
1276 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Demystifying Machine Learning for Signal and
Power Integrity Problems in Packaging

Madhavan Swaminathan, Fellow, IEEE, Hakki Mert Torun , Graduate Student Member, IEEE, Huan Yu,
Jose Ale Hejase, Member, IEEE, and Wiren Dale Becker , Fellow, IEEE

Abstract— In this article, we cover the fundamentals of neural
networks and Bayesian learning with a focus on signal and power
integrity problems arising in packaging. Rather than only focus
on mathematical formulations, we explain the important concepts
and the intuition behind them, thereby demystifying the use of
machine learning for these problems. We also share some of
the recent developments in this area along with future research
directions in the context of packaging. Links to open-source
downloadable software for some of the methods discussed are
also provided.

Index Terms— Bayesian learning, behavioral modeling, design
optimization, neural networks, signal and power integrity (SI/PI),
surrogate modeling.

NOMENCLATURE

3-D IC 3-D integrated circuit.
ADD-GP Additive Gaussian process.
BAL Bayesian active learning.
BALDO Bayesian active learning with dropout.
BO Bayesian optimization.
CEL Causality enforcement layer.
CNN Convolutional neural network.
DNN Deep neural network.
DPTBO Bayesian optimization with deep partitioning

tree.
DSE Design space exploration.
EI Expected improvement.
FFNN Feedforward neural network.
GP Gaussian process.
I/O Input–output.
IMGPO Infinite metric Gaussian process optimization.
INN Invertible neural network.

Manuscript received June 14, 2020; accepted July 15, 2020. Date of
publication July 27, 2020; date of current version August 14, 2020. This work
was supported in part by the NSF under Grant No. CNS 16-24731 - Center for
Advanced Electronics through Machine Learning (CAEML). Recommended
for publication by Associate Editor D. G. Kam upon evaluation of reviewers’
comments. (Corresponding author: Madhavan Swaminathan.)

Madhavan Swaminathan, Hakki Mert Torun, and Huan Yu are with
the 3D Systems Packaging Research Center (PRC), School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332 USA (e-mail: madhavan.swaminathan@ece.gatech.edu; htorun3@
gatech.edu; huanyugt@gmail.com).

Jose Ale Hejase is with IBM Corporation, Austin, TX 78758 USA (e-mail:
jhejase@ieee.org).

Wiren Dale Becker is with IBM Corporation, Poughkeepsie, NY 12601 USA
(e-mail: wbecker@us.ibm.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2020.3011910

IoT Internet of Things.
IP Intellectual property.
IVR Integrated voltage regulator.
LHS Latin hypercube sampling.
LSTM Long-short term memory.
MCMC Markov chain Monte Carlo.
MES Maximum entropy search.
NARX Nonlinear autoregressive network.
NMSE Normalized mean squared error.
NN Neural network.
PDF Probability density function.
PDN Power delivery network.
PEL Passivity enforcement layer.
PLS Partial least squares.
PoI Probability of improvement.
PRBS Pseudorandom bit sequence.
PSO Particle swarm optimization.
PTH Plated through hole.
RNN Recurrent neural network.
S-TCNN Spectral transposed convolutional network.
SI Signal integrity.
SiP System-in-package.
SIW Substrate integrated waveguide.
TSBO Two-stage Bayesian optimization.
UCB Upper confidence bound.
UQ Uncertainty quantification.
VCO Voltage-controlled oscillator.
WPT Wireless power transfer.

I. INTRODUCTION

EARLY history of machine learning (ML) dates back to
1943 when the first neural networks were developed.

Over the last 75 years, this field has seen bursts of research,
especially after IBM’s Deep Blue computer beat the world
chess champion in 1997. Neural networks have been in promi-
nence with the packaging community since the mid-2000s
when these techniques were applied to the modeling
of digital and microwave circuits for capturing their
behavior [1], [2]. With ML gaining momentum in data science
for solving problems that are otherwise unsolvable, we believe
that this is an appropriate time to revisit the application of
ML in packaging. Through this article, we try to provide a
fundamental understanding of ML as it applies to address the
SI and PI problems arising in package design. Using several
examples, we try to demystify the math by stressing on

2156-3950 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2266-3123
https://orcid.org/0000-0002-9611-1658

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1277

Fig. 1. Model-based design paradigm (Courtesy: E. Rosenbaum, UIUC).

concepts that when logically applied can lead to the solution
of problems, which can remove the “human from the loop,”
eliminate mistakes during the design process, reduce design
respins, enable a significant reduction in design cycle time,
and above all improve the overall productivity.

To start, an important question to ask ourselves is “What
is ML?” The Computer Science community has been using a
procedure called “data mining” for many years. In data mining,
a user extracts insights from data using several techniques,
such as statistical methods, data analytics, ML, and others.
Therefore, ML is a subset of data mining. In data science,
a technique that is often used is called statistical learning,
where a user fits theoretical distributions to small sets of
data based on certain assumptions. The resulting model is
mathematically proven, meaning that inferences can be derived
based on the model. In ML, computers are used to probe
vast amounts of data for structure where the error is validated
using new data. ML-based methods do not have a theoretical
test as in statistical learning and therein lies the problem,
meaning that just because errors have been minimized on
the training data sets and validated on new data, there is
no guarantee that the predictions made using the model are
always accurate. However, with large amounts of data, cheap
and powerful computational processing, and affordable data
storage available today, the hope is that ML can be used to
capture complex and nonobvious relationships that cannot be
done otherwise, leading to accurate predictions.

But why is ML important for the semiconductor industry,
especially in packaging? A major limit in modern electronic
design automation (EDA) is design respins due to hardware
complexity. Many of the failures causing respins can be
attributed to insufficient modeling capability where using
simulations in the design loop is oftentimes too slow and frus-
trating. With design complexity and performance increasing,
any approximations or assumptions made during the design
process can only lead to errors. In such scenarios, removing
the “human from the loop” and having the machines do the
work can only lead to benefits. Therefore, a model-based
design paradigm can be developed where fast to evaluate
“learned” model replaces the conventional “slow” model in
design and design optimization. This is shown in Fig. 1 where
the data from the “slow” but detailed simulator are used to
develop a machine learned “fast” model. The fast model is
quick to compute, is expected to have the same accuracy
as the detailed simulator, and can therefore be used in the
design loop for simulation-based design and optimization.
Moreover, since the fast model is expected to capture the entire
design space including process variations, the probability of
introducing errors can be minimized. In this article, our focus

Fig. 2. Fundamentals of ML.

is on fast model development and design optimization, two
key elements that are important to developing the model-based
design paradigm shown in Fig. 1.

In general, implementing ML consists of two parts, namely
training and prediction, as shown in Fig. 2. Consider a 1-D
function f (·) that maps the input x to output y. The goal
is to determine the unknown function f (·) using which the
relationship between the input and output can be determined.
A set of training data (x, y) = {(x1, y1), (x2, y2), . . . ,
(xn, yn)} is first used to capture this relationship resulting in
a model h(·) shown in Fig. 2. It is important to note that
since h(·) �= f (·), the derived model may be prone to error.
Hence, the error between the model and training data sets
need to be minimized by using appropriate amounts of data.
Once complete, the learned model h(·) replaces f (·) and is
used to predict the output y for a given x . This appears like
a simple mapping problem, especially when the function f (·)
is linear. But what happens if the function is highly nonlinear
and is D-dimensional where D > 5, the output response is
unknown, the input covers a large range, and vast amounts
of training data are computationally expensive to obtain or
unavailable, as in our SI and PI domains. In such scenarios,
learning patterns from data become important, and this is
where ML-based techniques become useful.

In this article, we start with an introduction to artificial NNs
where the error is validated against known results. Three
NNs are discussed, namely FFNN for learning the behav-
ior of VCO; 2) RNN for replicating the behavior of
input-output drivers; and 3) CNNs for capturing frequency
responses. Of the NNs discussed, we believe that RNN
and CNN are extremely useful for the packaging com-
munity due to their ability to address nonlinear behav-
ior and higher dimensional problems. The outcome of
the three NNs discussed results in fast models, mean-
ing that the computational time using these models is
several orders of magnitude faster than detailed models.
In addition, it comes with other benefits such as protecting IP
(when models need to be exchanged), compatibility with
existing simulators, and so on.

We follow this with applications where the results are
unknown, and hence, there is no means to minimize error. This
scenario typically arises in optimization where the objective
is to achieve the best performance given the design space
and process capabilities. We, therefore, discuss this in the
context of design cycle time reduction by introducing Bayesian

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1278 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 3. (a) Single neuron. (b) FFNN.

learning, a method that is the most powerful and a “must have”
for addressing packaging-related problems.

The question that is oftentimes asked is whether algorithms
available in the public domain can be downloaded and applied
readily to packaging problems. The answer is “NO” since
ML is based on domain-specific assumptions, which need
to be modified based on the patterns in data. We, therefore,
introduce two new ML-based optimization techniques specific
to packaging namely, TSBO and DPTBO, and apply it to
different packaging-related problems with varying complexity.

NNs are generally overconfident models, meaning that they
assume that the predictions they make are always correct.
As expected, this can be dangerous. A better approach is to
quantify the error in the predictions. We provide details on
a learning method that can establish confidence bounds or
uncertainty around predictions. We believe that such a method
when combined with optimization can be very powerful, since
if the uncertainty is too large, it can be reduced by adding
appropriate data samples. We, therefore, introduce a technique
called BALDO and apply it to high-speed channels.

For future directions, we address three important areas that
are important to packaging, namely, addressing dimensional-
ity for problems with more than 50 parameters, predicting
responses outside the training range, and inverse design where
the output specifications are used to derive design parameters.

The prior work in the open literature on the application of
ML to SI and PI problems is limited. Through this article,
we therefore provide details on the fundamental concepts and
procedures behind ML for the nonexpert while providing the
motivation for researchers working in packaging to further
expand this field. Using the eight problems discussed in
this article, we have tried to illustrate the applicability and
usefulness of ML-based solutions for a variety of applications.

II. BUILDING FAST PREDICTIVE MODELS USING NNS

We start with a single neuron as shown in Fig. 3(a), which
represents the building block of an NN. A neuron takes a
vector of inputs X = (x1, . . . , xn), constructs their weighted
sum WX = (w1x1, . . . , wn xn), and adds a bias (b) to generate
WX + b, where b is similar to an intercept term. This is
then passed through a nonlinear activation function to get
σ(WX + b), which represents the output of this single neuron

Fig. 4. Flowchart for developing a fast NN model.

as σ(WX + b). The purpose of this activation function is to
introduce nonlinearity and bound the output.

