

PHYSIOLOGICAL SENSING & MODULATION FOR HUMAN HEALTH & PERFORMANCE

OMER T. INAN, PHD ASSOCIATE PROFESSOR, ECE

CREATING THE NEXT®

WEARABLE SEISMOCARDIOGRAM SENSING FOR PATIENTS WITH HEART FAILURE

Collaboration with Dr. Liviu Klein at UCSF and Dr. Mozzi Etemadi at Northwestern

- Seismocardiogram (SCG) signals are measured with a wearable chest patch
- Measurements before and after six minute walk test exercise are used to assess patients' clinical state
- Goal: Predicting and preventing heart failure exacerbations with home monitoring

Inan, et al. Circulation: Heart Failure, 2018.

CUFFLESS BLOOD PRESSURE MEASUREMENT USING SEISMOWATCH

Collaboration with Dr. Rama Mukkamala at MSU and Dr. Jin-Oh Hahn at UMD

- Pulse transit time (PTT) is measured using a watch form factor with the user placing the device against the chest.
- After initial calibration, PTT based blood pressure estimation yields low error for a wide range of perturbations.

Carek, et al. **ACM IMWUT**, 2017.

NSF CAREER: WEARABLE JOINT SOUNDS SENSING FOR KIDS WITH ARTHRITIS

Collaboration with Dr. Sampath Prahalad at Children's Healthcare of Atlanta

- 50,000 children in US have juvenile idiopathic arthritis (JIA)
- Many therapies exist, but matching a therapy to each patient is currently based on trial and error
- Continuous monitoring would allow for therapies to be personalized to each patient using objective data
- Wearable joint sounds measurements can address this clinical need

Semiz, et al. **IEEE Sensors Journal**, 2018.

ELUCIDATING THE MECHANISMS OF JOINT SOUNDS WITH A CADAVER MODEL

- We used fresh frozen cadaver models such as those employed in training for orthopedic surgery.
- A total of n=9 limbs were studied to better understand the origin of joint acoustic emissions and to provide a clean dataset for algorithm development.

NON-INVASIVE VAGUS NERVE STIMULATION IN PATIENTS WITH PTSD

Collaboration with Dr. Doug Bremner at Emory University

- Sympathetic arousal in response to the recall of the traumatic event is blunted with VNS
- Brain imaging results show similar patterns

Gurel, et al. **IEEE Body Sensor Networks Conf**, 2018.

INAN RESEARCH LAB AT GEORGIA TECH

Active Grants / Contracts

ONR YIP
NSF CAREER 1749677
NIH NHLBI 1R01HL130619
NIH NIBIB 1R01EB23808
NIH NIBIB 1U01EB018818
DARPA BTO N66001-16-2-4054
Children's Healthcare of Atlanta
Craig H. Neilsen Foundation
Georgia Research Alliance
NextFlex

PhD Students

Caitlin Teague Andrew Carek Nicholas Bolus Mobashir Shandhi

Oludotun Ode

Nil Gurel

Daniel Whittingslow

Hyeon Ki Jeong

Beren Semiz

Hewon Jung Jacob Kimball

Venu Ganti

Burak Aydemir Jonathan Zia Samer Mabrouk

Research Engineers

Sinan Hersek, PhD

Collaborators

R. Mukkamala (MSU)
Jin-Oh Hahn (UMD)
Lalit Mestha (GE)
Shuvo Roy (UCSF)
Teresa De Marco (UCSF)

Collaborators

Mozziyar Etemadi (Northwestern)

Liviu Klein (UCSF)

Doug Bremner (Emory)

Amit Shah (Emory)

Michael Sawka (GT)

Shawn Hochman (Emory)

M. Millard-Stafford (GT)

Geza Kogler (GT)

Liviu Klein (UCSF)

Gregory Abowd (GT)

Jim Rehg (GT)

Farrokh Ayazi (GT)

inan@gatech.edu