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Abstract— Neural networks (NNs) are widely used to create
parametric models of S-parameters for various components in
electronic systems. The focus of deriving these models has so
far been numerical error reduction between the NN-generated
S-parameters and the data source. However, this is not sufficient
when creating such NNs since it does not guarantee predicted
S-parameters to be physically consistent, i.e., passive and causal,
which restricts their use cases. This article, therefore, proposes
a causality enforcement layer (CEL) and passivity enforcement
layer (PEL) that can be used in NNs, which ensures that
NN-predicted S-parameters are of a passive and causal system.
To achieve this, we utilize Kramers–Kronig relations and singular
value properties of S-parameters during the training stage with
the purpose of learning a physically consistent representation.
This enables end-to-end training where no postprocessing is
required to ensure physical consistency. We demonstrate the
effectiveness of the presented approach for three different design
applications, where the goal is to predict S-parameters from dc
to 100 GHz. The results show that when NNs are trained using
CEL and PEL, the predicted S-parameters are characterized
as 100.0% causal and passive while having the same level of
accuracy as NNs that solely focus on error minimization.

Index Terms— Causality, electromagnetic modeling, high-speed
channels, microelectronic packaging, neural networks (NNs),
passivity.

I. INTRODUCTION

EVER-increasing demand for higher computational power
has created a trend toward increasing the operational fre-

quency of electronics to increase the bandwidth of both chip-
to-chip and wireless signaling. Design of such high-frequency
systems often requires handling multiple tradeoffs to meet
performance metrics and therein arises the necessity to per-
form a thorough design space exploration (DSE) and opti-
mization to evaluate different circuit architectures, materials,
and geometries, where each design choice goes through a
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rigorous electrical characterization process. This step com-
monly includes characterizing the frequency response of pas-
sive components such as filters, connectors, and interconnects
through multiscale, broadband 3-D electromagnetic (EM) sim-
ulations and then exporting the resulting S-parameters to a
circuit simulator to be evaluated with the active components
such as amplifiers, voltage regulators, and I/O drivers.

Although essential for high-frequency design characteriza-
tion, the involvement of 3-D EM simulations in the DSE
loop significantly increases the overall computational com-
plexity, especially when the number of design choices and
parameters increases. To this end, machine learning (ML)-
based parametric model development is a popular technique to
eliminate repetitive broadband full-wave EM simulations that
would otherwise be impractical in terms of time and com-
putational resources. Here, a certain amount of training data
is collected and a learning-based model is derived to predict
the S-parameters for a given set of input parameters. In areas
that involve high-frequency electronics such as microwave
design and electronic packaging, ML techniques have been
used excessively for optimization [1]–[4] and uncertainty
quantification (UQ) [5]–[8] of various passive components.

In particular, two techniques stand out for parameteriza-
tion of S-parameters using neural networks (NNs), namely
considering frequency as a regular input parameter [9]–[11]
and neural transfer function (neuro-TF)-based models [12].
In the former case, different design settings are first eval-
uated at a given frequency band, and then, the training
data are constructed by replicating the design parameters,
where each copy is associated with a particular frequency
point. Once trained, the resulting NN can rapidly predict
S-parameters at various design settings and can be utilized
in an optimization loop to find the parameter combination
that provides the desired performance. The frequency as input
parameter approach, however, is only applicable to narrow-
band S-parameters since the growing number of frequency
points corresponds to redundant data replication that leads
to large memory requirements during the training phase or
to smooth frequency responses where the frequency band
can be sparsely discretized without losing predictive accuracy
[13]. Neuro-TF-based models, on the other hand, first convert
the S-parameters into a frequency-domain transfer function
format using the vector fitting (VF) algorithm [14] and then
train a fully connected NN (FCNN) to predict the poles and
residues [15]. This approach eliminates the frequency from
the learning problem and enables a memory-efficient training
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environment. However, the coefficients of the TF can have a
very wide and nonlinear spread when the input sample space
is large [16], which leads to the need for problem-specific
data preprocessing that does not provide ease of automation,
such as tracking movement of specific poles and frequency
scaling and shifting [17]. Furthermore, the VF algorithm itself
is an approximation that can introduce significant errors to the
original problem [18].

Another possible direction to address the limitations of pre-
vious approaches is to consider each frequency point as a sepa-
rate output dimension. This results in a very high-dimensional
output space if the frequency bandwidth of interest is large and
discretized at a small step size. For FCNNs, this significantly
increases the number of learnable parameters, which can result
in overfitting. A recently developed approach, namely spectral
transposed convolutional net (S-TCNN) [19], addresses this
high dimensionality by using the 1-D transposed convolutional
layers to exploit spatial correlation in the frequency axis. The
weight sharing structure of S-TCNN allows to reduce the
number of learnable parameters compared with FCNN while
preserving the representation capability and, hence, is suitable
for predicting broadband frequency responses.

Although previous NN-based techniques have shown to
be successful for design optimization and UQ in many dif-
ferent applications, they cannot be directly used for DSE
purposes. Previous NN-based modeling strategies solely focus
on numerically matching the predicted S-parameters to the
data source and overlook the underlying physical phenomena
represented by the data. In the case of multiport S-parameters
of passive microwave devices and networks, this can result in
NN predicted S-parameters to be noncausal and nonpassive,
which prevents the predictions to be used in subsequent time-
and/or frequency-domain simulations for DSE or multidomain
optimization purposes. Hence, the focus of the NN-based
parameterization of S-parameters should not solely be error
reduction with respect to the data source but also use the
domain-knowledge we have to preserve the physical con-
sistency, i.e., causality and passivity, of the predictions to
enable an extended scope of use cases. Compared with the
knowledge-based methods that make use of a coarse model to
improve the overall prediction accuracy [20], [21], the knowl-
edge in this article is used as a constraint to be enforced on
the predictions based on the physical phenomena that hold
for S-parameters of any passive microwave device and does
not rely on a problem-specific coarse model. It should also
be noted that enforcing physical consistency at inference time
after the model is trained can lead to substantial accuracy loss,
along with computational overhead since such enforcement
is a sequential procedure where each prediction needs to be
handled one-by-one. This corresponds to losing the parallel
prediction capability of the NN, in which every NN-based
design optimization method relies upon.