An NN connects several of these neurons, as shown
in Fig. 3(b). A typical architecture consists of an input layer,
multiple hidden layers, and an output layer. The input layer
consists of the input variables (design parameters) that we
want to map to an output. The purpose of the hidden layers is
to capture nonobvious interactions between the overall input-
output relationship. We use multiple neurons in each hidden
layer and connect each one to all the other neurons in the
subsequent layers, where each connection describes a different
interaction pattern. As the number of hidden layers increases
for capturing more complex patterns in data, the NN becomes
a DNN.

The output of the output layer, i.e., NN generated output,
is then compared with the actual output (training data) to
calculate error (e). This error is then minimized by adjusting
the weights in each layer through their gradients, and this
process is known as NN training. To make the training pro-
cedure computationally efficient, the gradients are calculated
through chain rule of derivatives, i.e., the gradient of weights
in a particular layer is backpropagated to the previous layer,
as shown in Fig. 3(a). Since the data move from input to
output layer in a single direction, we call this as an FFNN.
FFNNs and many backpropagation-based training algorithms
are widely available as plug-and-play modules in many pro-
gramming languages, such as Python and MATLAB [3], [4].
It is important to note that the number of neurons per layer and
number of layers in the NN can vary based on the data sets.
These can be determined through validation and optimization
as briefly described in a later section.

We next discuss the modification of the FFNN to solve
a simple problem based on domain knowledge, followed by
two complex NNs, namely RNN and CNN, for addressing
packaging-related problems. For all the problems discussed,
we follow the flowchart in Fig. 4 to build a fast NN model.

A. Feed Forward Neural Networks

FFNN is the most commonly used model type in the
growing field of ML for SI and PI problems. Although
there is early work that uses this methodology, for instance,
for high-speed interconnect [5] and embedded passive

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1279

Fig. 5. Modified FFNN architecture for VCOs [12].

analysis [6], the scope of applications that FFNNs are being
used has rapidly increased in recent years. Some examples
include predicting target impedance violations in PDNs [7],
eye diagram modeling [8]–[10], and current prediction at
package pins [11].

Here, we consider VCO to illustrate the methodology for
developing and applying an FFNN. Though capturing the
behavior of VCOs looks trivial, directly applying the FFNN
to this circuitry will not work, and hence, modifications based
on domain knowledge are required.

1) Domain Knowledge: The steady-state time-domain out-
put waveforms of a VCO with multiple output ports can be
expressed as

Vout(t) = F

��
ω(t)dt

�
, ω(t) = G(vc(t)) (1)

where ω(t) is the instantaneous frequency, Vout is the oscillator
output voltage, F(·) is a periodic function that captures the
shape of the waveform, G(·) is the function that maps control
voltage vc(t) to w(t), and

�
ω(t)dt is the total oscillation

phase. The unknown parts in this equation are two nonlinear
functions, F(·) and G(·). We assume that (1) and the knowl-
edge of workings of a VCO are available.

From (1), it can be seen that the output of a VCO (Vout(t))
is a function of the control voltage and the time step dt . First,
the control voltage goes through a nonlinear function, G(·),
to obtain w(t). This is then integrated with respect to dt to
obtain the oscillation phase, which goes through the second
nonlinear function F(·) to form the output voltage waveform.

2) Network Architecture: Rather than using the generic
FFNN architecture in Fig. 3, we now create an augmented
FFNN architecture as shown in Fig. 5 to capture this multistage
relationship [13]. Here, we use two separate FFNNs, a main
FFNN and a periodic unit (PU) that contains a second FFNN.
The second FFNN in Fig. 5 maps the control voltage to the
oscillation frequency and represents G(·) in (1) as

ω(n) = gFFNN
PU (vc(n)) (2)

where gFFNN
PU (·) ≈ G(·) and n is the discrete time step. The

predicted w(n) is then multiplied by the time steps, dt (n),
to calculate the phase integral as

yp(n) =
�

n�
i=1

ω(i)dt (i)

�
mod 1 (3)

where yp(n) represents the oscillation phase and is bounded to
[0, 1) using the modulus operation. The output of the PU, yp,

Fig. 6. Comparison of the output waveform obtained using the fast FFNN
model and slow transistor model for varying control voltage [13].

and the control signal, vc, are then fed into the main FFNN,
which outputs the voltage waveform as

Vout(n) = f FFNN
main (yp(n), vc(n)) (4)

where f FFNN
main (·) represents the main FFNN.

3) Problem 1: Consider the response of a VCO gener-
ated using a transistor-level model as in Fig. 6, where the
lowest frequency is 0.216 GHz and the highest frequency is
0.306 GHz with the control voltage vc ranging from 1 to 3 V.
The response is generated using a circuit simulator,
Spectre [14], which is used as the training data [13].

The training process uses the aforementioned backpropaga-
tion method to adjust the weights of all neurons until the error
between the transistor-level circuit model and the NN model is
minimized, as shown in Fig. 5. Using 20 neurons in the first,
10 neurons in the second hidden layer of the main FFNN, and
5 neurons in the hidden layer of the second FFNN, the entire
behavior of the VCO can be captured over the voltage range
of 1–3 V, as shown in Fig. 6.

Once the NN model is created, it can be incorporated
into commercial simulators in the form of an input-output
module, Verilog-A [12]. This module can now be used as a
behavioral model to replace the transistor-level circuit and for
protecting IP since such models cannot be reverse-engineered.
An additional benefit of creating a behavioral model is that
they simulate much faster than a transistor-level model. For the
VCO example, the fast NN model provides a 93% reduction
in simulation time [13]. A question that is often asked is: how
does one determine the number of neurons and hidden layers
required. The only way to determine this in this example, and
others, is through experimentation.

B. Recurrent Neural Networks

FFNNs, though powerful, are not very useful in several
time-domain problems we encounter in SI for packaging. This
is because in most of the SI problems, the output of a circuit at
the present time depends on the outputs at the previous time.
As FFNNs operate in a single direction, they cannot capture
this behavior. To overcome this problem, we feed the NN
predicted output back to its input as in Fig. 7 to predict the next
output. The NN architectures with this kind of a feedback loop
are called RNNs and are very useful for predicting the output
behavior of input-output circuits. As such, their application

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1280 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 7. NARX RNN architecture for modeling input-output drivers [20].

to modeling of transient nonlinear behavior of input-output
buffers have been previously explored in [15]–[18].

1) Domain Knowledge: We use the example of input-
output drivers to illustrate the application of RNNs. Behavioral
models of input-output drivers can be created by modeling the
relationship between current and voltage at the output port and
the power supply port [19]. The driver output current can be
written as

io(t) = wo,H (t) io,H (t) + wo,L(t)io,L(t) (5)

where io,H (t) and io,L(t) are called submodels and represent
the output current of the driver for high and low logic states,
respectively, and wo,H (t) and wo,L(t) are the corresponding
weighting functions. Similarly, the current at the power supply
port can be written as

idd(t) = wdd,H (t) idd,H (t) + wdd,L(t) idd,L(t) + δdd(t) (6)

where idd,H (t) and idd,L(t) are the submodels of the supply
port for driver input high and low, and δdd(t) represents the
crowbar supply current component during logic switching.
In (5) and (6), the weighting functions scale the contributions
from the corresponding submodels and can be extracted as
explained in [20].

These current submodels can be compactly defined as

iv,n(t) = iv,n(vo(t), vdd(t), D) (7)

where v = {o, dd} and n = {H, L} denote the port and logic
state configurations, respectively, vo(t) is the output voltage,
vdd(t) is the supply voltage, and D represents the influence
of the previous voltage and current values, i.e., the memory
effect. To create the behavioral model of input-output drivers,
we create RNN models to replace the submodels iv,n(t) to
capture the nonlinear dynamic current–voltage relationship.
As in VCOs, we assume that (5)–(7) are known and the
data defining these equations are available through a slow
transistor-level model.

2) Network Architecture: A particularly useful type of RNN
that can capture the memory effect is NARX, as shown
in Fig. 7 [20]. Here, the output of the RNN depends on the
current input state, past input states, and past output states.

The inputs to the NARX RNN model for input-output
drivers include voltage and current at previous time steps and
its own output at previous time steps (through feedback). The

Fig. 8. Input-output driver with package parasitics [20].

Fig. 9. Eye diagram at the far end of the transmission line in Fig. 8, obtained
with RNN model and transistor-level simulations [20].

submodels in (7) can therefore be written using the RNN as

iv,n(t) = iRNN
v,n

⎛⎝ vo(t), vo(t − h), . . . , vo(t − rh)
vdd(t), vdd(t − h), . . . , vdd(t − rh)
iv,n(t − h), . . . , iv,n(t − rh)

⎞⎠ (8)

where h is the sampling time step and r is referred to as the
dynamic order of the model, which usually has a value of 1
or 2 for typical drivers.

To generate the data to train the RNN architecture, we use
the transistor-level models of the input-output drivers, where
we connect voltage sources at the driver output [both vdd(t)
and vo(t)]. We then simulate the output current when the input
to the driver is held at logic 1 or 0 to cover a wide range
of variability as explained in detail in [20]. The switching
waveforms are also used to learn the weighting functions.

3) Problem 2: Let us now apply the RNN model for
an industrial-strength driver circuit with preemphasis. The
simulation setup is shown in Fig. 8, where a driver is connected
to a 50-� transmission line with a length of 50 mm and
terminated with a 60-� resistor and a 0.7-pF capacitor. A PDN
model in the form of R, L, and C is used to provide
nonideal power supply. The training data are generated using
the PDN-aware transistor-level driver model where the supply
and output ports are excited using a total of 67k training
waveforms for various combinations of input bit sequences,
with further details in [20]. The resulting output waveforms are
then used along with current/voltage relationship to train the
RNN, which then is implemented as a Verilog-A model [20].

As can be seen in Fig. 9, the eye diagrams generated from
the RNN fast model agree well with the transistor model.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1281

Fig. 10. FFNN using (a) frequency as input and (b) frequency as output.

The resulting speedup in computing the eye diagram (500-bit
long PRBS with 268-ps bit period) using the RNN model
is 300×. The RNN model can now be used to replace the
original circuit model to protect IP and for fast simulations
when transmission line parameters, such as impedance and
parasitics, change in Fig. 8.

