

Design and Demonstration of Integrated Passive Components Test Vehicle for 5G and mm-Wave Applications

Students: Muhammad Ali, Atom Watanabe, Tong-Hong Lin

Faculty: Prof. Raj Pulugurtha, Prof. Manos Tentzeris, Prof. Rao. R. Tummala, Prof. M. Swaminathan

Industry Partners: Samsung, Qualcomm, AGC, Ajinomoto, Taiyo, Corning

Goals and Objectives

Model, design, fabricate and characterize high-performance, miniaturized and integrated passive components for 5G and mm-wave applications (28 and 39 GHz bands) with next generation of package substrates such as laminated glass

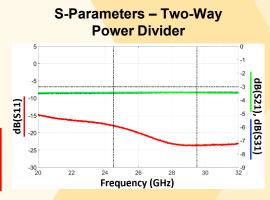
- Filters and Power Dividers
- Diplexers and Couplers

The research objectives for diplexers are given below:

	Objectives	Prior Art	Challenges	Tasks to Address Challenges
Task-1: Design	 Filter Design: Doubly- Terminated Passband: <3 dB Return Loss: <15 dB 	 Filter Design: Singly- Terminated 	Design doubly-terminated filters and configure them as diplexers	 Design filters to achieve lower in-band insertion loss and higher out-of-band rejection using advanced structures and high-Q resonators Achieve optimum trade-off between filter performance and footprint in simulation. Optimize for diplexer design
Task-2 Miniaturization	• Overall Size: $<0.5\lambda_0^2$	• Overall Size: $>2\lambda_0^2$	 Precise linespace features required for excellent model-to-hardware correlation 	 Achieve optimum tradeoff between process capability, footprint and performance
Industry Advisory Roard	(IAD)			

Prior Work

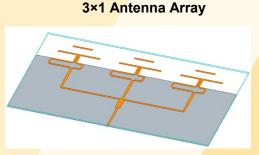
Power Dividers for 28 GHz 5G band

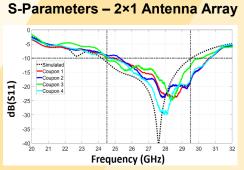

Objectives: Model, design, fabricate and characterize power dividers with small footprint for 5G and mm-wave applications on advanced materials such as glass.

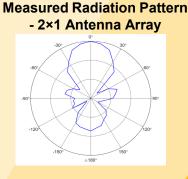
Results: Power Dividers configured as Yagi-Uda antenna arrays are demonstrated in two equal-split ratios: twoand three-way with corresponding antenna arrays

- Added insertion loss of 0.45-dB for two-way and 0.65-dB for three-way T-Junction based power dividers with return loss <15-dB in the passband
- •Two-way power divider has a footprint smaller than <λ₀×λ₀ with just 147-μm z-height.