In this article, we therefore develop physically consistent
NNs to directly learn a physical representation between input
parameters and broadband S-parameters while minimizing the
numerical error with respect to the training data. We propose
two new layers to be used in an NN, namely causality
enforcement layer (CEL) and passivity enforcement layer

(PEL). In the CEL, we utilize Kramers–Kronig relations
and use Hilbert transform to reconstruct the imaginary part
of each element in the predicted S-parameter matrix to
ensure the time-domain impulse response matrix is causal.
In the PEL, we enforce the largest singular value of the
predicted S-parameter matrix at each frequency point to be
less than 1 by using a minimum-phase passivity enforcement
approach. In [22], we showed very preliminary results of
the proposed approach. This article significantly extends [22]
by providing extensive details of the methodology and a
significant change in PEL and overall network architecture,
which are then demonstrated on 3 different design applications
that emerge in high-speed channel design.

The rest of this article is structured as follows. Section II
provides background on S-parameter causality and passivity.
Section III presents the proposed NN architecture with CEL
and PEL. Section IV shows the application of the proposed
model to a differential plated-through-hole (PTH) structure
in package core. Section V presents the application to a
differential stripline model in package. Section VI presents
the application to a ball-grid-array (BGA) model for package-
to-board transition, followed by conclusion in Section VII.

II. BACKGROUND

Physical consistency of S-parameters is a well-studied sub-
ject [23]–[26]. In this section, we provide a brief summary
of the fundamental concepts related to causality and passivity
and introduce the notations we use in the subsequent sections.

A. Causality of S-Parameters

S-parameter matrix of a P-port and linear time-invariant
(LTI) system is said to be causal if every element in the
time-domain impulse response matrix cannot produce an out-
put before the input signal, i.e.,

hi j (t) = 0, t < 0 ∀i, j ∈ P. (1)

This condition is satisfied when even and odd parts of the
transfer functions are related as

hi j (t) = h(e)
i j (t) + h(o)

i j (t)

= h(e)
i j (t) + sign(t)h(e)

i j (t) (2)

where h(e)(t) and h(o)(t) are the even and odd parts of h(t),
respectively, and sign(t) is the signum function that equals to 1
when t > 0 and −1 when t < 0. Taking the Fourier transform
of (2) gives

Hij ( f ) = F(hi j (t))

= H (e)
i j ( f ) + 1

jπ f
∗ H (e)

i j ( f ) (3)

where ∗ is the convolution operation. As H (e)
i j ( f ) is the Fourier

transform of an even function, it is real-valued, leading to

Im{Hij ( f )} = −1

π f
∗ Re{Hij ( f )}

= −1

π

∫ ∞

−∞
Re{Hij ( f̃ )}

f − f̃
d f̃ . (4)
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Fig. 1. Proposed physically consistent NN model for passive and causal parameterization of S-parameters.

The convolution integral in (4) is also known as the Hilbert
transform. Rewriting (4) for real and imaginary parts leads to
the well-known Kramers–Kronig relations [27], written as

V ( f ) = −H {U( f )}
= −1

π

∫ ∞

−∞
U( f̃ )

f − f̃
d f̃

U( f ) = H {V ( f )}
= 1

π

∫ ∞

−∞
V ( f̃ )

f − f̃
d f̃ (5)

where H ( f ) = U( f ) + j V ( f ) and H {·} is the Hilbert
transform operator. Hence, the causality condition in (1) is
satisfied if and only if the real and imaginary parts of each
element in the S-parameter matrix satisfiy the Kramers–Kronig
relations and is related through the Hilbert transform.

B. Passivity of S-Parameters

Although the causality condition is of utmost importance
for using S-parameter representation in any time-domain
characterization, a significant portion of microwave analysis
is performed solely in the frequency domain. The passivity
condition, stating that multiport S-parameters for a passive net-
work cannot generate energy, is of paramount importance for
both time- and frequency-domain characterizations since any
violation of passivity can lead to unstability in time domain
[25] and can be significantly amplified by active components
and/or when cascaded to other nonpassive S-parameter blocks.

A P-port S-parameter matrix defined within the frequency
band � is said to be passive if and only if it is bounded as

SH ( f )S( f ) ≤ I ∀ f ∈ � (6)

where (·)H is the Hermitian transpose operator. This condition
can be conveniently checked by obtaining the singular values
of S( f ) via singular value decomposition (SVD) of the
S-parameter matrix at every frequency point as

SVD[S( f )] = U( f )�( f )V −1( f ) (7)

where

�( f ) =
⎡⎢⎣σ1( f ) . . . 0

...
. . .

...
0 . . . σP ( f )

⎤⎥⎦ (8)

is the ordered singular value matrix with σ1( f ) > σ2( f ) >
· · · > σP ( f ). The passivity condition in (6) then can be
rewritten as

σ1( f ) ≤ 1 ∀ f ∈ �. (9)

Throughout this article, we will use (9) to check the passivity
of a given S-parameter matrix.

III. PROPOSED CAUSAL AND PASSIVE NN ARCHITECTURE

FOR PARAMETERIZING S-PARAMETERS

In this section, we present the proposed NN architecture
that guarantees the predicted S-parameters to be physically
consistent, i.e., satisfy the conditions in (5) and (9), while
maximizing numerical accuracy with respect to the training
data that are obtained from full-wave EM simulations.

A high-level block diagram of the proposed model is given
in Fig. 1 and consists of four blocks, namely, a base network,
a learnable smoothing layer, CEL, and PEL. The base network
and the learnable smoothing layer contain all the learnable
parameters in the overall model that is trained to minimize the
training loss function, while CEL and PEL ensure the physical
consistency of the predictions. The output of the last block of
the model (PEL) is compared with the training data and the
error is backpropagated to update the learnable parameters.
CEL and PEL are derived to ensure that training and inference
complexity of the NN is not substantially increased by not
increasing the number of learnable parameters, vanishing or
exploding gradients, or increased computational complexity.