C. Convolutional Neural Networks (Transposed)

In SI and PI problems, computing the frequency response
is very important. Therefore, given a structure with a set
of variable parameters, an important question to address is
whether parameterized frequency responses can be learned
using NNs. Two possible FFNN architectures are shown
in Fig. 10.

Let us start with simple calculations. Consider the response
of a four-port structure at 2000 frequency points, parameter-
ized with respect to ten variables. To train an NN, we start
by creating data, where we compute, say, 500 variable com-
binations and store their corresponding responses. For the
frequency as input configuration in Fig. 10(a), we need to
replicate each variable combination 2000 times to generate an
input-output data set, resulting in 1M data points. This creates
a significant memory problem for training algorithms due to
the large data size.

Another possibility is to make each frequency point a
separate output dimension as in Fig. 10(b). For an N-port
reciprocal structure evaluated at M frequency points, the total
number of dimensions (outputs) is D = 2M N(N + 1)/2,
where the factor of 2 comes from real and imaginary parts
of a complex number. Consider a very simple FFNN that
has only one hidden layer with ten neurons. The number
of weights that connect this hidden layer to D outputs is
then 10D. For a four-port structure at 2000 frequency points,
D becomes 40k and the number of weights for just a sin-
gle hidden layer is 400k. Although the memory problem is
reduced, learning that many weights can be challenging and
can lead to overfitting. Overfitting is caused when random
fluctuations in the training data are learned as being part of
the model, which leads to erroneous predictions. A familiar
example to overfitting is using a very high-order polynomial
when the data can be better described by a lower order
polynomial.

As both approaches do not scale to practical SI and PI prob-
lems, we use our domain knowledge on frequency responses

to replace NNs in Fig. 10 with a CNN. Currently, there are
only a few studies that use CNNs in SI and PI domain. Recent
work includes using CNNs for decoupling capacitor optimiza-
tion [21] and electromagnetic interference prediction [22].
To the best of our knowledge, CNNs have not been explored
in the SI and PI domain to handle frequency responses. In the
following, we discuss the development of CNN-based models
to address the drawbacks of FFNNs when handling frequency
responses.

1) CNN: Let us consider Fig. 10(b). Although the frequency
at the output becomes a high-dimensional problem, it is
structured, meaning that there exists a spatial correlation along
the frequency axis, where neighboring frequency points are
highly correlated with each other. This spatial correlation
can be exploited using a CNN. The hidden layers of a
CNN are called convolutional layers, and unlike the NNs
considered so far, the neurons in each layer do not connect
to all other neurons in the subsequent layers. The goal here
is to learn local patterns in the axes that contain spatial
correlations.

In the context of frequency responses, this corresponds
to searching for patterns, such as resonances and ripples in
smaller frequency bands. CNNs achieve this by stacking mul-
tiple convolutional layers. Unlike fully connected layers where
each neuron has a single weight, the neurons in convolutional
layers form 1-D arrays (also called kernels).

Let x = [x1, x2, . . . , xm]T be the m-dimensional input
vector and h = [w1, w2, . . . , wk]T be the convolution kernel
of size k. The downsampling operation done by a single kernel
can be written as

y = f (h ∗ x) = f (Hx) (9)

y=

⎡⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎦, H=

⎡⎢⎢⎢⎢⎣
w1 w2 · · · wk 0 · · · 0

0 w1 w2 · · · wk
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 w1 w2 · · · wk

⎤⎥⎥⎥⎥⎦, x=

⎡⎢⎢⎣
x1
x2
...

xm

⎤⎥⎥⎦
(10)

where (∗) denotes the convolution operation, f (·) is the
nonlinear activation function, H is the convolution matrix
of size n × m, and y is the downsampled output of size
n = m − k + 1. When the convolution operation is written as
f (Hx), each row of H represents the frequency axis. As the
learnable weights (w1,...,k) in each row are the slid version of
the same values, the weights are shared across the frequency
axis.

2) Transposed CNN: In a CNN, convolutional lay-
ers are used to downsample high-dimensional inputs to
low-dimensional features similar to the visual cortex in the
brain. To predict frequency responses, we need upsampling
operations as low-dimensional design parameters are at the
input side and the high-dimensional frequency response is
at the output side. To achieve this, we make use of trans-
posed convolutional layers. These are learnable upsampling
layers that preserve the spatial correlation in its output. More
formally, for an n dimensional input vector x, transposed

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1282 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 11. S-TCNN.

convolution operation can be written as

y = f (h ∗ᵀ x) = f (Hᵀx) (11)

y =

⎡⎢⎢⎢⎣
y1
y2
...

ym

⎤⎥⎥⎥⎦ , Hᵀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 0 · · · 0

w2 w1
. . .

...
... w2

. . . 0

wk
...

. . . w1

0 wk
. . . w2

...
. . .

. . .
...

0 0 · · · wk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎣
x1
x2
...

xn

⎤⎥⎥⎥⎦

(12)

where ∗ᵀ is the transposed convolution operation and y is the
upsampled output of size m = n+k −1. Note that upsampling
ratio can be increased by making use of strided transposed
convolutions, which is not covered here, but described in [23].

One question that can be asked here is: how do we know if
an arbitrary design parameter can be upsampled to obtain the
corresponding frequency responses? The answer is we do not
and, therefore, we first convert the inputs to a latent space that
best describes the start of the sequence using fully connected
layers in the first few layers in our network. We call the
resulting architecture as S-TCNN [24] and is shown in Fig. 11.
An open-source Python implementation of S-TCNN can be
found at https://github.com/GT-PRC/S-TCNN.

To train the S-TCNN model, we use the conventional
backpropagation method to minimize the error

Lfreq = 1

N

N�
n=1

���� 1

K

K�
k=1

(yn,k − ŷn,k)2 (13)

where ŷn,k is the predicted output at the kth frequency point for
the nth training sample. It is very important to note here that
the error in (13) is significantly different than conventionally
used mean-squared error (MSE) as explained in detail in [24].
The error in (13) ensures that the S-TCNN model learns a
mapping from the input vector to the frequency response as a
whole, rather than the mapping to k different frequency points.

3) Problem 3: Consider solenoidal inductors used in IVR
modules [24]. The geometry of the inductor is shown
in Fig. 12, which consists of copper windings around a
magnetic core. The eight physical parameters and their ranges
([Min, Max]) are shown in Fig. 12. The goal is to map the eight

Fig. 12. Solenoid inductor [24]. (a) Top view. (b) Side view.

Fig. 13. Comparison of S-TCNN predicted (a) L(f) and (b) R(f) to
HFSS [24].

input parameters to inductance and resistance of the inductor
over the frequency range 10–500 MHz.

To create the training data, we generate 800 samples based
on LHS and feed into a 3-D electromagnetic (EM) solver,
Ansys HFSS, to extract the frequency-dependent inductance
and resistance at 200 frequency points between 10 and
500 MHz. LHS is a well-known and structured sampling
(design of experiments) scheme that fixes the values of the
input parameters for computing the output response that covers
the entire sample space [25].

As shown in Fig. 13, the trained S-TCNN model can accu-
rately capture the resonant inductor behavior. The predictive
error of the model, when calculated using a modified NMSE
metric for 200 validation samples as in [26], is found to
be 12.0%. Validation samples constitute the data samples not
used for training but instead used to check the accuracy of
model predictions. These results are compared with the known
outputs to validate the accuracy of the ML model.

In this example, it took approximately 19.2 CPU hours to
collect the training data and 2 min to train the S-TCNN model.
Once trained, the S-TCNN model can generate 1000 different
frequency responses in ∼1.1 s compared with ∼24 h using
the HFSS model.

D. Physically Consistent S-TCNN

Oftentimes, we need to constrain the NN predictions to
ensure that they do not violate any physical phenomena.
One common scenario is when predicting the S-parameters
of package interconnects, we need to satisfy passivity and
causality. To achieve this, we add two additional layers to
the S-TCNN, namely the CEL and PEL, resulting in the
architecture shown in Fig. 14 [26].

The CEL uses the Hilbert transform to relate the real
and imaginary parts of the S-parameters, whereas the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1283

Fig. 14. Network architecture to ensure physical consistency.

Fig. 15. Parameters of the differential PTH in package core [26].

PEL ensures that the singular values of the S-parameters are
less than 1 [26], both derived from the domain knowledge on
behavior of passive structures. The key to this NN architecture
is the feedback loop shown in Fig. 14, where the weights
are automatically adjusted as part of the learning process to
ensure that the constraints are satisfied while simultaneously
minimizing the error in the response.

1) Problem 4: We consider modeling a differential PTH
pair in package core along with the microvias that connect to
build-up layers. Here, the goal is to map 13 input parameters
in Fig. 15 to their corresponding four-port S-parameters from
dc to 100 GHz with 100-MHz steps, corresponding to an out-
put dimensionality of 12 000. We determine 550 samples using
LHS and extract their S-parameters using Ansys HFSS [27],
which are then used for training an S-TCNN model and an
S-TCNN + CEL + PEL model. We use 130 independent
validation samples to evaluate the accuracy of the models.

The results show that both models correlate well with
HFSS as shown in Fig. 16, where the NMSE on validation
samples is calculated as 5.32% for S-TCNN and 5.47% for
S-TCNN + CEL + PEL. We then calculate the maximum
singular values of the predicted S-parameters for each val-
idation sample. Fig. 17(a) shows that S-TCNN predicted
S-parameters oftentimes have passivity violations that result
in nonphysical predictions. On the other hand, Fig. 17(b)
shows that S-TCNN + CEL + PEL completely eliminates
these violations and guarantees the predicted S-parameters to
be physically consistent. In terms of run times, the trained
S-TCNN + CEL + PEL takes ∼0.53 s to generate 1000 differ-
ent broadband S-parameters compared with ∼60 h with HFSS.

III. DESIGN CYCLE TIME REDUCTION

USING OPTIMIZATION

In Section II, we first started by understanding the behavior
(domain expertise), then designed a neural network to capture
the behavior (architecture), and predicted the output response

Fig. 16. Predicted differential insertion loss compared with HFSS [26].

Fig. 17. Passivity of predicted S-parameters (a) with and (b) without CEL
and PEL [28].

for a set of inputs. In all of the examples considered, we first
generated training data and then minimized the error between
the NN output and actual output. We then validated the results
by comparing the predicted response with the actual response
on a different data set.

