinations of force (f), motion (m), active thermal (h), and
passive thermal (t) features. For generalization across velocity,
we trained on one velocity and tested on another (across both
the times of day) and vice-versa and reported the average
percentage accuracy. For generalization across time of day,
we trained on one time of day and tested on another (across

both the velocities) and vice-versa and reported the average
percentage accuracy. For generalization across instance, we
used the ‘leave-one-object-out’ cross-validation scheme. We
did not implement LSTMs for binary material recognition tasks
and for distinguishing objects as the amount of training data
was less. Table II shows the best average results.

A. Compliance and Mobility
In this section, we present the classification results for ‘Hard

vs. Soft’ (HS), ‘Moved vs. Unmoved’ (MU) and 4-category
‘Hard Unmoved vs. Hard Moved vs. Soft Unmoved vs. Soft
Moved’ (4C) labels.

1) Generalizing Across Velocity: Irrespective of the type
of categorization, multivariate HMMs usually showed the
best results (Table II) whereas 1-NN with single features
showed the worst results (61% for HS, 23% for MU). This is
similar to our results with laboratory objects [1], [3], showing
that the results from these algorithms can apply to situations
with different mechanical interactions. Univariate HMMs with
temperature feature also showed the worst result (13% for 4C)
as temperature modality alone did not sufficiently inform the
compliance or mobility of an object. LSTMs showed promise
(84% for HS, 92% for MU, and 81% for 4C).

2) Generalizing Across Time of Day: Irrespective of the type
of categorization, SVMs with both force and motion features
gave the best results (Table II). Similar to the generalization
results for velocity, the worst results were for 1-NN with single
features (54% for MU, 27% for 4C). Univariate HMMs with
heat-transfer feature also performed the worst (50% for HS).
This is intuitive because we do not expect heat-transfer feature
to be informative about the compliance or mobility of an object.
LSTMs again showed promise (84% for HS, 92% for MU, and
81% for 4C).

3) Generalizing Across Instance: Again, irrespective of
whether its the ‘Hard vs. Soft’ or ‘Moved vs. Unmoved’
categorization, multivariate HMMs performed the best (Table
II) and 1-NNs performed the worst (67% for HS, 27% for 4C).
Interestingly for ‘Moved vs. Unmoved’, LSTMs did the worst
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TABLE II: Best Algorithm Performance with 2.0s of Contact

Generalize Accuracy
Categories Across Algorithm Features (%)

Velocity HMM f+m+h+t 86
Hard vs. Time SVM f+m 87

Soft Instance HMM f+m+h+t 92
Maj. Classifier 83
Rand. Guess 50

Velocity HMM f+m+h+t 93
Moved vs. Time SVM f+m 94
Unmoved Instance HMM f+m 100

Maj. Classifier 76
Rand. Guess 50

Hard Unmoved vs. Velocity HMM f+m+h+t 83
Hard Moved vs. Time SVM f+m 84

Soft Unmoved vs. Maj. Classifier 66
Soft Moved Rand. Guess 25

Velocity SVM f+m+h+t 82
Material Time SVM f+m+h+t 86

Recognition Maj. Classifier 50
Rand. Guess 50

Tactile Velocity SVM f+m+h+t 91
Foreground vs. Time SVM f+m+h+t 83

Tactile Maj. Classifier 50
Background Rand. Guess 50

Velocity SVM f+m+h+t 78
Object Parts Time SVM f+h+t 71
given Object Maj. Classifier 42

Rand. Guess 42
Note ‘f’ = force, ‘m’ = motion, ‘h’ = active thermal (heat-transfer),
and ‘t’ = passive thermal (temperature) feature. ‘Maj. Classifier’ is
Majority Classifier and ‘Rand. Guess’ is Random Guess Classifier.

with just the motion feature (53%), probably because of the
lack of sufficient data.

B. Material
1) Generalizing Across Velocity: SVMs with all the features

of force, motion, heat-transfer, and temperature showed the
best results (Table II). This showed that all these modalities
with complementary information were informative for getting
material specific information. The worst results were with force
or temperature features as these features alone could not extract
relevant information for material recognition.