Two-way Power Divider

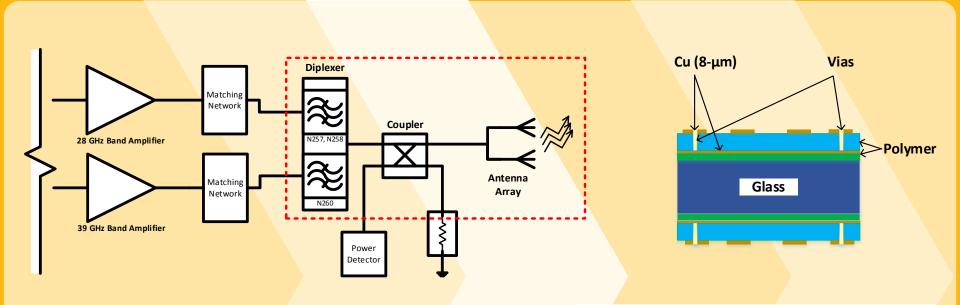

Three-way Power Divider

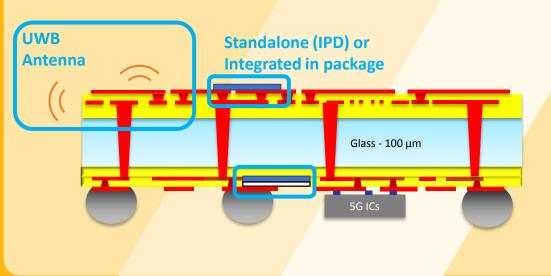




Fabricated Coupon with

2×1 Antenna Array

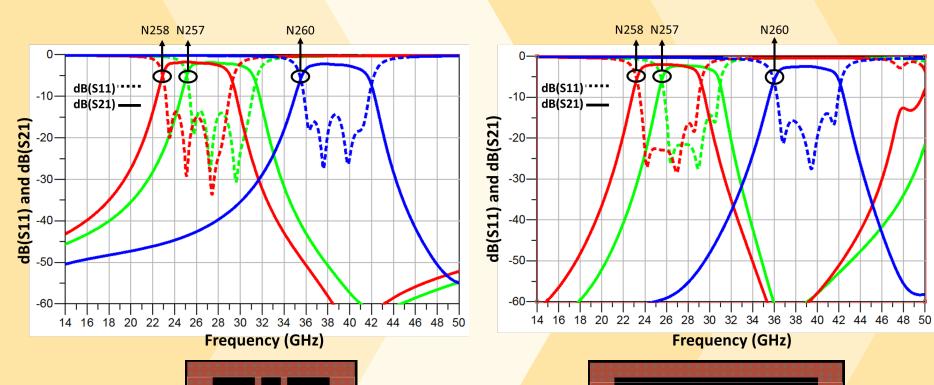


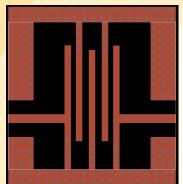


Technical Approach

Layer	Details		
M4 (Top)	Microstrip Passive Components		
Dielectric-4	Taiyo Zaristo (71-μm)		
M3	GND, Via Antipads, Dicing Clearance		
Dielectric-3	Taiyo Zaristo (15-μm)		
Core-Glass	AGC EN-A1 (100-μm)		
Dielectric-2	Taiyo Zaristo (15-μm)		
M2	GND, Via Antipads, Dicing Clearance		
Dielectric-1	Taiyo Zaristo (71-μm)		
M1 (Bottom)	Microstrip Passive Components		