At this point, it is important to ask the following questions.
1) What happens if we do not have a training data set, or in

other words, we start with zero training data?
2) How many training samples do we then need to develop

an accurate model?
3) Since the actual data to compare against is unavailable,

how do we know that the predictions are accurate?
4) Is there a way to establish a level of confidence in the

solution?
We try and answer these questions in this section in the
context of design optimization for SI and PI, followed by the
development of models with confidence bounds in Section IV.
The predictions from ML models being considered here are not
assumed to be always correct as compared to NNs described
in Section II. Instead, they are uncertainty quantified models
that provide an error bar in the predictions.

Consider a typical design cycle used for ensuring signal
quality in a package, as shown in Fig. 18. We start with
some design objectives and performance metrics and follow
that with DSE leading to an initial design, which then is
converted to a layout on which we do validation. During
the design cycle, we iterate multiple times (shown as loops
in Fig. 18) be it with DSE, initial design, or parameter tuning,
which takes considerable time (both due to computations and
human intervention). The “human in the loop” is important for
making design decisions and ensuring accuracy but results in

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1284 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 18. Design cycle time reduction using ML.

increased computations and delayed design closure. In addi-
tion, humans are prone to making mistakes, and as a result,
design respins cause increased delays. Instead, we believe that
ML can remove the human from the loop as shown in Fig. 18,
make intelligent design decisions, generate optimized designs,
and eliminate errors, leading to significantly reduced design
closure time. We address ML models in the context of
design optimization for design cycle time reduction in this
section.

A. Active Learning for Optimization

Consider a 1-D problem where x is the input and f (x) is
the output with f (·) being a function, where the goal is to
determine the value of x that minimizes (or maximizes) the
function f (x), written as�x = arg min

x∈X
f (x) (14)

where �x is the best input parameter in the design space, X.
If f (x) is convex with a clear global optima, most gradient-
based optimizers will find �x very quickly.

However, if f (x) is nonconvex and has many local
minima, most optimizers will fail since they will get
stuck in local minima. The nonconvex optimization problem
becomes very difficult when we are unable to construct a
response surface, and the design space is large and is high-
dimensional. Most SI and PI problems in packaging fall
under this category, and hence, there is a need for ML-based
techniques.

Let us start the discussion with a set of six samples collected
from a 1-D function f (x). We can then fit a curve to these
samples as shown in Fig. 19(a) and locate the global minimum
of the curve shown in the histogram in Fig. 19(a). Then,
multiple curves can be used to connect the same six samples
together, each one having a different location at which the
minimum occurs, as shown in Fig. 19(b). When we increase
the number of such curves to infinity, a distribution of curves
results along with a continuous distribution for the histogram
as in Fig. 19(c). We call the histogram the probability distri-
bution over the location of the minimum, Pmin(x).

To place this example in the context of SI and PI
analysis, assume that the six samples are generated from

a computationally expensive full-wave 3-D EM solver. Let
us refer to the mean of infinitely many curves as the sur-
rogate model (a substitute to the actual model), their vari-
ation between the samples as the uncertainty of the sur-
rogate and Pmin(x) as the acquisition function. Instead of
optimizing f (x), an easier problem could be to optimize the
acquisition function to find the most likely location of the
global minima �x and then perform an EM simulation at that
point to observe f (�x). We can now construct a new surrogate
model using seven samples and reduce the uncertainty at which
minimum occurs. We can repeat this process and obtain more
observations of f (x) and further reduce the uncertainty, finally
converging to the true location of the global minimum while
using a minimum number of EM simulations as each sample
is selected intelligently. Hence, a better way to solve (14) is
by rewriting it as

xt+1 = arg max
x∈XD

u(x) (15)

where u(·) is the fast-to-evaluate acquisition function and xt+1
is the point that maximizes u(·) in the D-dimensional input
space, XD . This formulation recasts the difficult optimization
problem in (14) as a series of easier problems that could be
solved iteratively until we converge to xt+1 ≈ �x.

We call this process active learning for optimization as
shown in Fig. 20, where, at each iteration, a new sample
is added (from the 3-D EM solver) based on the maximum
of u(x) as in (15). In Fig. 20, the role of the model is
to create a distribution of functions that enable calculation
of statistical metrics. The acquisition function uses these
statistical metrics and acts as the “decision making” arm to
determine where to query the function. Each time a new
sample is collected, the surrogate model [thereby u(x) in (15)]
is updated to reflect the newly obtained information. As such,
at the t th iteration, the model uses all the available data,
(Xt , f (Xt)) = {(x1, f (x1)), . . . , (xt , f (xt))}, to select the
next sampling location, xt+1. The function is then queried
at f (xt+1) to collect the new information and the process is
repeated in an iterative manner.

Since the model we need has to capture a distribution of
curves, we make use of a Bayesian (probabilistic) model
and refer to the active learning scheme in Fig. 20 as BO.
In particular, we define each curve that fits our samples
in Fig. 19(b) to be a sample from a GP. A GP is a probability
distribution over functions (and not data). Unlike classical
distributions where a sample corresponds to a single number,
a sample from a GP is a function and can be written as

f (x) ∼ GP(μ(Xt), K (Xt , Xt)) (16)

where μ(Xt) is the mean function and K (Xt , Xt) is the
covariance matrix that captures relationships between vari-
ables (evaluated at training inputs). For the purposes of BO,
the mean function is generally set to a constant around the
empirical mean of the targets, Yt [31]. Each element of the
t × t covariance matrix is constructed using a kernel function,
k(xi , x j). Among many kernel choices [32], a useful kernel

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1285

Fig. 19. Function samples and histogram over minimum. (a) Single function sample and minimum. (b) Many function samples and minima. (c) Distribution
of infinitely many functions samples and minima showing surrogate model and acquisition function. Modified from [29].

Fig. 20. High-level summary of BO (modified from [30]).

for SI and PI problems is Matern 5/2 function, given as

k(xi , x j) = σ 2
f

�
1 + √

5r + 5

3
r2

�
e−√

5r

r =
�

D�
d=1

(xi,d − x j,d)2

λ2
d

�1/2

(17)

where x·,d is the dth dimension of input parameter vector,
λd is called the length scale of each input parameter, and σ f

is a scaling factor. The parameters of this kernel function, λd

and σ f , are collectively referred to as the hyperparameters
of the GP model, θ . Similar to finding weights of an NN
as described in Section II, the training of the GP is done to
determine θ through minimizing a loss function as explained
in [32].

We can now use the trained GP to construct the surrogate
model with confidence intervals as in Fig. 19(c). We will use
the mean of the trained GP as our surrogate model, which
corresponds to mean of infinitely many function samples, and
the variance of it to represent the uncertainty in our predictions
(envelope of function samples). The mean and variance of the
trained GP can be written as [32]�μθ(x∗) = K (x∗, Xt)K −1(Xt , Xt)Yt (18)�σ 2

θ (x∗) = k∗ − K (x∗, Xt)K −1(Xt , Xt)K (Xt , x∗) (19)

where x∗ is the test point, k∗ = k(x∗, x∗) is as in (17), and
θ subscript indicates the dependence on hyperparameters that
are obtained through training the GP.

We now need a sampling strategy to lead the BO framework
to find the global maximum. A logical choice is to select

the next sampling point to be the maximum of the surrogate
model, μ(x). However, as we also want to minimize the uncer-
tainty around the surrogate model, we sample the point with
maximum uncertainty, σ(x). A popular acquisition function
that balances these is called UCB [33], given as

uUCB(x) = μ(x) + Kσ(x) K =
�

2ln(2ι t2/(12η)) (20)

where K is the balancing constant, (1−η) is the probability of
converging to the global optima, t is the number of iterations,
and μ(·) and σ(·) is as in (18) and (19). The argmax of (20)
is then the best balancing point that can be used as xt+1. This
optimization of the uUCB(x) to obtain xt+1 is called auxiliary
optimization. Here, any optimizer can be used as the gradient
of the acquisition function can be calculated in closed form
from (20) and it is very fast to evaluate. Other strategies
that can also be used in SI and PI problems are EI and
PoI [34].

The flow of BO with UCB for maximizing a 1-D nonconvex
unknown response is given in Fig. 21. It can be seen that the
sampling is focused on the promising regions of the function
to find its maximum rather than spread over the entire sample
space as would be done for nonactive learning methods.

BO is a widely used method in a variety of domains
such as neuroengineering, aerospace engineering, and material
science and has recently received attention in the SI and PI
domain [35]–[38]. Though powerful, BO methods used in
other domains need modifications before they can be applied
to SI and PI problems. A few questions to ask ourselves before
we continue are the following: 1) how does one select the right
acquisition function? 2) how to handle a large design parame-
ter space? and 3) how does one scale to high-dimensional
problems since surrogate models in general do not scale well
with increasing dimensionality.

We now present two new BO methods developed to answer
these questions for optimization in the context of SI and PI,
namely, TSBO [39] for problems with moderate dimension-
ality (D ≈ 10) and DPTBO [31] for problems with high
dimensionality (D > 10).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1286 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 21. BO flow for maximizing a 1-D function using the UCB acquisition function. (a) t = 5. (b) t = 13. (c) t = 20.

Fig. 22. Flowchart of the TSBO algorithm [39].

B. Two-Stage Bayesian Optimization

We start by separating the optimization process into coarse
and fine-tuning schemes typically used by a designer to
address large sample spaces. We, therefore, break-up BO into
two parts as shown in Fig. 22, leading to TSBO.

The purpose of the first stage of TSBO, fast exploration
stage, is to rapidly find a region in the large sample space
that contains the global optimum �x in (14). This is achieved
by employing a novel hierarchical partitioning tree. Here,
the original large sample space XD is divided into 2D subre-
gions, as shown in Fig. 23. Center points of each subregion
(referred to as candidate points) are then evaluated using u(x),
instead of the actual function f (x). The candidate point that
maximizes u(x) is then selected as the next sampling point,
xt+1, and only this is evaluated using f (x). The subregion
that xt+1 belongs to is then further divided, increasing the
number of candidate points to t2D at the tth iteration. Such
partitioning tree enables generating many candidate points to
cover the large sample space without any additional queries to
f (x) and, hence, reduces CPU time to converge by reducing
the number of EM simulations required.

