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Abstract—Designing CTLE of high-speed channels can be 

complicated and time consuming. To alleviate this issue, this paper 

investigates the invertible neural networks (INNs) for inverse 

design of the CTLE. In this approach, a desired eye height and eye 

width is given, and the algorithm finds the corresponding peaking 

frequency and gain value of the CTLE. INN is a special type of 

neural networks that can be traversed in both forward and reverse 

directions. An advantage of this network is producing distribution 

of the input variables based on the desired output. This feature 

enables the algorithm to provide multiple solutions when a multi-

modal distribution is produced. Thus, the user can choose the 

appropriate solution based on other constraints. A numerical 

example for inverse design of CTLE of a SerDes channel is 

provided, which results in moderate accuracy. However, other 

variations of the example show that the accuracy is case dependent 

which implies improvements on the algorithm is needed. 
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I. INTRODUCTION 

With the exponential increase in the data rate of high-speed 
serial channels, their design has become more challenging. 
Designers need to set many design parameters and consider 
several constraints to satisfy the performance criteria, including 
a low bit error rate (BER). One of the critical tasks in this process 
is design of the equalization, which is often done with feed 
forward equalizer (FFE), decision feedback equalizer (DFE), 
and continuous linear time equalizer (CTLE). FFE and DFE 
coefficients are often calculated adaptively. Although the 
frequency response of CTLE can be found theoretically, in 
reality it does not always provide a satisfactory result. Therefore, 
engineers depend on simulating the channel with all practical 
CTLE frequency responses. Unfortunately, this method can be 
very time consuming. It is possible to utilize human tuning or 
optimization methods; however, the best solution may still not 
be achieved, or several satisfactory possibilities could be 
ignored due to the nature of these algorithms. To address these 
issues, we propose an inverse design approach to find the CTLE 
settings.   

In the traditional design and modeling process, from a 
combination of design parameters (inputs) the output of the 
system is found. In contrast, in the inverse approach we start 
from the output objectives and derive the corresponding input 
parameters that satisfy these objectives. The inverse problem has 
been a popular concept for decades. However, recently with the 
advancements in machine learning (ML), there has been several 

attempts for inverse design of high-speed electronics by using 
ML [1]-[6]. From these techniques, INNs [7] have shown a great 
potential. A main advantage of these networks is providing 
distribution of the design parameters instead of deterministic 
values. This advantage can be used to deal with the non-
uniqueness of the solution issue, which can be a major problem 
in inverse design with traditional approaches. Using INNs, we 
can derive several possible combinations of the design 
parameters instead of one. Then a satisfactory design can be 
selected based on other constraints. We have previously used 
INNs for design of SIW filters in D-band [6]. In this work, we 
investigate to see if a similar approach can be used to derive the 
CTLE settings from the desired eye height and eye width. This 
is a challenging problem because the considered CTLE settings 
are discrete. In addition, the outputs have a nonlinear 
relationship with the design parameters.  

II. PROPOSED APPROACH 

A. Invertible neural networks 

In the proposed inverse design approach INNs [7] are used. 
The general INN network is illustrated in Fig. 1, which shows it 
is comprised of several reversible blocks. This reversible 
structure permits bidirectional training of the network. In this 
figure, X shows the input parameters, and Y is the output. Z is a 
set of latent variables with normal distribution that do not exist 
in the actual system. These variables are added in the output to 
store the lost information in the forward mapping from X to Y. 
In the training process, a supervised loss function, such as the 
mean square error, is used for Y since it represents deterministic 
variables. On the other hand, because X and Z are stochastic 
variables and represent distributions, the maximum mean 
discrepancy (MMD) is used as their loss function. MMD is an 
unsupervised loss function, and it only needs samples from two 
distributions to compare them.  
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Fig. 1. Structure of the invertible neural networks. 
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Each INN block needs an even and equal number of inputs 
and outputs, which is enforced with zero padding if needed. 
Inputs and outputs are divided into two halves, which are shown 
as [𝒙𝟏, 𝒙𝟐] and [𝒚𝟏, 𝒚𝟐], respectively. The forward path of each 
block is equivalent to: 

𝒚𝟏 = 𝒙𝟏 .  𝑒𝑥𝑝(𝑆2(𝒙𝟐)) + 𝑡𝟐(𝒙𝟐), 

𝒚𝟐 = 𝒙𝟐 .  𝑒𝑥𝑝(𝑆1(𝒚𝟏)) + 𝑡1(𝒚𝟏)                  () 