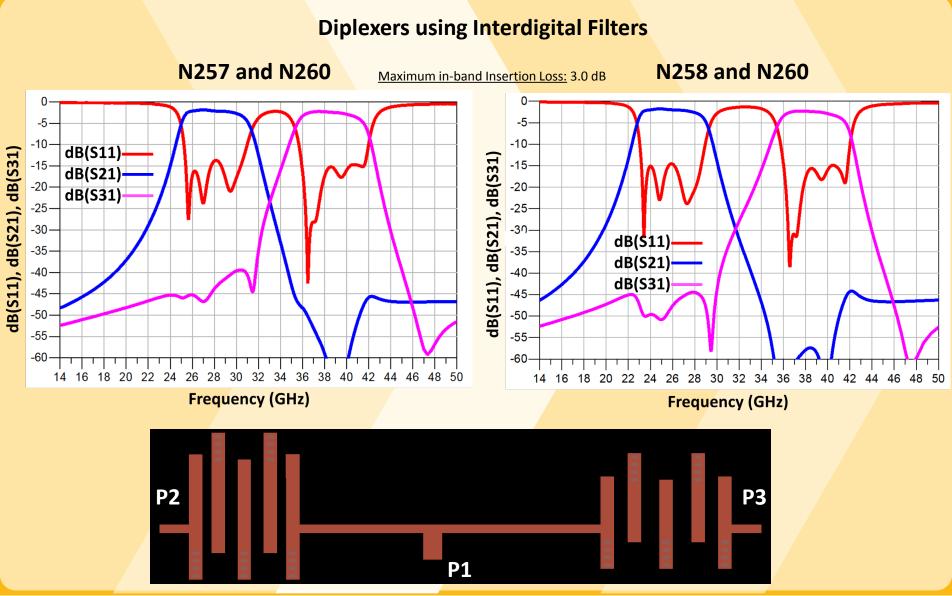
Results & Key Accomplishments



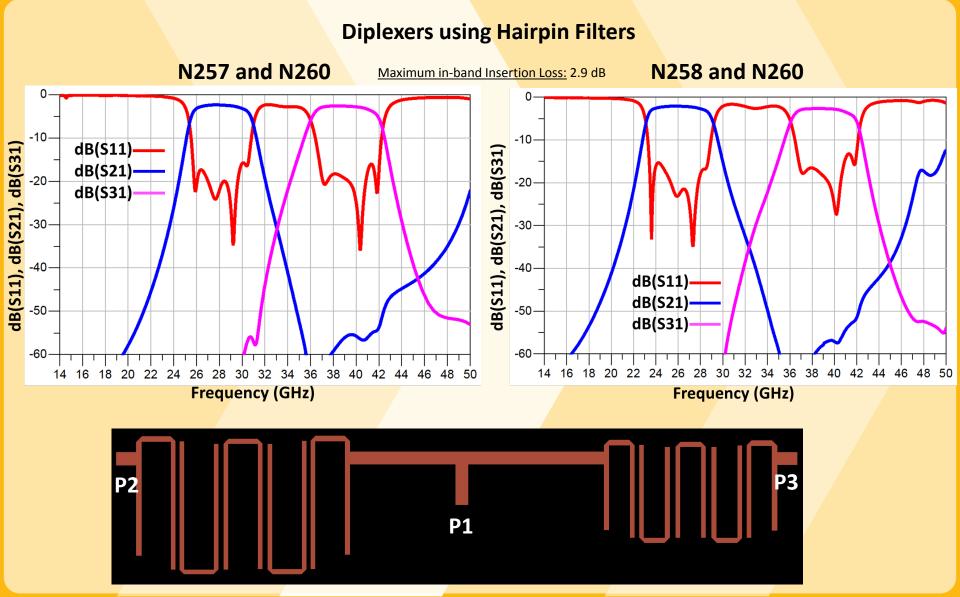

List of Structures

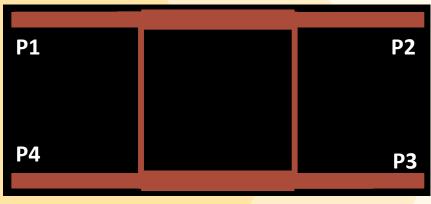
- Band Filters (5th Order)
 - Hairpin and Interdigital for band N257 (26.50-29.50 GHz, 10.71%), N258 (24.25-27.50 GHz, 12.6%) and N260 (37.00-40.00 GHz, 7.8%)
- Diplexer
 - Hairpin and Interdigital N257 & N260
 - Hairpin and Interdigital N258 & N260
- Couplers covering 24.25-40.00 GHz
 - Branch-Line
 - Coupled-Line

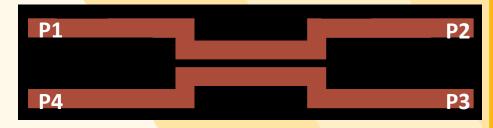
Band Filters - Interdigital and Hairpin

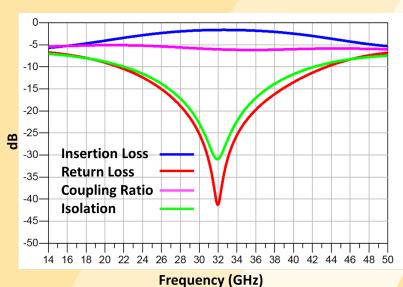


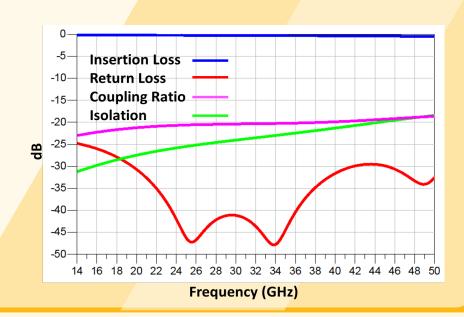
Maximum in-band Insertion Loss Interdigital and Hairpin: 2.7 dB