A major dilemma that often arises in BO is determining
which acquisition function to use since each has advan-
tages [31], [40] and there is no way of knowing a priori
which will perform better for a given problem. In TSBO,
we learn which acquisition function is the best (from a library
of strategies) for each optimization problem. This is done by
observing how each acquisition function behaves in the initial
stages of optimization and then selecting the one that performs
the best. This extends applicability of TSBO to different design
problems arising in SI and PI since it adapts its behavior based
on the problem. For brevity, we refer readers to [39] for a
detailed description.

Fig. 23. Partitioning tree strategy to cover large sample spaces. (a) t = 1.
(b) t = 2. (c) t = 4. (d) t = 10.

The exploration stage continues until a small enough region
that contains the global optima of f (x) is identified as
explained in [39]. The second stage (pure exploitation) uses
this small enough region and the learned u(x) from the first
stage, and then performs fine-tuning to increase optimization
accuracy.

As an example, we apply TSBO to maximize the 2-D
peaks function that is available in MATLAB. As shown
in Fig. 24(a), the optimization starts with only one data
point. As the algorithm progresses into 20 iterations, can-
didate points start to cover the entire sample space, but
the active learning strategy directs function evaluations to
concentrate at interesting regions, i.e., near local and global
maxima. The first stage automatically ends after 42 iterations
and the small region [red rectangle in Fig. 24(c)] is passed
to the second stage to perform fine-tuning until a prede-
termined number of simulations is completed. An open-
source MATLAB implementation of TSBO can be found at
https://github.com/GT-PRC/TSBO.

We now provide two examples to show how TSBO performs
against a state-of-the-art BO solution developed in other
communities for practical SI- and PI-related problems.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1287

Fig. 24. Progression of TSBO for optimizing the 2-D peaks function [39].
(a) Starting point, t = 1. (b) t = 20. (c) End of first stage, t = 42. (d) End
of second stage, t = 100.

Fig. 25. Geometry of the stacked 3-D IC [42].

1) Problem 5—Clock Skew Minimization for 3-D ICs:
Consider three stacked dies as in Fig. 25 where a clock
distribution in the center die is sandwiched between two
logic dies. As the logic circuits switch and generate heat,
a temperature gradient across the center die causes clock
skew. The objective is therefore to minimize clock skew by
tuning five control knobs shown in Fig. 25, namely airflow
velocity (x1), thermal interface material (x2), its thickness (x3),
underfill material (x4), and PCB thickness (x5). We pose this
as a black-box problem, meaning that the function f (·) is
unknown and all we can do is to query f (·) using the five
input parameters (x1,...,5) and observe the clock skew. The
function query here corresponds to a multiphysics simulation
where the data f (·) are generated using an electrical–thermal
solver [41].

The results of the optimization are shown in Fig. 26.
We compare TSBO against a state-of-the-art BO algorithm,
IMGPO [42], and a non-ML optimizer, namely nonlinear
solver. Optimization using TSBO resulted in a clock skew
of 86.0 ps compared with 88.0 ps with IMGPO and 96.6 ps
with nonlinear solver. In this example, TSBO shows a much
better convergence rate than either nonlinear solver or IMGPO

Fig. 26. Convergence of TSBO for clock skew minimization [39].

Fig. 27. Four-phase SiP IVR [39].

with a speed improvement of 3.76× and 3.96×, respectively,
while providing a design with minimum clock skew.

2) Problem 6—IVR Optimization: In this example, we con-
sider the chip-package codesign of an SiP-based IVR module.
We use the solenoidal inductor from Fig. 12 to design a
four-phase IVR as shown in Fig. 27, with further details
available in [43]. Here, we pose the codesign problem as
a black-box optimization, where the goal is to find the ten
geometrical parameters of the inductor (horizontal and vertical
loading ratios of magnetic material in addition to the eight
parameters in Fig. 12 [39]) to maximize IVR efficiency
while minimizing the inductor area. The objective function
is therefore formulated as maximizing the weighted sum of
efficiency and inductor area, given as

f (y) =
2�

i=1

wi yi (21)

where y1 and y2 are peak overall IVR efficiency and area of
inductor, respectively, with w1 = 5 and w2 = −2. Since the
main focus of codesign is maximizing IVR efficiency, it has a
higher weight compared with the inductor area. The black-box
here uses the ten input parameters to compute the frequency
response of the inductor using Ansys HFSS, which is then
used to calculate the IVR efficiency.

Table I compares the performance of TSBO to nonlin-
ear solver and IMGPO, along with a carefully hand-tuned
design [39], [43]. Optimization using TSBO resulted in 85.1%
peak efficiency for 5:1 V conversion with the inductor area
of 5.16 mm2 compared with 79.4% and 11.3 mm2 with the
hand-tuned design and 84.4% with 6.64 mm2 for IMGPO.
Though all algorithms started from the same initial point,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1288 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

TABLE I

OPTIMIZATION RESULTS FOR IVR

TSBO converged after 51.1 min (27 simulations) compared
with 115.6 min (59 simulations) for IMGPO. Optimization
using nonlinear solver, the only non-ML algorithm, resulted
in 78.6% efficiency with an inductor area of 25.2 mm2, could
not converge in 185 min (100 simulations) and was worse than
the hand-tuned design.

The performance gap between TSBO and other ML and
non-ML-based methods, both in terms of final value achieved
and the convergence rate, shows that readily available BO
methods may not be directly applicable to SI and PI problems.

C. Scaling to Higher Dimensionality: DPTBO

A problem with BO is that it does not scale well as the
dimensionality increases. In the SI and PI domain, this occurs
when all the parameters have both independent and joint
effect (coupling) on f (x), which causes the GP surrogate
model to require lots more data to identify these effects.

To address high-dimensional problems, we can modify
the GP model to explicitly search for these interactions.
In DPTBO, we do this by rewriting the high-dimensional
function f (x) as a weighted sum of functions with lower order
interactions, written as

f (x) = w1

D�
i=1

fi (xi) + w2

�
1≤i< j≤D

fi j (xi , x j)

+ · · · + wn

D�
i1<···<in

f (xi1 , . . . , xin)

+ wD f (x1, x2, . . . , xD) (22)

where the first summation describes the independent effect of
each parameter (first order), the second summation describes
the joint effect of any two parameters (second order), and so
on, up to a maximum of n orders, where n = 2 or 3 usually
captures the most important interactions. We preserve the
highest order (n = D) to describe the remaining effects. The
subfunctions in (22) describe the unknown nonlinear behavior
for their corresponding order and each can be represented by
a separate GP. Since training a separate GP for each order
can be CPU intensive, we embed the entire weighted sum
into the kernel of a single GP as described in [31] and shown
in Fig. 28(a). This kernel-level weighted-sum approach is also
called as an ADD-GP [44].

It is important to note here that weights corresponding
to each order of interaction in (22) are learned during the
training of ADD-GP. This allows to automatically adjust the
contribution of different orders and dynamically strengthen or
weaken the effect of different orders based on the collected

Fig. 28. Illustration of the DPTBO method [31]. (a) Lower order decompo-
sition of a 2-D function. (b) Example DPT. (c) Flowchart.

data. For instance, the training can maximize wD and minimize
w1,...,n for a particular problem to automatically discard the
lower order effects, thereby recovering a regular GP or vice
versa for other problems.

To cover large sample spaces, we consider the partitioning
tree approach of TSBO as a sampling strategy. However,
the approach is not directly applicable to high-dimensional
problems. The subregions generated by the partitioning tree
increases in volume with increasing dimensionality. Hence,
to obtain a small enough region in high-dimensional spaces,
we need to perform more partitions, which lead to more
function queries (EM simulations) and slower convergence
rates.

We, therefore, develop a new partitioning structure called
deep partitioning tree (DPT), where the region division
is guided by the sensitivity of parameters and occurs in
two directions (vertical and horizontal) as opposed to a single

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1289

Fig. 29. WPT-based power delivery using embedded RF coils [31].

TABLE II

OPTIMIZATION RESULTS FOR WPT SYSTEM

direction (vertical) with TSBO. The main idea is that instead
of performing 2D region divisions, we group the parameters in
M groups and perform a small scale partitioning to get M2d

subregions where D = Md . As the small-scale partitioning
leads to larger subregions, we determine the most promising
subregion based on the acquisition function and iteratively
shrink it by prioritizing the parameters with higher learned
sensitivity. An example DPT is shown in Fig. 28(b). For
brevity, we refer readers to [26] for a detailed description of
the DPT method.

As for the acquisition function, we consider a library of
strategies (EI, PoI, and UCB) similar to TSBO and select
a different strategy at each iteration. Unlike TSBO, we do
not select the best strategy as such selection will not be
reliable in high-dimensional problems [31]. The overall flow-
chart of the DPTBO method is given in Fig. 28(c), and
its open-source MATLAB implementation can be found at
https://github.com/GT-PRC/DPTBO.

We now provide a 32-D design optimization example
and compare DPTBO to a state-of-the-art high-dimensional
BO method, maximum entropy search with additive GP
(ADD-MES) [45], and a non-ML method, PSO.

1) Problem 7—WPT-Based Power Delivery for IoT: Con-
sider optimization of a WPT-based power delivery solution
for IoT devices, as shown in Fig. 29. The optimization goal
is to determine 32 input parameters in Fig. 29 to maximize
RF–dc power conversion efficiency at 1 GHz while minimizing
the area of the RX coil. The multiobjective optimization is
formulated as a weighted sum similar to the IVR example
and RF–dc efficiency is prioritized over area. We use HFSS
to characterize RF coils and Keysight ADS [46] to calculate
the efficiency [31].

The optimization results are given in Table II [31]. Opti-
mization using DPTBO resulted in 59.57% RF–dc conversion
efficiency and RX coil area of 11.04 mm2. It can be seen

Fig. 30. Simultaneous optimization and model building using BALDO.

that DPTBO significantly outperforms ADD-MES in terms
of RX coil area while getting a similar RF–dc efficiency
and converging faster. Though PSO provided the lowest RX
coil area, it performed significantly worse in terms of RF–dc
efficiency (main goal) compared with ADD-MES and DPTBO.

IV. BAYESIAN ACTIVE LEARNING FOR

UNCERTAINTY QUANTIFIED MODELS

As mentioned earlier, deterministic NNs covered in
Section II assume that the predictions made are always
accurate. This can be dangerous since uncertainty of the
predictions is as important as the predictions themselves
and should be accounted for in the model. We call this as
uncertainty quantified model development, which is the subject
of this section.