And the reverse path of each block is equivalent to:  

𝒙𝟐 = (𝒚𝟐 − 𝑡1(𝒚𝟏)) . 𝑒𝑥𝑝(−𝑆1(𝒚𝟏))                 

 𝒙𝟏 = (𝒚𝟏 − 𝑡2(𝒙𝟐)) . 𝑒𝑥𝑝(−𝑆2(𝒙𝟐))            () 

where, 𝑆1, 𝑆2, 𝑡1, and 𝑡2  are neural networks themselves. Note 
that although these subnetworks are not invertible, (1) and (2) 
are always invertible. The individual blocks are connected with 
shuffling layers. For additional details refer to [7]. 

B. Application to CTLE 

CTLE is a high path filter that is intended to reverse the low 
path filtering effect of the channel. A first order high path filter 
can be characterized by a peaking frequency and gain value. 
Goal of the proposed approach is to derive these parameters 
from desired eye height (EH) and eye width (EW) values, using 
the INN.  

Although frequency and gain are continuous variables, in 
reality a limited number of CTLE hardwares are available to the 
designer. Therefore, the input design parameters are discrete. 
We show possible peaking frequencies and gain values with  
[𝑝1, 𝑝2, … 𝑝𝑁] and [𝑔1, 𝑔2, … 𝑔𝑀], respectively, where, N and M 
are the number of possible implementations. Thus, there are 𝑁 ∗
𝑀  selections for the CTLE design. The inverse problem is 
equivalent to: 

[𝑝𝑖 , 𝑔𝑗] = 𝑓−1(𝐸𝐻, 𝐸𝑊, 𝒁)                      () 

where, Z is the latent variables, and 𝑓−1 is the inverse mapping, 
which is found by training the INN. After training the network, 
(3) is evaluated numerously to derive the joint distribution of 𝑝𝑖  
and 𝑔𝑗 . Note that in these evaluations EH and EW are fixed 

while Z is sampled from its normal distribution. Afterwards, the 
closest available input parameters to the most likely point from 
distribution of 𝑝𝑖  and 𝑔𝑗  is selected as peaking frequency and 

gain value. If the distribution is multi-modal, multiple candidate 
designs are produced. Finally, the eye diagram is simulated for 
the design(s) to evaluate the resulting eye height and eye width, 
and compare with the target values. The proposed approach is 
implemented in Python 3.7 using the INN source code published 
in [8]. 

III. NUMERICAL EXAMPLE 

To investigate effectiveness of the proposed approach, 
inverse design of CTLE for the SerDes channel, pictured in Fig. 
2, is considered. This channel includes two processor packages, 
connected to the board with hybrid land grid array connectors. 
The board contains 4 inches of differential wiring in total, which 
is connected to the connectors with differential vias. No 
crosstalk is considered. This channel is simulated with a custom-
build solver named HSSCDR [9], which is developed by IBM. 
Furthermore, the channel operates at 16 Gb/s; resulting in a unit 
interval of 62.5 ps. For the CTLE design, 10 possible peaking 
frequencies and 16 possible gain values are considered. In this 
paper, these values are shown symbolically as [𝑝1, 𝑝2, … 𝑝10] 
and [𝑔1, 𝑔2, … 𝑔16], which are ordered sequentially.  

As a rule of thumb, often about 80% of the total number of 
samples is selected for training and validation, which is 
subsequently divided to 80% and 20% sections for training and 
validation, respectively. The remaining 20% of the total number 
of samples is used for testing, Therefore, From the 160 
combinations of 𝑝𝑖  and 𝑔𝑗, 102 samples are randomly selected 

for training the network. Another 25 random samples are used 
for validation and tuning the hyperparameters of the network. 
After tuning, number of the latent variables in Z is set to 2. INN 
is comprised of 4 reversible blocks. 𝑆1, 𝑆2, 𝑡1, and 𝑡2  are fully 
connected neural networks, and each of them has 1 hidden layer 
with 100 nodes and the ReLU activation function. Number of 
dimensions in the input and output is increased to 16 with zero-
padding, and the training takes 200 epochs. 

 

Fig. 2. High-speed SerDes channel in the numerical example. 