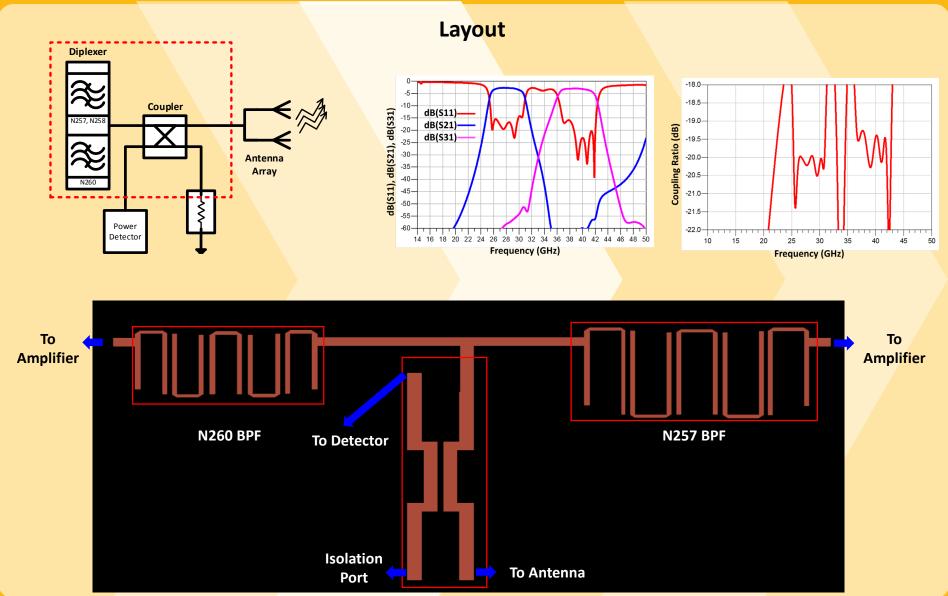





Couplers


6-dB Branch-Line Coupler

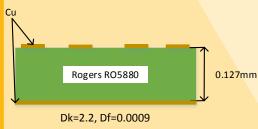
20-dB Coupled-Line Coupler

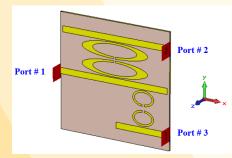


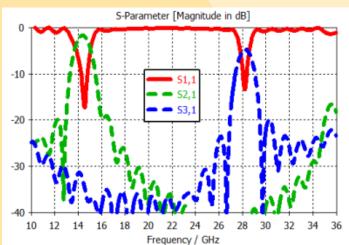
Design-level Dimensional Analysis

Structure	Physical Dimensions (mm³)	Electrical Dimensions (λ_0^3)		
Hairpin Filter for N257	4.64×2.11×0.202	0.43×0.20×0.019		
Hairpin Filter for N258	4.75×2.20×0.202	0.44×0.21×0.019		
Hairpin Filter for N260	4.14×1.72×0.202	0.54×0.22×0.026		
Interdigital Filter for N257	2.98×2.62×0.202	0.28×0.34×0.019		
Interdigital Filter for N258	2.94×2.76×0.202	0.27×0.26×0.019		
Interdigital Filter for N260	3.12×2.17×0.202	0.41×0.28×0.026		
Diplexer - Hairpin N257 & N260	8.42×1.70×0.202	0.90×0.18×0.022		
Diplexer - Hairpin N258 & N260	8.71×2.02×0.202	0.93×0.22×0.022		
Diplexer - Interdigital N257 & N260	5.09×2.62×0.202	0.54×0.28×0.022		
Diplexer - Interdigital N258 & N260	5.10×2.77×0.202	0.55×0.30×0.022		
Branch-Line Coupler	4.24×1.86×0.202	0.45×0.20×0.022		
Coupled-Line Coupler	3.91×0.78×0.202	0.42×0.08×0.022		

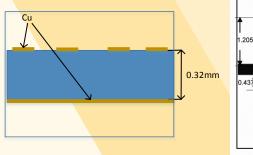
Note:

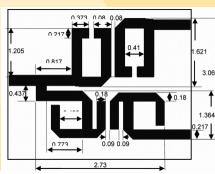

- 1. For the filters, physical dimensions are normalized by the wavelength corresponding to band frequency of 28 and 39 GHz. The corresponding wavelengths are 10.71 mm and 7.7 mm, respectively.
- 2. For diplexers and couplers, the physical dimensions are normalized by the wavelength corresponding to 32.125 GHz (center of 24.25-40 GHz). The corresponding wavelength is 9.34 mm.

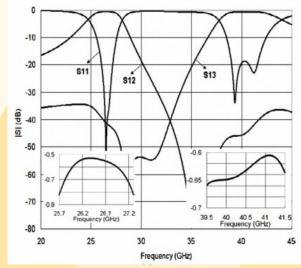



Comparison with Prior Art

Millimeter-Wave Microstrip Diplexer using Elliptical Open-Loop Ring Resonators




Frequency Bands: 14 and 28 GHz (<3% FBW)


Insertion Loss: 1.9 and 4.7 dB Size: 7.82 mm ×7.82 mm

(Source: H. Shamam et. al, IEEE MMS <mark>2014)</mark>

Compact Diplexer using Modified Hairpin Filters

Frequency Bands: 26.5 and 40.5 GHz (<6.6% FBW)

Insertion Loss: <1.5 dB and <1 dB

Size: 2.73 mm ×3.06 mm

(Source: N. He et. al, IEEE APEMC 2010)

Schedule

				_	
		2019		2020	
		Q3	Q4	Q1	Q2
Done	1 – Filter Design				
Done	2 – Diplexer Design				
Done	3 – Coupler Design				
In Progress	4 – Integrated Components Optimization				
In Progress	4 – Fabrication of Test Vehicle (TV) without TGVs				
	5 – Characterization				
	7 – TGV Fabrication				
	8 – Antenna Design				
	9 – Fabrication of Test Vehicle (TV) with TGVs				
	10 – Characterization				
Light blue: TV w/o TGVs Dark blue: TV w/ TGVs Light Yellow: Current time window Electrical Design and Optimization Fabrication Characterization and Correlation ★ Graduation					