In particular, we present a Bayesian learning approach to
perform well-calibrated uncertainty calculations that lead to
reliable confidence intervals around the predictions. We then
combine this with the active learning scheme presented in
Section III to derive an uncertainty quantified model using
the minimum amount of intelligently collected samples, which
can then be used to obtain the predictions of interest and
confidence intervals around them. These include, but are not
limited to: 1) output PDF to estimate the effect of arbitrarily
correlated process variations; 2) sensitivity of input parameters
on the output response; and 3) worst case scenarios to ensure
compliance. Since design respins occur due to noncompliance
with specifications, item 3) becomes extremely critical for SI
and PI and will be covered here. Details related to 1) and
2) are available in [47].

We present a technique called BALDO [47] that uses GPs
to obtain these objectives, where we introduce the concept of
active learning for simultaneous probabilistic model building
[for item 1) and 2)] and optimization [for item 3)] to obtain
all the predictions of interest with a single model in an
automated fashion as shown in Fig. 30, as opposed to separate
frameworks that require manual human intervention.

A. Bayesian Training of GPs for UQ

One of the challenges in ML is the fixing of parameters
during the training process. For example, we trained the
NN to obtain its weights and fixed them to obtain the NN
predictions in Section II. Similarly, in Section III, we fixed
the hyperparameters of the GP, θ , to the values found during
training.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1290 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

For developing the GP model, the fixed hyperparameter
setting affects the quality of the confidence bounds that
our surrogate provides since we constrain ourselves on the
correctness of a single θ value through the training procedure.
This means that the predictive uncertainty of the GP in (19)
only accounts for data-related uncertainty and not parameter-
related uncertainty. The data-related uncertainty here refers to
a lack of data in specific regions of the sample space, which
is sufficient to consider for optimization, but does not provide
well-calibrated uncertainties.

To develop a reliable uncertainty quantified model, we need
a more comprehensive GP model that makes fewer assump-
tions. Hence, the confidence bounds also need to account
for parameter-related uncertainties. This means that instead
of assuming a fixed θ , we need to consider all possible
θ values and use a weighted sum of confidence intervals
where the bounds obtained with more likely θ values affect
the final confidence bound more than others. In the continuous
θ domain, this corresponds to an integration that can be written
as

p(y∗ | x∗, Dt) =
�

p(y∗ | x∗, Dt , θ)p(θ | Dt)dθ (23)

where Dt = (Xt , Yt) is data we have at the tth iteration of the
active learning. At a test point x∗, our model now predicts a
distribution, p(y∗ | x∗, Dt), that no longer depends on θ and
is a weighted sum of all possible distributions that we can
get with a fixed hyperparameter, p(y∗ | x∗, Dt , θ). We now
need to learn the distribution p(θ | Dt) to use them as weights
and compute the integral. Since this is analytically intractable,
we resort to a technique called MCMC [48]. This learning
procedure now becomes training for the GP. We refer readers
to [48] for a detailed explanation of training the GP using the
MCMC approach. Once the GP is trained, the predictions and
confidence intervals that also accounts for parameter-related
uncertainties can be obtained as in [47].

B. Sampling Strategy in BALDO

Active learning is equivalent to BO when the goal is to find
the global optimum. When the goal is to build a probabilistic
model with minimum amount of data, it is called BAL. Here,
the next sampling point is selected to decrease the prediction
uncertainty (entropy) of the model, i.e., the predicted variance
of the GP in (18).

As described earlier, in SI and PI problems, we need an
uncertainty quantified model that can also provide the worst
case scenario (global minimum). Using BAL with entropy
criterion aims to provide an accurate model but cannot identify
the worst case scenario. On the other hand, using BO provides
the worst case scenario but not an accurate model.

Instead of performing a BAL followed by BO or vice
versa for a complete model, in BALDO, we introduce the
concept of simultaneous model building and optimization.
Here, the goal is to jointly derive an accurate predictive
model over whole sample space while converging to the
worst case scenario. To achieve this, we approach the active
learning problem in two stages, namely optimization stage and
learning stage, and we sequentially alternate between these at

Fig. 31. Structure of IBM P9 processor to processor X-Bus channel [47].

TABLE III

UNCERTAIN PARAMETERS OF THE HIGH-SPEED CHANNEL

every iteration. The information obtained in the two stages is
fused in a single GP model that is trained using the MCMC
approach. To prioritize finding the worst case scenario due to
its importance in SI and PI problems, we introduce a technique
called dropout, as shown in Fig. 30. For brevity, we refer
readers to [47] for details of the BALDO strategy. An open-
source MATLAB implementation of BALDO can be found
in https://github.com/GT-PRC/BALDO.

C. Problem 8—High-Speed Channel Signaling

We consider a comprehensive industrial example, IBM’s
POWER9 processor to processor X-Bus channel [49]. The
topology of the channel is given in Fig. 31 and it operates at
a data rate of 16 Gb/s using differential signaling. The objec-
tive here is to derive a complete uncertainty quantified GP
model that can predict horizontal eye opening (HEYE) with
confidence bounds while accurately identifying the worst case
channel variable combination that gives the minimum HEYE.
The problem is posed as a 6-D problem as in Table III [47].
We consider a discrete sample space to take advantage of
precomputed S-parameters and corner cases.

The simulation framework used consists of three main parts
and starts with generating 36-port S-parameters (one victim
and eight differential aggressors) of end-to-end channels that
contain bumps, CPU packages, and complete motherboard
wiring. The channel response is then combined with behavioral
models of TX and RX circuitry, where equalization settings

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1291

Fig. 32. Predicted HEYE and confidence intervals for 100 validation cases
using the GP obtained with BALDO (average absolute error = 0.86%UI).

are determined by sweeping all possible combinations in
time domain. The best setting is then used in a 10 million
bit time-domain simulation to characterize the HEYE. Fur-
ther details of the simulation setting can be found in [47].
It should be noted that although the sample space contains only
1125 different combinations, each simulation takes approxi-
mately 45 min, thereby simply sweeping that all combinations
in a sequential manner can take up to 35 CPU days.

After running 50 simulations using the inputs determined by
BALDO and the final GP model to predict all other channel
combinations, we find that the average 95% confidence interval
around the predictions to be ±3.1%UI, where UI is the unit
interval used in eye diagrams. To show the quality of the
confidence intervals, we collect 100 test samples and compare
them against the predictions by the GP model in Fig. 32.
It can be seen that the GP model correlates well with the
actual simulations. The absolute error between the predicted
eye widths and the ones obtained from actual simulations,
averaged over every case in the test set, is calculated to
be 0.86%UI.

More importantly, we observe that all the test cases are
within the 95% confidence intervals around the predictions,
showing the quality and reliability of the model. Furthermore,
the model is observed to be confident and accurate to identify
a worst case HEYE of 37.3%UI. In terms of run times, it took
∼37.6 h to collect the 50 simulations and <1 min to train the
GP model. Once trained, the GP model can predict HEYE
of all 1125 channel combinations and the confidence bounds
in ∼0.7 s compared to 35 days using the aforementioned
simulation framework.

The confidence bounds around these predictions also pro-
vide informative feedback. If the model uncertainty is greater
than an acceptable margin, more simulations can be performed
to reduce the width of the confidence intervals, thereby
answering the question of how many data samples are required
to derive a reliable model. We refer readers to [47] for more
results, including PDF of HEYE and sensitivity analysis with
reliable confidence intervals, and performance comparison to
GPs obtained using different approaches.

V. FUTURE DIRECTIONS AND OPPORTUNITIES

There is a clear trend in the semiconductor industry
toward heterogeneous integration (HI) where large monolithic

Fig. 33. PLS regression for WPT [50]. (a) Reduction in dimensionality.
(b) Parameter sensitivities generated from the reduced model.

integrated chips partitioned into multiple chiplets will be
connected together on an interconnect fabric along with chips
from other processes, leading to complex high-density inter-
posers. This poses a unique opportunity for use of ML not
just in SI and PI but in other areas as well, without which
designing such complex subsystems might become practically
impossible. We discuss three possible areas for research here
along with some initial ideas.

A. Addressing Higher Dimensionality

The methods presented in this article can handle dimen-
sionalities up to D ≈ 50. This is a large dimensionality in
itself but may not be enough as we move forward to more
advanced interposers. Part of the reason for such a limitation
in dimensionality is the fidelity of the surrogate models as the
number of parameters increases. It appears at this time that
the only solution to this problem is to conduct a sensitivity
analysis a priori, determine the most sensitive parameters,
and use this as part of the ML process. However, this is a
difficult problem since it is not easy to determine parameter
sensitivities without lots of data, which can be challenging in
itself if the data have to be generated from a 3-D EM solver.

One possible direction is by utilizing the PLS method,
which is a technique that allows identification of relationships
between a large number of input variables (that are highly
correlated) and the response variable, using a small number
of samples. The principle is based on projecting the input
variables onto a new space defined by new variables, called
principal components, which are linear combinations of the
input variables.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

1292 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

Fig. 34. (a) LSTM architecture. (b) Extrapolated PDN frequency
response [51].

As an example, consider the WPT example in Fig. 29 used
earlier with 30 parameters. Using 200 realizations from LHS,
we develop a PLS regression model [50]. Fig. 33(a) shows the
value of the root-mean-squared error (RMSE) computed with a
ten-fold cross-validation procedure with respect to the number
of principal components. The value of the RMSE significantly
decreases from 1 to 3 principal components and then becomes
quasi-constant from 4 to 16 principal components, indicat-
ing that three principal components are sufficient (reduction
in dimensionality) to construct a surrogate model and to
determine parameter sensitivities, as shown in Fig. 33(b).
Though the surrogate model generated might not be the most
accurate, it is sufficient to determine sensitivities for reducing
dimensionality that can then feed into ML procedures that
follow.

B. Extrapolation

ML models described in this article are developed based on
a parameter range, and hence, the models are only valid within
this range. An important question to ask is: “Can surrogate
models be used to extrapolate outside the range over which it
has been developed?” If this is possible, then models can be
reused even if the parameter range is expanded. For packaging,
this also addresses an important aspect related to resonances
especially for PI analysis, where poles occurring close (but
outside) to the parameter range can lead to a large increase in
impedances, resulting in excessive power supply noise.