2) Generalizing Across Time of Day: Again, SVM with all
the features gave the best results (Table II) which shows the
relevance of all the features for material recognition problems.
And again, univariate HMMs (60%) and 1-NNs (56%) gave
the worst performance with just force and temperature features,
probably because of similar reasons outlined above.

C. Tactile Foreground vs. Tactile Background
1) Generalizing Across Velocity: SVMs with all features

showed the best results (Table II) for this recognition task.
Similar to the binary material recognition results in Section
VII-B, these showed the importance of all the features in
recognizing two objects. The worst results were for 1-NN
with temperature feature alone (55%). This is because passive
temperature sensing is a function of the ambient temperature
and not any object characteristics. This showed that heat-
transfer modality (active thermal sensing) was an informative
feature for object categorization task, which agrees with our
previous result in [6].

2) Generalizing Across Time of Day: Here, again SVMs
with all the features gave the best results (Table II) whereas
1-NNs with temperature feature (55%) and HMMs with force
and motion features (55%) performed the worst.

Fig. 6: This figure shows the overall results. Here, ‘CM’ = Compliance
and Mobility based haptic labels, ‘M’ = Material-based haptic
labels, ‘FB’ = Tactile Foreground vs. Tactile Background, and

‘OP’ = Distinguishing Object Parts given Object. Each bar in the
chart represents the average best performance using a particular
feature combination across all data-driven algorithms and across
all generalization schemes (time of day, velocity, and instance (if
available)). For the features, ‘f’ = force data, ‘m’ = motion data, ‘h’
= active heat-transfer data, and ‘t’ = passive temperature data.

D. Object Parts given Object
1) Generalizing Across Velocity: SVMs with all the features

showed the best results (Table II) showing the relevance of all
the features to recognize an object. 1-NN with heat-transfer
and temperature feature (47%) showed the worst results. This
is probably because without using complementary modalities
of force and thermal sensing, it was difficult to extract useful
information.

2) Generalizing Across Time of Day: SVMs with all the
features or using features that captured the complementarity
of force and thermal sensing performed the best (Table II),
whereas 1-NNs with just the force and motion features (44%)
gave the worst results.

E. Overall Results
Figure 6 shows the overall results. Irrespective of algorithms

used, on average, force and motion features were especially
informative for classifying compliance and mobility based
haptic labels. All four features (force, motion, active heat,
and passive temperature) features were informative for binary
material recognition, distinguishing tactile foreground vs tactile
background, and distinguishing object parts given object.
This shows that the complementary information from force,
motion, and thermal sensing modalities are informative for
inferring material properties as well as distinguishing objects.
However, passive temperature modality did not seem to be
very informative for these tasks.

VIII. CONCLUSIONS
We demonstrated the usefulness of the complementary

capabilities of force and thermal sensing modalities for haptic
perception tasks in a real home. Specifically, we were interested
in inferring compliance and mobility based haptic labels,
material based haptic labels as well as distinguishing objects
in relevant tasks. We identified various sources of variability
in haptic perception with objects in the real world due to
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its surroundings and the environment. Our objective was to
analyze if the haptic perception results from these objects in
the real world can generalize to different speeds (which may
affect force sensing) or different times of day (which may
affect thermal sensing) or across different object instances.
We collected data using a mobile robot with a multimodal
sensor module attached at the end of a linear actuator from
67 object parts in the bedroom, bathroom, and kitchen of a
house over a period of three days. We implemented widely
used and state-of-the-art data-driven algorithms such as 1-
NNs, SVMs, HMMs, and LSTMs for generalization tasks.
Our results showed the importance of using features from
multiple sensing modalities in inferring haptic properties of
objects or distinguishing objects. SVMs and HMMs showed the
best results for different haptic label based classification tasks
whereas 1-NNs failed to generalize. LSTMs showed promise
for our problem but may need large amounts of data to give
meaningful results.
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