A. Base Network

The base network contains the majority of the learnable
parameters in the model. It uses the frequency as output formu-
lation where each frequency point is considered to be a sepa-
rate output dimension to be predicted. Hence, the base network
is responsible for taking the input parameters of the model
and upsampling it to output the multiport frequency response.
As we are interested in broadband responses at a very small
frequency step size, the output of this block becomes high-
dimensional. Utilizing conventional fully connected networks
for the base network then results in a significantly increased
number of learnable parameters, which can cause overfitting.
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Fig. 2. Overall architecture of the S-TCNN model as the base network.

To address the high dimensionality without giving up the
representation capability, the known structure in the data can
be exploited. For the case of broadband frequency responses,
the structure we have is the spatial correlation of the data
points in the frequency axis, i.e., neighboring frequency points
being highly correlated with each other.

In this article, we therefore propose to use S-TCNN [19]
as the base network of our model. The overall architecture
of S-TCNN is given in Fig. 2, where input parameters are
first passed through fully connected layers to transform the
input space into a latent space that best describes the desired
response. Then, this latent representation is upsampled using
the 1-D transposed convolutions to form the high-dimensional
frequency response. This corresponds to a learnable upsam-
pling operation that preserves the spatial correlation in its
output by considering a particular input as the result of a cross
correlation operation between the output and the learnable
kernel. We refer readers to [19] for a more detailed description
of the S-TCNN architecture and comparison to a regular
convolutional-type network.

Formally, transposed convolution operation done by a single
kernel is equivalent to a zero-padded cross correlation and can
be written as matrix multiplication in the form of a Toeplitz
matrix [28]. Let x = [x1, x2, . . . , xm ]T be the m-dimensional
input vector and h = [w1, w2, . . . , wk ]T be the convolution
kernel of size k. The output y can then be written as

y = f (h ∗ᵀ x) = f (H ᵀx) (10)

with

y =

⎡⎢⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎥⎦, H ᵀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 0 · · · 0

w2 w1
. . .

...
... w2

. . . 0

wk
...

. . . w1

0 wk
. . . w2

...
. . .

. . .
...

0 0 · · · wk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎣
x1
x2
...

xm

⎤⎥⎥⎥⎦

(11)

where ∗ᵀ is the transposed convolution operation, f (·) is the
nonlinear activation function, and n = m + k − 1 is the
dimensionality of the resulting operation. It should be noted
that similar to the number of neurons in a fully connected

layer, the size and number of kernels are hyperparameters of
the S-TCNN model that should be tuned to capture different
patterns in the frequency response, such as flat regions, ripples,
and resonances. The upsampling ratio of a particular layer can
be increased by making use of strided transposed convolutions,
where zeros are padded between input points along the con-
volution axis [28]. This allows achieving higher upsampling
ratios with a less number of layers and helps control the depth
of the network.

As the output of the base network is to be passed into
subsequent layers and not compared with the training data
directly, it becomes a latent variable. For reasons that will
become clearer in the later sections, we treat this latent variable
to be the extrapolated version of the real part of the predicted
S-parameter matrix. The overall operation of the base network
can then be written as

yBN = fBN(x) (12)

where x denotes the input parameters and yBN is the output
with size Nd × Dy ×(N M +1), with Nd is the number of data
in a batch, Dy is the number of output channels, i.e., unique
elements in S-parameter matrix, N is the number of frequency
points in the training data, and M is the extrapolation factor.
It should be noted that in general, we will be working with
P-port reciprocal systems, and hence, the number of channels
will be equal to Dy = 2(P(P + 1)/2) unless additional
symmetry exists, and the factor of 2 comes from real and
imaginary decompositions. The output yBN is forwarded to
the learnable smoothing layer.

B. Learnable Smoothing Layer

Although strided convolution operation allows to increase
the upsampling ratio and reduce the number of layers, it can
result in uneven overlaps where parts of the output vector are
calculated using a larger portion of the input vector than others.
This effect is recognized as the checkerboard artifacts [29].
Although the network can ideally learn and adjust its weights
to cancel out the checkboard artifacts, similar to [29], we have
observed that it is not completely avoided when predicting the
frequency responses.

In practice, one can smoothen the frequency response in the
inference stage after the network forms its output. However,
it is not possible to know which type of filter, and with
what settings, should be used for this purpose. In this article,
we therefore propose to use an adaptive Gaussian smoothing
filter as part of the overall network and assign the standard
deviation of it as a learnable parameter of the model for which
we learn during the training just as another weight or bias in
the base network.

In particular, we use a separate filter for each channel of
yBN. This can be written as

ySL = yBN � 1√
2πσi

e
− −l2

2σ2
i (13)

where

σ = [σ1, σ2, . . . , σi , . . . , σDy ] (14)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 09,2020 at 23:05:13 UTC from IEEE Xplore.  Restrictions apply. 



4294 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 10, OCTOBER 2020

Fig. 3. Illustration of the truncation error and the effect of extrapolation
when reconstructing the imaginary part of RL from the real part.

and l denotes the discretization grid to compute the Gaussian
kernel and σi is the learnable standard deviation of the
Gaussian kernel per channel. � denotes the channelwise
convolution operation, i.e., separate filtering of each frequency
response in channels of yBN. In NN terminology, the smooth-
ing layer is equivalent to a channelwise 1-D convolutional
layer with no bias and whose weights are fixed to the Gaussian
kernel as calculated in (13). It should also be noted here that
as the transposed convolution operations used by S-TCNN
explicitly exploit the spatial correlation along the frequency
axis, it ensures the continuity of the predicted frequency
responses. When combined with the learnable smoothing layer,
the output of this block becomes a smooth and continuous
response.

C. Causality Enforcement Layer

The Kramers–Kroning relations given in (5) suggest that in
order to make that the NN generated S-parameters represent a
causal system, and it is sufficient to only predict the real part
and construct the imaginary part using the Hilbert transform.
However, the S-parameter data used for training are bandlim-
ited and tabulated, leading to truncation and discretization
errors that need to be accounted for. In other words, if we
construct the imaginary part from the real part in the given
frequency range, one can never achieve a zero reconstruction
error. This is shown in Fig. 3, where the reconstructed imag-
inary part of the return loss (RL) element begins to deviate
from the actual imaginary part as the frequency approaches
the maximum available frequency.