As an example, consider extrapolating the frequency
response of a PDN beyond the range it has been simulated.
We start by relying on the frequency samples being correlated
in frequency space. This is expected since any PDN can
be represented as a distributed array of transmission lines
connected to passive elements. This means that knowing the
value of the impedance at one resonant frequency determines
implicitly the value at another frequency point. Using the
information embedded in the band-limited space, we can then
predict the poles and transitions at higher frequency by treating
the response as a set of sequenced data. Learning this behavior
is possible by using RNN discussed earlier, but by changing
the architecture into an LSTM-RNN as in Fig. 34(a) [51].
In Fig. 34(b), the predicted extrapolated impedance response is
shown for a PDN. Here, we set the cutoff frequency as 12 GHz
beyond which is the extrapolated space. The predicted values
follow the correct trend. The trained LSTM-RNN network
learns which past values are important and retains them to

Fig. 35. Inverse design [52]. (a) INNs. (b) SIW with two parameters.
(c) Probability distributions and candidate points.

estimate the next value of impedance. This means that poles
have spatial correlation, and therefore, a future pole can be
predicted from the past pole values without knowing the
structure of the network explicitly. As shown in the figure,
we are able to achieve a 66% extension in bandwidth with an
MSE of 0.008. These early results, though promising, require
further investigation.

C. Inverse Design

The ML procedures described learn the relationships
between the input and output parameters through a model,
using which the output response can be predicted given the
input parameters. However, would not it be useful if we do
the reverse, where the input parameters are predicted given
the output response? This procedure is oftentimes used in
filter design through design equations where based on output
specifications, the circuit component values can be determined
(also called synthesis). But can this be scaled where using
a black-box approach (without design equations and only
with data), we can do an inverse design. This can be very
useful in DSE and design implementation. However, such a
concept is an ill-posed problem, meaning that for a single
output response, multiple combinations of inputs are possible.
One possible method to address this is by introducing a
latent variable space (z) represented using known distributions,
using the latent space to learn the nonlinear transformation
between the known distribution of the latent variables and
the original data distribution [p(x, y) ↔ p(z, y)], and using
this information to predict the conditional posterior (resulting)
distribution of the input parameters given the output parameter
p(x |y), as shown in Fig. 35(a). This is possible using INNs.

As an example [52], consider a second-order SIW D-band
filter as shown in Fig. 35(b) with two input design para-
meters, namely slot width (wslot) and slot depth (dslot). The
target output parameters are center frequency (fc) in passband
and roll-off (slope of insertion loss). After INN training,
the network generates the conditional probability distribu-
tions as shown in Fig. 35(c) for an output design target of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1293

fc = 142 GHz and roll-off = 2.6 dB/GHz. From the predicted
distributions, two candidate designs are picked by selecting the
peak distribution density points in the two regions, which are
marked as stars in Fig. 35(c). Though both candidates meet
the performance specifications, candidate 1 has a higher Q
with better roll-off than candidate 2 when simulated using a
3-D EM solver. We believe that such INN-based approaches
provide significant opportunities for designers to reduce design
cycle time.

VI. CONCLUSION

ML has come a long way over the last 15 years since the first
time it was applied to packaging. Over these years, the ML
algorithms have become more robust, while the computing
infrastructure has improved leaps and bounds through faster
processors and cheaper memory. During this same period, new
packaging technologies, such as SiP and system on package
(SoP), have evolved, leading to significantly more integration
in the package. With the trend toward HI, this appears to be
the ideal intersection point where advanced ML techniques
can be applied for enabling robust heterogeneously integrated
future systems. We therefore strongly believe that there is an
abundance of opportunities available moving forward where
packaging can benefit immensely through the use of ML-based
techniques not just in design, but in other areas as well.

In this article, we have addressed the design of FFNN, RNN,
and CNN for various SI/PI problems where the focus was on
fast model development. We then discussed the application of
ML in the context of optimization using the BAL and deriv-
ing models that accommodate uncertainty, with an objective
of removing the “human from the loop” during the design
process. In its current state, we believe that ML-based design
techniques can be an asset to any SI/PI engineer for improving
productivity. With a wider adoption of such advanced tech-
niques, there is an opportunity for further advancements in
this area in the near future.

REFERENCES

[1] B. Mutnury, M. Swaminathan, and J. P. Libous, “Macromodeling of
nonlinear digital I/O drivers,” IEEE Trans. Adv. Packag., vol. 29, no. 1,
pp. 102–113, Feb. 2006.

[2] Q.-J. Zhang, K. C. Gupta, and V. K. Devabhaktuni, “Artificial neural
networks for RF and microwave design-from theory to practice,” IEEE
Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1339–1350, Apr. 2003.

[3] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035. [Online]. Available: https://pytorch.org/

[4] Deep Learning Toolbox. Accessed: Jun. 14, 2020. [Online]. Available:
https://www.mathworks.com/products/deep-learning.html

[5] W. T. Beyene, “Application of artificial neural networks to statistical
analysis and nonlinear modeling of high-speed interconnect systems,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1,
pp. 166–176, Jan. 2007.

[6] Q.-J. Zhang and L. Zhang, “Neural network techniques for high-speed
electronic component modeling,” in Proc. Int. Microw. Workshop Ser.
Signal Integrity High-Speed Interconnects, Feb. 2009, pp. 69–72.

[7] C. M. Schierholz, K. Scharff, and C. Schuster, “Evaluation of neural
networks to predict target impedance violations of power delivery
networks,” in Proc. IEEE 28th Conf. Electr. Perform. Electron. Packag.
Syst. (EPEPS), Oct. 2019, pp. 1–3.

[8] T. Lu, J. Sun, K. Wu, and Z. Yang, “High-speed channel modeling with
machine learning methods for signal integrity analysis,” IEEE Trans.
Electromagn. Compat., vol. 60, no. 6, pp. 1957–1964, Dec. 2018.

[9] C. H. Goay, A. Abd Aziz, N. S. Ahmad, and P. Goh, “Eye diagram
contour modeling using multilayer perceptron neural networks with
adaptive sampling and feature selection,” IEEE Trans. Compon., Packag.,
Manuf. Technol., vol. 9, no. 12, pp. 2427–2441, Dec. 2019.

[10] S. Chen, J. Chen, T. Zhang, and S. Wei, “Semi-supervised learning
based on hybrid neural network for the signal integrity analysis,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, Oct. 21, 2019,
doi: 10.1109/TCSII.2019.2948527.

[11] Y. Liu, T. Lu, J. Y. Kim, K. Wu, and J.-M. Jin, “Fast and accurate
current prediction in packages using neural networks,” in Proc. IEEE
Int. Symp. Electromagn. Compat., Signal Power Integrity (EMC+SIPI),
Jul. 2019, pp. 621–624.

[12] H. Yu, H. Chalamalasetty, and M. Swaminathan, “Modeling of voltage-
controlled oscillators including I/O behavior using augmented neural
networks,” IEEE Access, vol. 7, pp. 38973–38982, 2019.

[13] H. Yu, M. Swaminathan, C. Ji, and D. White, “A nonlinear behavioral
modeling approach for voltage-controlled oscillators using augmented
neural networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018,
pp. 551–554.

[14] CADENCE. Cadence Spectre. Accessed: Jun. 14, 2020. [Online]. Avail-
able: http://www.cadence.com

[15] B. Mutnury, M. Swaminathan, M. Cases, N. Pham, D. de Araujo, and
E. Matoglu, “Macro-modeling of non-linear pre-emphasis differential
driver circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005,
pp. 1–4.

[16] Q. J. Zhang, Y. Cao, and I. Erdin, “Fast IO buffer modeling using neural
network methods,” in Proc. 11th Int. Conf. Electron. Packag. Technol.
High Density Packag., Aug. 2010, pp. 666–669.

[17] T. Nguyen, T. Lu, J. Sun, Q. Le, K. We, and J. Schut-Aine, “Transient
simulation for high-speed channels with recurrent neural network,” in
Proc. IEEE 27th Conf. Electr. Perform. Electron. Packag. Syst. (EPEPS),
Oct. 2018, pp. 303–305.

[18] T. Nguyen, X. Wang, X. Chen, and J. Schutt-Aine, “A deep learning
approach for volterra kernel extraction for time domain simulation
of weakly nonlinear circuits,” in Proc. IEEE 69th Electron. Compon.
Technol. Conf. (ECTC), May 2019, pp. 1889–1896.

[19] G. Signorini, C. Siviero, S. Grivet-Talocia, and I. S. Stievano, “Macro-
modeling of I/O buffers via compressed tensor representations and ratio-
nal approximations,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 6, no. 10, pp. 1522–1534, Oct. 2016.

[20] H. Yu, T. Michalka, M. Larbi, and M. Swaminathan, “Behavioral
modeling of tunable I/O drivers with preemphasis including power
supply noise,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 1, pp. 233–242, Jan. 2020.

[21] H. Park et al., “Deep reinforcement learning-based optimal decou-
pling capacitor design method for silicon interposer-based 2.5-D/3-D
ICs,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 10, no. 3,
pp. 467–478, Mar. 2020.

[22] H. Ma, E.-P. Li, J. Schutt-Aine, and A. C. Cangellaris, “Deep learn-
ing method for prediction of planar radiating sources from near-field
intensity data,” in Proc. IEEE Int. Symp. Electromagn. Compat., Signal
Power Integrity (EMC+SIPI), Jul. 2019, pp. 610–615.

[23] V. Dumoulin and F. Visin, “A guide to convolution arithmetic
for deep learning,” 2016, arXiv:1603.07285. [Online]. Available:
http://arxiv.org/abs/1603.07285

[24] H. M. Torun et al., “A spectral convolutional net for co-optimization
of integrated voltage regulators and embedded inductors,” in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), Nov. 2019,
pp. 1–8.

[25] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis
of output from a computer code,” Technometrics, vol. 21, no. 2,
pp. 239–245, 1979.

[26] H. M. Torun, A. C. Durgun, K. Aygun, and M. Swaminathan, “Enforcing
causality and passivity of neural network models of broadband S-
parameters,” in Proc. IEEE 28th Conf. Electr. Perform. Electron. Packag.
Syst. (EPEPS), Oct. 2019, pp. 1–3.

[27] ANSYS. Ansys HFSS ver. 2019.1. Accessed: Jun. 14, 2020. [Online].
Available: http://www.ansys.com

[28] H. M. Torun, A. C. Durgun, K. Aygun, and M. Swami-
nathan, “Causal and passive parameterization of s-parameters using
neural networks,” IEEE Trans. Microw. Theory Techn., 2020, doi:
10.1109/TMTT.2020.3011449.