 
Fig. 3. Joint distribution of CTLE peaking frequency (𝑝𝑖)  and CTLE 

gain (𝑔𝑗) in the numerical example. Candidate designs are shown with red 

stars and the accurate design is shown with a blue star. 
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Fig. 4. Marginal distributions of the CTLE parameters in the numerical 
example. Candidate designs are shown with red dashed lines and the 

accurate design is shown with a black line. a) CTLE peaking frequency 

(𝑝𝑖). b) CTLE gain (𝑔𝑗). 



The remaining 33 samples are used for testing. The resulting 
EH and EW values, which are yielded by the inverse design 
shows a wide range of accuracy. For some test samples a good 
match with the desired EH and EW is achieved. While, for some 
others the results were not satisfactory. Next, we show the 
results for a case with moderate accuracy, and discuss the other 
test cases afterwards. In this test case EH is 175 mV and EW is 
44.6 ps. We sampled (3) for 30,000 times to derive distribution 
of 𝑝𝑖  and 𝑔𝑗. Note that this evaluation is almost instant because 

INN translates to an analytical calculation. Joint distribution of 
𝑝𝑖  and 𝑔𝑗, and their marginal distributions are shown in Fig. 3 

and Fig. 4, respectively. It is seen that the distribution is multi-
modal. In other words, the proposed approach suggests four 
possible solutions which are (𝑝2, 𝑔6), (𝑝2, 𝑔12), (𝑝8, 𝑔6),  and 
(𝑝8, 𝑔12). These solutions and their corresponding EH and EW 
values are presented in Table I. In addition, the accurate 
selection of 𝑝𝑖  and 𝑔𝑗 for the desired EH and EW is included in 

Fig. 3, Fig. 4, and Table I. We know the accurate 𝑝𝑖  and 𝑔𝑗 since 

we had swept over all of their possible values. From the results 
in Table I it is observed that the INN approach has achieved a 
design (INN2) which is only one step away from the accurate 
design in peaking frequency, and it has the same gain value. EH 
and EW of this design are close to the target values. On the other 
hand, results of the INN1 design are also close to the target 
values, while its gain is not close to the accurate gain. This 
design can be selected if INN2 is not possible due to other 
constraints, and it shows that the INN approach can find multiple 
solutions for a single target objective. The eye diagram obtained 
from the INN2 design is illustrated in Fig. 5.  

Although the results achieved in this test case are close to the 
target values, they are not a perfect match. In the 33 test cases, 
more accurate results were observed; however, some other test 
cases had a higher mismatch rate, including some unacceptable 
results. Overall, we conclude that the INN structure is not a 
universal solution in its current state and needs improvements. 
One of the issues that can cause the mismatch is handling of 
discrete variables. The proposed approach derives the CTLE 
variables by selecting the closest possible values to the candidate 
points taken from the distribution provided by INN. However, it 
is seen in Table I that even one step mismatch in the peaking 
frequency can result in nontrivial mismatch with the target 
values. In addition, in this work we performed inverse design for 
target values that have at least one existing solution. If the 
solution does not exist, the algorithm needs to provide the 
closest solution. Moreover, for this study it would be interesting 
to examine lossier channels as well, and see if the multi-modal 
behavior persists. Addressing these issues is left for future work. 

IV. CONCLUSION 

In this paper an approach for inverse design of CTLE of 
high-speed channels is proposed in order to increase the design 
efficiency. The algorithm receives the desired eye height and 
eye width, and it derives the required peaking frequency and 
gain of CTLE. This approach is based on invertible neural 
networks, which can be trained and used in both directions. An 
example with moderate accuracy is provided. However, it is 
observed that the algorithm can produce inaccurate results in 
some other test cases. Therefore, improvements to the algorithm 
are needed.  
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TABLE I. ACCURATE AND CANDIDATE CTLE DESIGNS AND THEIR 

CORRESPONDING EH AND EW. 

Design Peaking 

frequency 

Gain 

value 

EH 

(mV) 

EW  

(ps) 

Accurate 𝑝3 𝑔12 175 44.6 

INN1 𝑝2 𝑔6 186 49.9 

INN2 𝑝2 𝑔12 153 42.4 

INN3 𝑝8 𝑔6 235 37.1 

INN4 𝑝8 𝑔12 292 44.3 

 
 

Fig. 5. Eye diagram of the channel in the numerical example when the 

INN2 design is used for CTLE. 