In order to minimize the truncation error and maximize
numerical accuracy of the NN, we propose to extrapolate the
real part of the S-parameters. Let the broadband S-parameters
used for training data be written as

Si j ( f ) = Uij ( f ) + j Vi j ( f )

f ∈ � = [ fmin, fmax] (15)

where U( f ) and V ( f ) are the real and imaginary parts,
respectively. The Hilbert transform integral in (5) can then

be split into in-band and out-of-band as

V ( f ) = −1

π

[∫
f ∈|�|

U( f̃ )

f − f̃
d f̃ +

∫
f �∈|�|

U( f̃ )

f − f̃
d f̃

]
. (16)

The principal of analytic continuation [30] states that it is
possible to find U( f ) for f > fmax and f < fmin since such
information is contained within the observed part of V ( f )
in the form of out-of-band integration in (16). As NNs are
universal approximators, it is possible to find an extrapolated
response such that the in-band reconstruction has minimum
error. This is shown in Fig. 3, where the extrapolated response
found by the NN minimizes the truncation error of the
conventional Hilbert transform.

Here, we exploit these properties and use the base network
to extrapolate U( f ) until M fmax, where M is the extrapolation
factor, and backpropagate through in-band reconstruction error
to minimize the effect of truncation error. In order to achieve
this, we treat the (N M + 1) point output of the base network,
yBN in (12), as the extrapolated real part of the S-parameter
frequency response, where the addition of 1 represents the dc
point. The input of the CEL is then the smoothened version
of this quantity, ySL in (13).

As the Hilbert transform integral, and its derivatives with
respect to the weights of the base network, is to be calculated
during the training of the overall model, the direct numerical
integration approach is not suitable due to the requirement of
specialized integration kernels to handle singularities in the
denominator. In addition, the direct integration needs to be
evaluated at every discrete frequency point of every channel of
ySL for every training data, which can lead to significant com-
putational overhead during both the training and inference of
the NN. Another well-known approach to compute the Hilbert
transform is through forming the discrete analytical signal
of the given sequence, ySL, through fast Fourier transform
(FFT) [31]. In this article, we adopt the FFT-based approach
since it is highly computationally efficient as it allows for
batched computation and is a differentiable operation. Note
that FFT-based computation effectively assumes the frequency
domain signal to be periodic. However, the symmetricity of the
real part of the frequency response indicates the endpoints of
the discrete sequence to be equal to each other. This eliminates
the sharp discontinuity between the two consecutive periods
of the frequency response that would otherwise cause ripple
in the Fourier domain and, thus, validates the periodicity
assumption.

In particular, we first create the double-sided spectrum of
ySL. As ySL is of size Nd × Dy × (N M + 1) where the third
axis represents the real part of the frequency spectrum, this can
be done by copying positive frequency points to the negative
parts as

ỹ(i, j,:)
SL = [

y(i, j )
SL [0, . . . , N M], y(i, j )

SL [N M − 1, . . . , 0]] (17)

where ỹSL is the double-sided spectrum of size Nd × Dy ×
2(N M + 1) − 1 and the superscript (i, j, :) denotes that the
operation is done in the third axis for every (i, j) pair. Noting
that ỹSL is always an odd-sized sequence along the frequency
axis, we take FFT of ỹSL along the third axis to transform
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from frequency domain into a new ν-domain and create the
analytical part as

z̃(i, j,:)
SL = −H

{̃
y(i, j,:)

SL

}
= − Im{F−1{Z(i, j )[ν]}} (18)

where

Z(i, j )[ν] =

⎧⎪⎨
⎪⎩

Ỹ(i, j )[0], ν = 0

2Ỹ(i, j )[ν], 1 ≤ ν ≤ (N M + 1)

0, (N M + 1) < ν ≤ 2(N M+1)−1

(19)

and Ỹ(i, j )[v] = F {̃y(i, j,:)
SL } is the discrete Fourier transform

of ỹ(i, j )
SL in the ν-domain and the superscript (i, j, :) denotes

the operation is done along the third axis. The operation
in (19) corresponds to creating the discrete analytic signal
of ỹSL, which is one-sided in ν-domain as Z(i, j )[ν] = 0
for ν < 0. After getting rid of redundant negative frequency
points, i.e., n > (N M + 1), the resulting z̃SL is of size
Nd × Dy × (N M + 1), which represents the imaginary part of
S-parameter response at a frequency step size of fs for every
data point.

In order to address the discretization error, fs can be
arbitrarily decreased at this step of the NN by a factor of K by
interpolating both ySL and zSL. However, such an interpolation
can disrupt the analytic behavior of the output and result in a
noncausal response. Here, to preserve the analytic behavior of
the output, the interpolation should preserve the orthogonality
of ySL and zSL, written as

N M∑
n=0

y(i, j )
SL [n]z(i, j )

SL [n] = 0. (20)

Since the spectrum of Z(i, j )[ν] is one-sided, one can arbitrarily
pad zeros to Z(i, j )[ν] for ν < 0, which would preserve the
orthogonality condition in (20) while interpolating ySL and
zSL [31]. In order to reduce the frequency step size to fs/K ,
the procedure in (18) and (19) can be rewritten as

ỹ(i, j,:)
CEL = K Re{F−1{Z(i, j )[ν]}}

z̃(i, j,:)
CEL = −K Im{F−1{Z(i, j )[ν]}} (21)

where

Z(i, j )[ν] =

⎧⎪⎨
⎪⎩

Ỹ(i, j )[0], ν = 0

2Ỹ(i, j )[ν], 1 ≤ ν ≤ (N M + 1)

0, (N M + 1) < ν ≤ (2N M K +K ).

(22)

After the analytic signal is formed, we truncate both ỹ(i, j,:)
CEL

and z̃(i, j,:)
CEL for n > (N K + 1) to get rid of the extrapolated

part since the out-of-band predictions are not of interest in this
article.