[29] J. Gonzalez, “Introduction to Bayesian optimization,” presented at the
Gaussian Process Summer School, Sheffield, U.K., Sep. 2017. [Online].
Available: http://gpss.cc/gpss17/slides/gpss_bayesopt2017.pdf

[30] T. Dhaene, “Challenges in the optimization of modern RF and em
systems: A Bayesian perspective,” in Proc. IEEE Electr. Design Adv.
Packag. Syst. Symp. (EDAPS), Dec. 2018.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSII.2019.2948527
http://dx.doi.org/10.1109/TMTT.2020.3011449

1294 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 8, AUGUST 2020

[31] H. M. Torun and M. Swaminathan, “High-dimensional global optimiza-
tion method for high-frequency electronic design,” IEEE Trans. Microw.
Theory Techn., vol. 67, no. 6, pp. 2128–2142, Jun. 2019.

[32] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning, vol. 1. Cambridge, MA, USA: MIT Press, 2006. [Online].
Available: http://www.gaussianprocess.org/gpml/

[33] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimen-
tal design,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn., 2010,
pp. 1015–1022.

[34] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 2951–2959.

[35] Z. Kiguradze, J. He, B. Mutnury, A. Chada, and J. Drewniak, “Bayesian
optimization for stack-up design,” in Proc. IEEE Int. Symp. Elec-
tromagn. Compat., Signal Power Integrity (EMC+SIPI), Jul. 2019,
pp. 629–634.

[36] M. A. Dolatsara and M. Swaminathan, “Determining worst-case eye
height in low BER channels using Bayesian optimization,” in Proc.
IEEE 11th Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2020,
pp. 1–4.

[37] R. Medico, D. Spina, D. Vande Ginste, D. Deschrijver, and T. Dhaene,
“Machine-learning-based error detection and design optimization in
signal integrity applications,” IEEE Trans. Compon., Packag., Manuf.
Technol., vol. 9, no. 9, pp. 1712–1720, Sep. 2019.

[38] S. De Ridder, D. Spina, N. Toscani, F. Grassi,
D. V. Ginste, and T. Dhaene, “Machine-learning-based hybrid random-
fuzzy uncertainty quantification for EMC and Si assessment,” IEEE
Trans. Electromagn. Compat., early access, Apr. 17, 2020, doi:
10.1109/TEMC.2020.2980790.

[39] H. M. Torun, M. Swaminathan, A. Kavungal Davis, and
M. L. F. Bellaredj, “A global Bayesian optimization algorithm and its
application to integrated system design,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 4, pp. 792–802, Apr. 2018.

[40] M. Hoffman, E. Brochu, and N. de Freitas, “Portfolio allocation for
Bayesian optimization,” in Proc. 27th Conf. Uncertainty Artif. Intell.,
2011, pp. 327–336.

[41] J. Xie and M. Swaminathan, “Electrical-thermal co-simulation of
3D integrated systems with micro-fluidic cooling and joule heating
effects,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 1, no. 2,
pp. 234–246, Feb. 2011.

[42] S. J. Park, B. Bae, J. Kim, and M. Swaminathan, “Application of
machine learning for optimization of 3-D integrated circuits and sys-
tems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 6,
pp. 1856–1865, Jun. 2017.

[43] S. Müeller et al., “Design of high efficiency integrated voltage regulators
with embedded magnetic core inductors,” in Proc. IEEE 66th Electron.
Compon. Technol. Conf. (ECTC), May 2016, pp. 566–573.

[44] D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen, “Additive
Gaussian processes,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 226–234.

[45] Z. Wang and S. Jegelka, “Max-value entropy search for efficient
Bayesian optimization,” in Proc. Int. Conf. Mach. Learn. (ICML), 2017,
pp. 1–12.

[46] KEYSIGHT. Keysight Ads ver. 2017. Accessed: Jun. 14, 2020. [Online].
Available: http://www.keysight.com

[47] H. M. Torun, J. A. Hejase, J. Tang, W. D. Beckert, and M. Swaminathan,
“Bayesian active learning for uncertainty quantification of high speed
channel signaling,” in Proc. IEEE 27th Conf. Electr. Perform. Electron.
Packag. Syst. (EPEPS), Oct. 2018, pp. 311–313.

[48] R. M. Neal, “Slice sampling,” Ann. Statist., vol. 31, no. 3, pp. 705–741,
2003.

[49] S. Chun et al., “IBM POWER9 package technology and design,” IBM
J. Res. Develop., vol. 62, nos. 4–5, p. 12, Jul./Sep. 2018.

[50] M. Larbi, H. M. Torun, and M. Swaminathan, “Estimation of para-
meter variability for high dimensional microwave problems via partial
least squares,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2019,
pp. 940–943.

[51] O. W. Bhatti and M. Swaminathan, “Impedance response extrapolation
of power delivery networks using recurrent neural networks,” in Proc.
IEEE 28th Conf. Electr. Perform. Electron. Packag. Syst. (EPEPS),
Oct. 2019, pp. 1–3.

[52] H. Yu, H. M. T. Mutee, U. Rehman, and M. Swaminathan, “Design of
siw filters in d-band using invertible neural nets,” in IEEE MTT-S Int.
Microw. Symp. Dig., Aug. 2020.

Madhavan Swaminathan (Fellow, IEEE) received
the B.E. degree from the Regional Engineering Col-
lege at Tiruchirapalli (now NITT), Tiruchirapalli,
India, in 1985, and the M.S./Ph.D. degrees in electri-
cal engineering from Syracuse University, Syracuse,
NY, USA, in 1989 and 1991, respectively.

He is currently the John Pippin Chair in Microsys-
tems Packaging and Electromagnetics with the
School of Electrical and Computer Engineering
(ECE), a Professor of ECE with a joint appointment
in the School of Materials Science and Engineering

(MSE), and the Director of the 3D Systems Packaging Research Center (PRC),
Georgia Tech (GT), Atlanta, GA, USA. He also serves as the Site Director
for the NSF Center for Advanced Electronics through Machine Learning
(CAEML) and the Theme Leader for Heterogeneous Integration, SRC JUMP
ASCENT Center. He formerly held the position of Founding Director at the
Center for Co-Design of Chip, Package, System (C3PS), the Joseph M. Pettit
Professor in Electronics in ECE, and the Deputy Director of the Packaging
Research Center (NSF ERC), GT. Prior to joining GT, he was with IBM,
working on packaging for supercomputers. He is the author of more than 500
refereed technical publications, holds 32 patents, primary author and co-editor
of three books, the founder and co-founder of two start-up companies, and
the founder of the IEEE Conference Electrical Design of Advanced Packaging
and Systems (EDAPS), a premier conference sponsored by the EPS Society.

Dr. Swaminathan has served as the Distinguished Lecturer for the IEEE
EMC Society.

Hakki Mert Torun (Graduate Student Mem-
ber, IEEE) received the B.Sc. degree in electrical
and electronics engineering from Bilkent University,
Ankara, Turkey, in 2016, and the M.S. degree in
electrical engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2019, where he is
currently pursuing the Ph.D. degree with the School
of Electrical and Computer Engineering.

He has coauthored more than 30 refereed tech-
nical publications. His current research interests
include developing machine learning algorithms for

system-level design optimization and modeling with the applications in signal
and power integrity in high-speed channels, microwave electronics, and VLSI
systems.

Mr. Torun was a recipient of the 2019 Georgia Tech ECE Graduate
Student Excellence Award and the Best Student Paper Award of the IEEE
27th Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS) in 2018.

Huan Yu received the B.S. degree in electrical
and computer engineering from Zhejiang University,
Hangzhou, China, in 2014. He is currently pursuing
the Ph.D. degree in electrical and computer engi-
neering with the Georgia Institute of Technology,
Atlanta, GA, USA.

His research interests include electronics model-
ing, simulation, and optimization, with a focus on
machine learning.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEMC.2020.2980790

SWAMINATHAN et al.: DEMYSTIFYING ML FOR SI AND PI PROBLEMS IN PACKAGING 1295

Jose Ale Hejase (Member, IEEE) received the
B.S. degree (cum laude) in electrical engineering
from Oakland University, Rochester Hills, MI, USA,
in 2006, and the M.S. and Ph.D. degrees in electrical
and computer engineering—specializing in applied
electromagnetics—from Michigan State University,
East Lansing, MI, USA, in 2009 and 2012,
respectively.

Since 2012, he has been with IBM Corpora-
tion Austin, TX, USA. He is currently a Senior
Engineer at IBM, where he is working with the

POWER servers hardware development organization. His responsibilities
revolve around signal integrity design for the latest and highest performance
high-speed computer sever bus links. His research interests include electro-
magnetic material characterization, electromagnetic nondestructive evaluation,
millimeter-wave guiding and high-speed link channel design, and modeling
and signal integrity analysis.

Dr. Hejase is a member of the Technical Program Committee of the IEEE
EPEPS and IEEE SPI conferences and a member of the IEEE EPS technical
committee on Electrical Modeling, Design and Simulation. He received the
IBM Early Tenure Inventor Award in 2013, the IBM Outstanding Techni-
cal Achievement Awards in 2017 and 2019 for his work on developing
POWER9 servers high-speed buses, and his fourth IBM Invention Plateau
in 2020.

Wiren Dale Becker (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the
University of Illinois at Urbana–Champaign, Cham-
paign, IL, USA.

He is currently a Chief Engineer of elec-
tronic packaging integration with IBM Systems,
Poughkeepsie, NY, USA. His responsibility is the
electrical system packaging architecture of IBM Sys-
tems, including the design of high-speed channels
to enable the computer system performance and the
power distribution networks for reliable operation of

the integrated circuits that make up the processor subsystem.
Dr. Becker has chaired the IEEE EPEPS Conference and the SIPI Embedded

Conference of the EMC Symposium. He also chairs the IEEE EPS Technical
Committee on Electrical Modeling, Design, and Simulation. He co-chairs the
High-Performance Computing TWG of the HIR Roadmap. From 2017 to
2018, he was the IAB Chair for NSF U/ICRC Center on Advancing Electron-
ics through Machine Learning (CAEML). He has chaired the iNEMI PEG on
High-End Systems. including the chapter on the High-End Systems Roadmap
from 2007 to 2017. He is a iNEMI Technical Committee Member and a
member of SWE. He is a Senior Area Editor for the IEEE TRANSACTIONS
ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:06:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