The overall block diagram of CEL is given in Fig. 4, which
can be written as a parameterless NN layer that takes a real
tensor of size Nd × Dy × (N M + 1) as input and constructs
a complex output that is the frequency response of a causal
system with a frequency step size of fs/K as

SCEL
(i, j )[n] = ỹ(i, j )

CEL[n] + j z̃(i, j )
CEL[n] (23)

Fig. 4. Block diagram summary of the operations done in CEL.

where ỹ(i, j,:)
CEL and z̃(i, j,:)

CEL are calculated as in (21) and (22)
and truncated, and SCEL is the Nd × Dy × (N K + 1) sized
complex output tensor of the CEL, which is forwarded to PEL.
It should be noted that K and M are hyperparameters of the
overall network architecture, just like the number of layers and
neurons in a regular NN, and should be chosen based on the
application.

D. Passivity Enforcement Layer

As explained in detail in Section II, the NN predicted
S-parameters are passive if and only if the maximum singular
value condition in (9) is satisfied. In order to check this
condition, the flattened complex S-parameter representation,
SCEL, of size Nd × Dy × (N K + 1) should be reshaped into
the batched matrix form of Nd × P × P × (N K + 1) for a
P-port network, where the first and last dimensions are the
numbers of data and frequency points, respectively.

Since the reshaped SCEL matrices are complex-valued and
NN training and inference with complex values are not possi-
ble, we use isomorphism [32] to transform SCEL as

SP =
[

Re{SCEL} Im{SCEL}
− Im{SCEL} Re{SCEL}

]
(24)

where SP is of size Nd × 2P × 2P × (N K + 1). This
representation allows using regular NN computations and
other linear algebraic operations for complex-valued matrices.
In order to check and enforce passivity to SP, one needs
to determine its maximum singular value, σ1, at every data
and frequency point. However, most efficient SVD algorithms
contain sequential bidiagonalization operations and cannot be
efficiently parallelized. This would add a significant compu-
tational overhead to the training of the NN since, in order to
characterize passivity of every 2P × 2P matrix in SP, one
needs to perform Nd (N K + 1) sequential SVD and gradient
operations at every iteration of the training process.

To limit the computational overhead, we propose to use
an upper bound to σ1 that can be calculated using only
matrix–matrix multiplications and Hadamard products, hence,
can be massively parallelized [33]. Let

C( f ) = tr(SH ( f )S( f ))

D( f ) = tr((SH ( f )S( f ))2) (25)

where tr(·) is the trace operator. An upper bound to maximum
singular value of a P × P S-parameter matrix can then be
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calculated as

σ1( f ) ≤ σ̂1( f )

where

σ̂1( f ) =
√

C( f )

P
+
(

P − 1

P

(
D( f ) − C( f )2

P

))0.5

. (26)

To minimize the number of matrix–matrix multiplications that
has greater than quadratic time complexity, C( f ) and D( f )
can be calculated efficiently using Hadamard products as

C( f ) =
P∑

i=1

|Sii ( f )|2 (27)

D( f ) =
P∑

i, j=1

[(SH ( f )S( f )) ◦ (S( f )SH ( f ))]i j (28)

where ◦ is the Hadamard product. The proof of the upper
bound follows from the bounds for eigenvalues derived using a
Cauchy–Schwarz-type inequality [34] and the fact that σ1( f )
is the square root of the largest eigenvalue of SH ( f )S( f ).
Experiments and further details regarding the tightness of this
bound for various types of matrices can be found in [33].
For typical S-parameter matrices of interest in this article,
the average relative deviation between the maximum singular
value and its upper bound is found to be approximately 3%.
We further emphasize here that (27) and (28), thereby (26),
are simple multiplication and accumulation operations, hence,
can be easily parallelized both during the training and
inference.

Once σ̂1( f ) is obtained, there are several ways to enforce
passivity to every matrix in SP. One way is to find σ̂max =
max(σ̂1( f )) for every data point and divide the whole fre-
quency spectrum of each element in SCEL by σ̂max if it
is greater than 1 [22]. Note that this enforcement would
increase the numerical error between the predicted and actual
S-parameter responses. As this enforcement is to be done
during the training of the network, weights and biases of the
base network are automatically adjusted to minimize these
deviations. However, we have observed that, in practice, this
results in overreducing σ1( f ) near dc point, where losses are
minimal.

Another approach is to perform frequency-dependent
enforcement, i.e., divide SP( f ) by σ1( f ) if passivity is vio-
lated. This is shown to be the optimal enforcement in the fre-
quency domain in the sense that SP( f ) is minimally perturbed
at every frequency point [35]. However, frequency-dependent
enforcement results in disrupting Kramers–Kronig relations,
and hence, the resulting S-parameters become noncausal.

In this article, we propose a new causality-preserving
passivity enforcement technique that can be utilized in an
NN environment. We view the frequency-dependent passivity
enforcement operation as filtering in the frequency domain,
which is written as

SPEL( f ) = SCEL( f ) 
 �( f ) (29)

where �( f ) is the complex-valued passivity enforcement filter
of size Nd × (N M +1) and 
 operator is used to indicate that

Fig. 5. Illustration of constructing the proposed minimum-phase passivity
enforcement filter. (a) Singular value to be filtered. (b) Magnitude and real
and imaginary parts of the filter.

the filtering is done along the frequency axis of each channel
of SCEL at every data point. In order to inflict minimal changes
to SCEL( f ), the desired magnitude spectrum of �( f ) at each
data point can be written as

|�( f )| =
⎧⎨
⎩

1

σ̂1( f )
, for σ̂1( f ) > 1

1, for σ̂1( f ) ≤ 1.
(30)

It has been shown that if �( f ) is a minimum-phase filter
and SCEL is the frequency response of a causal function,
SPEL also represents the frequency response of a causal
system [23].

A minimum-phase frequency response can be formed solely
from its magnitude spectrum [36]. Here, we propose to exploit
these to construct a minimum-phase passivity enforcement
filter from the desired magnitude spectrum in (30) as

�( f ) = |�( f )|e jθ( f )

θ( f ) = H {log |�( f )|} (31)

where log(·) is the natural logarithm operator and the Hilbert
transform is taken using the FFT-based approach outlined
in (17)–(19). An example of a complex-valued passivity
enforcement filter constructed using the proposed approach is
also given in Fig. 5.
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Fig. 6. Block diagram summary of the operations done in PEL.

Overall operations that PEL performs are summarized
in Fig. 6. Similar to CEL, PEL can be written as a
parameterless NN layer that takes Nd ×Dy×(N K+1) complex
tensor as input and constructs a complex tensor that is the final
predicted response as

Ŝ[n] = f (SCEL[n])
= SCEL[n] 
 �[n], n = 0, . . . , N K (32)

where Ŝ[n] is the Nd × Dy × (N K + 1) sized complex output
tensor that represents the predicted broadband S-parameters of
a causal and passive system.

E. Training Methodology

The training of the proposed network architecture can be
performed using the conventional backpropagation method
since all the operations are differentiable. Although CEL and
PEL are both comprised of computationally efficient and par-
allelizable operations, batched matrix calculations in (26)–(28)
can create some computational overhead during the training.

In order to further minimize this overhead, we propose using
a two-step training methodology. As the S-parameters used for
training data are passive at all frequencies, minimization of
the training error corresponds to making the singular values
of the predicted S-parameters close to their actual values
during the training process. Exploiting this, for the first L f

iterations, i.e., gradient updates, of the total L iterations
allocated for the training process, we bypass PEL and directly
compare SCEL with the training data to calculate the error.
We then activate PEL to guarantee passivity, causing a slight
jump in the training error due to nonpassivities, which is then
minimized for the remaining (L − L f ) iterations. For the
application examples given in Sections IV–VI, we have found
that this results in almost identical training and test error, but
with a lower computational time used for the training.

As for the training error metric, instead of the conventional
mean-squared error (MSE) loss, we propose using the modified
loss function that is more suitable for predicting frequency
responses [19], which can be written as

L =
√√√√ 1

Nd Dy

Nd∑
n=1

Dy∑
d=1

L(n,d)
f (33)

Fig. 7. Geometry of the differential PTH structure in package core.
(a) Isometric view. (b) Cross section [22].

where

L(n,d)
f =

√√√√ 1

N

N∑
m=0

(S(n,d)[m] − Ŝ(n,d)[mK ])2

and S(n,d)[m] is the frequency response for the nth data point
of the dth channel of the training S-parameters at the mth
frequency point, and the factor of K in the predicted response,
Ŝ(n,d)[mK ], comes from (21) and (22) where frequency step
size of the predictions is reduced by a factor of K . The loss
function in (33) is based on the scaled �2−norm of the error
between the predicted and the actual frequency responses,
averaged over Nd × Dy different frequency responses in the
training set. Compared with the conventional MSE loss, this
corresponds to response-to-response error calculation rather
than a comparison at individual frequency points. We refer
readers to [19] for a more detailed explanation of the loss
function and its comparison to MSE loss.

IV. APPLICATION I: DIFFERENTIAL PTH PAIR

IN PACKAGE CORE

The first application chosen to demonstrate the proposed
method is modeling a differential PTH pair in package core
along with the microvias that connect immediate build-up
(BU) layers to the package core. Such structures are common
in off-chip high-speed channels and often times can be the
bottleneck that limits the total channel bandwidth. Hence, it is
important to optimize its design to minimize distortions in
the signal. The objective here then is to learn a causal and
passive mapping from the geometrical parameters of the PTH
structure to four-port single-ended broadband S-parameters
such that it can be later used in time-domain simulations
to capture its effect on high-speed signaling. The input
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TABLE I

CONTROL PARAMETERS OF THE PTH STRUCTURE

parameters comprise a 13-D space and their corresponding
bounds are given in Fig. 7 and Table I. Note that the large
sample space is chosen to contain various technology nodes
to avoid creating different models for different manufacturing
technologies.

A. Simulation and Model Setup

In order to create the predictive model, 680 samples based
on Latin hypercube sampling (LHS) are determined. These
are then fed into a full-wave EM solver to generate their
corresponding S-parameters between 0.1 and 100 GHz at
100-MHz frequency steps, where the structure is excited using
coaxial waveports at the antipads of microvias. After the data
are collected, 550 out of 680 samples are used for the training
of the model. As the PTH structure is a partially symmetric
and reciprocal system, the target data to be trained, i.e., output
channels of the model, is determined to be the real and
imaginary parts of the frequency responses of S11, S12, S13,
S14, S33, and S34, corresponding to a total of 12 000 output
dimensions. We use K = 2 in (21) and M = 1.5 in (19) to
reduce the frequency step size of the predicted response to
50 MHz. The model then predicts the S-parameters from dc
up to 100 GHz at 50-MHz steps as the extrapolated part is
truncated.

B. Results

We compare the proposed methodology (S-TCNN + CEL +
PEL) with S-TCNN that also uses the learnable smoothing
layer and a deep fully connected NN (DNN) that considers
frequency as an additional input parameter to the model.
The metric to assess the numerical accuracy for both models
is chosen as the normalized mean squared error (NMSE)
over each frequency response in the test set, which is
given as

NMSE = 1

Nd Dy
×

Dy∑
d=1

Nd∑
n=1

×
⎛⎜⎝ ∑N

m=1(Sn,d [m] − Ŝn,d [mK ])2∑N
m=1

(
Sn,d [m] − 1

N

∑N
m=1 Sn,d [m]

)2

⎞⎟⎠ (34)

TABLE II

COMPARISON OF MODELS ON TEST DATA FOR PTH MODEL

Fig. 8. Comparison of predicted S-parameters with 3-D EM simulations for
different test cases of PTH model. (a) and (b) Real and imaginary parts of
differential IL. (c) and (d) Real and imaginary parts of differential RL.

where Nd = 130 is the number of validation data and
Dy = 12 represents the real and imaginary parts of the learned
S-parameters.

Table II summarizes the NMSE values for each model
along with the causality metrics and passivity violations of the
predicted S-parameters that are calculated using a commercial
tool. In order to assess the predictive accuracy, we trained
each model ten times using randomly initialized weights and
report the mean and standard deviation of the NMSE values
in Table II. The DNN model performed significantly worse
compared with the other models and had an average NMSE
of 9.42%, whereas S-TCNN and S-TCNN + CEL + PEL
models performed similarly with an average NMSE of 5.08%
and 5.34%, respectively. Predicted real and imaginary parts of
differential insertion loss (IL) and RL terms for different test
cases are also shown in Fig. 8.

In terms of physical consistency, S-parameters predicted
by S-TCNN and DNN had average causality quality met-
rics of 11.17% and 7.49%, respectively, and none of the
S-parameters predicted by either model were causal, whereas
all the S-parameters predicted by the proposed model were
found to be causal with a quality metric of 100.0%. We further
characterize the maximum singular values of S-parameters
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Fig. 9. Passivity characterization of the predicted S-parameters for every
case in the test set. (a) S-TCNN. (b) S-TCNN + CEL + PEL.

predicted by each model for every case in the test set.
We observe that S-TCNN + CEL + PEL guarantees passivity
of the predicted S-parameters as σ1 of all predictions are less
than 0.99, while the predictions done by using S-TCNN and
DNN do not necessarily result in a passive response as most
of the predicted responses have σmax > 1. The maximum
singular values of the predicted S-matrices for S-TCNN and
S-TCNN + CEL + PEL model are further given in Fig. 9 to
show the effect of PEL on the passivity.

In terms of inference run times, it took 0.13 s for the
S-TCNN model to generate 1000 frequency responses com-
pared with 0.91 s for S-TCNN + CEL + PEL and 0.26 s
for DNN, showing that the operations done in CEL and
PEL have minimal computational overhead to the overall
model. Note that for a fair comparison, we have tuned the
hyperparameters of all the models to achieve the highest
prediction accuracy. The best-performing DNN model had
132 632 learnable parameters and consisted of three hidden
layers with 250 neurons in each layer (14-250-250-250-12).
The S-TCNN model had 43 048 learnable parameters and
consisted of two fully connected layers with 30 neurons
(13-30-30), followed by five 1-D transposed convolutional
layers, each having 30 channels. The kernel size and stride
for these layers were 32, 4, 4, 4, and 2 and 1, 2, 2, 4,
and 2, respectively. The base network of the S-TCNN +
CEL + PEL model had the same S-TCNN architecture except
for a stride of 3 that was used for the last layer. We have
implemented each model using PyTorch [37], and for all
the models, we used exponential linear units (ELUs) [38]
as the activation function. The training was performed using
the Adam optimizer [39] with an initial learning rate (LR)
of 0.01 while reducing LR by ×0.5 at every 500 iterations
for a total of 3000 gradient updates. We have used the
same model settings for the applications in the following
sections.

To show the significance of physical consistency of the
predicted S-parameters, we use the predictions of the two
best-performing models (S-TCNN and S-TCNN + CEL +
PEL) in a subsequent time-domain characterization and com-
pare with the data obtained from 3D EM simulations.
We perform a differential time-domain reflectometry (TDR)
and transmission (TDT) using a 15-ps 0%–100% rise time
cosine-edge step and pulse as differential excitation, respec-
tively. These are common time-domain characterization tech-

Fig. 10. Time-domain characterization of predicted S-parameters for excita-
tions with 15-ps 0%–100% cosine-edge rise time. (a) TDR. (b) TDT.

niques for high-speed channel analysis and their quality is
of utmost importance to make design choices. The results of
these characterizations are given in Fig. 10. The TDR simu-
lation in Fig. 10(a) clearly shows that S-parameters predicted
by the S-TCNN are noncausal and significantly distort the
characterization since a substantial impedance change can be
observed before the structure is excited at t = 0, which is
not present for S-parameters predicted by the proposed model.
A similar behavior is also observed for the TDT simulation
in Fig. 10(b), where a substantial input power is leaked
before the excitation, which can cause nonrealistic intersymbol
interference (ISI) when a long bit pattern is simulated. The
results clearly show that although predicted S-parameters have
the same level of numerical accuracy with respect to the
3-D EM simulation, pure NN predicted S-parameters are not
physically consistent and cannot be used in the subsequent
simulations.

V. APPLICATION II: DIFFERENTIAL STRIPLINE

PAIR IN PACKAGE

The second application we choose in this article is para-
meterizing the frequency response of a differential stripline
structure in package. Such transmission lines are commonly a
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Fig. 11. Geometry of the differential stripline pair in package. (a) Top view.
(b) Front view. (c) Side view.

TABLE III

CONTROL PARAMETERS OF THE STRIPLINE STRUCTURE

TABLE IV

COMPARISON OF MODELS ON TEST DATA FOR STRIPLINE MODEL

part of the chip-to-board escape route in high-speed channels,
and their impedance can greatly affect the achievable com-
munication bandwidth. Since their return path and transition
to microvias are nonuniform, they need to be characterized
using computationally expensive 3-D EM simulations. In this
section, we therefore derive a parametric model to predict
four-port single-ended S-parameters such that it can be later
used for detailed parametric analysis. The geometry of the dif-
ferential stripline pair is given in Fig. 11 and is parameterized
using eight parameters as in Table III.

A. Simulation Setup

Similar to the PTH application in Section IV, we deter-
mine 940 samples based on LHS and simulate broadband
S-parameters for each sample between 0.1 and 100 GHz at
100-MHz steps, where the ports are defined at front of the
stripline and antipads of the microvias; 750 of 940 samples
are used for training, and the rest is used for validation. The
output parameters, output dimensionality, and settings of the
model are taken as the same as described in Section IV-A.

Fig. 12. Comparison of predicted S-parameters for different test cases of
stripline model. (a) and (b) Real and imaginary parts of differential IL. (c) and
(d) Real and imaginary parts of differential RL.

Fig. 13. Comparison of differential TDR of predicted S-parameters for the
stripline model for a cosine-edge step with 15-ps 0%–100% rise time.

B. Results

The results are summarized in Table IV. The DNN model
had an average NMSE of 4.73% compared with 3.08% and
2.47% for S-TCNN and S-TCNN + CEL + PEL, respec-
tively. Fig. 12 further compares the predicted differential IL
and RLs to 3-D EM simulations. It can be seen that the
convolutional-type models captured both smooth and resonant
parts of the frequency response, whereas the DNN model had
lower accuracy around the resonances. Predicted S-parameters
using the S-TCNN and DNN model had an average causality
quality metric of 13.86% and 8.24%, respectively, compared
to 100.0% with the proposed model. For the best-performing
two models, the effect of noncausality is further demonstrated
in the differential TDR plot for a test case in Fig. 13.

As the transmission line structure has a linearly increasing
loss trend, the maximum singular value of its S-parameters
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Fig. 14. Geometry of the differential BGA structure in package-to-board
transition. (a) Top view. (b) Cross section.

linearly decreases as well. The high predictive quality of the
models corresponds to capturing this linear trend very accu-
rately. This results in almost passive S-parameter predictions
for S-TCNN and DNN models as the range of σ1 is bounded
by 1.004 and 1.008, respectively. However, the passivity is not
guaranteed for further predictions that are not in training and
test sets, whereas the proposed model guarantees this as shown
by the range of σ1 being bounded by 1.000 for the test set.
The inference time for each model to generate 1000 broadband
S-parameter shows the minimal computational overhead prop-
erty of the proposed layers.

VI. APPLICATION III: DIFFERENTIAL BGA PAIR AND

CASCADE ANALYSIS

The third application to demonstrate the effectiveness of the
proposed model is a differential microvia to BGA transition
for package-to-board connections. These structures are the
last step of the chip-to-board interconnects. Due to the rela-
tively larger antipad diameters, such transitions can be highly
capacitive and disrupt the signaling quality when operating
at higher frequencies. As such, they need to be carefully
designed to ensure that the desired bandwidth can be achieved.
We therefore derive the parameterized model of the BGA
structure given in Fig. 14, where its geometry is parameterized
using nine variables within the bounds given in Table V.
The output parameters are the same as described in the PTH
section, which represents 12 000 dimensions.

Once the BGA model is verified, we then use it in cascade
with the models for stripline and PTH to analyze the full
vertical package-to-board transition in time domain with the
goal of demonstrating the significance of physical consistency
of each block used in the cascade analysis.

TABLE V

CONTROL PARAMETERS OF THE BGA STRUCTURE

TABLE VI

COMPARISON OF MODELS ON TEST DATA FOR BGA MODEL

Fig. 15. Comparison of predicted S-parameters with 3-D EM simulations
for different test cases of BGA model. (a) and (b) Real and imaginary parts
of differential IL. (c, d) Real and imaginary parts of differential RL.

A. Simulation Setup

For the BGA model, a total of 830 samples are collected
and characterized between 0.1 and 100 GHz at 100-MHz steps
using 3-D EM solver; 700 of such simulations are used to train
the predictive model and remaining 130 samples are used for
validation. The ports are defined at antipads of microvias and
bottom of the BGA, i.e., at the circular cross section, where a
perfect electric conductor (PEC) is used as the reference for
the BGA ports.
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Fig. 16. Comparison of differential TDR of predicted S-parameters for the
BGA model for a cosine-edge step with 15-ps 0%–100% rise time.

B. Results

The comparison results are given in Table VI. Similar to the
previous application examples, the DNN model had the worst
predictive accuracy with an average NMSE of 4.74%, where
convolutional-type models performed significantly better with
an average NMSE of 2.17% and 2.46% for S-TCNN and
S-TCNN + CEL + PEL, respectively. A further comparison of
actual and predicted S-parameters is also given in Fig. 15. The
computational overhead to inference time required to predict
1000 frequency responses is also observed to be minimal for
the BGA model.

S-TCNN and DNN predicted S-parameters had an average
causality quality metric of 13.71% and 9.83%, and the max-
imum σ1 was calculated to be 1.109 and 1.277, respectively,
which shows significant causality and passivity violations.
All the predicted S-parameters for the proposed model were
characterized as completely causal and passive. The effect
of physical consistency is further shown in Fig. 16 via a
differential TDR simulation.

C. Cascade Analysis

After the models for stripline, PTH and BGA are derived
and their accuracies are verified, and they can be cascaded
together to obtain S-parameter predictions for the full ver-
tical package-to-board transition as in Fig. 17. This allows
for analyzing the TDR of the complete vertical transition
that is required to perform a DSE and/or UQ to determine
the most feasible design parameters to maintain a certain
impedance along the transition. This TDR analysis given
in Fig. 18 shows that as the proposed technique produces
causal S-parameter blocks, the resulting TDR from the cascade
analysis is causal as well and has very good agreement
with the full-wave simulation. The TDR obtained through
S-parameters predicted by the S-TCNN model without CEL
and PEL, on the other hand, shows noticeable causality
violations.

Fig. 17. Schematic for analyzing the impedance of package-to-board
transition by cascading predicted S-parameters.

Fig. 18. TDR comparison for cascaded analysis for a cosine-edge step input
with 15-ps 0%–100% rise time.

VII. CONCLUSION

In this article, we have shown that NN models that are used
to predict S-parameters do not guarantee the physical consis-
tency of predictions. Focusing purely on reducing numerical
accuracy when creating the NN is therefore not suitable for
predicting frequency responses. To this end, we have proposed
CEL and PEL, which ensures that the predictions represent the
frequency response of a causal and passive system.

In CEL, we have shown that truncation and discretiza-
tion errors limit the direct use of Kramers–Kronig relations,
and their effect can be minimized by NN-based extrapola-
tion and causality-preserving interpolation through exploiting
properties of analytic signals. In PEL, we have proposed a
new minimum-phase passivity enforcement filter to perform
frequency-dependent passivity correction while not disrupting
causality properties. Furthermore, we have used an easily
parallelized and computationally efficient upper bound to
maximum singular value for the complex S-parameter matrix
to avoid costly SVD operations to minimize computational
overhead.

We have demonstrated the effectiveness of our proposed
model for three different applications, where the goal was
to parameterize a four-port single-ended S-parameter matrix
from dc to 100 GHz, which corresponds to 12 000 output
dimensions. In all of the applications, the predictive accuracy
of S-TCNN models with and without CEL and PEL was highly
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accurate when compared with the 3-D EM simulations and
were very similar to each other. However, in the absence of
PEL and CEL, the predicted S-parameters showed significant
causality and passivity violations with causality quality metrics
in the range of 11.17%–13.86% and maximum singular values
in the range of 1.004–1.131 for the three applications. On the
other hand, the proposed model has resulted in 100.0% causal
and passive S-parameters for all the test cases of all three
application examples. The effect of physical consistency for
each application is further demonstrated by using predicted
S-parameters in the subsequent TDT and TDR simulations.
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