

Glass Packaging Technology: Status & Update

Mohan Kathaperumal

Faculty: Prof. Swaminathan Prof. Tummala Dr. Fuhan Liu Dr. Vanessa Smet **Students:** Pratik Nimbalkar, Bart DeProspo, Rui Zhang, Shreya Dwarakanath, Siddharth Ravichandran, Tailong Shi

Visiting Engineers: Nobuo Ogura (Nagase), Atsushi Kubo (TOK), Takenori Kakutani (Taiyo) Kimiyuki Kanno (JSR)

Industry Partners: AGC, Corning, Schott, Intel, TOK, Taiyo, Panasonic, Brewer Science, Nagase, AMAT, Ajinomoto, Disco, Atotech, Samtec, Unimicron, SKC, Murata, TSMC

PRC Confidential

Outline

□ Goals & Objectives

- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- □ Summary

Georgia Institute of Technology

PRC Confidential

Technical Challenges for High AR Through Vias and Microvias

- Anisotropic etching for high aspect ratio structures
 - Bosch instead of DRIE on silicon
 - Laser assisted HF etching instead of HF etching
- Tapered sidewalls limiting the aspect ratio
- □ Challenges for TGVs
 - □ Brittle for mechanical drilling
 - Anisotropic chemical etching
 - Tapered shape diffuses laser power

Femtosecond laser based drilling method used to fabricate < 100 μ m (Rui Zhang)

Microvias by Picosecond UV laser. Microvia diameter: 5 µm with 10 µm pitch

Liu et al. Innovative Sub-5 micron microvias by Picosecond UV laser for 2.5D Interposers and Fan-out Packages, IEEE CPMT, 2019.

Rui, Fuhan

Results: 1 µm L/S Mini-Consortium

- □ Goal: to fabricate and build 1 µm Electronics Packaging RDL in conjunction with our industry consortium
- □ Each of these companies is providing input and services into this study to demonstrate successfully 1 µm RDL on a 12"×12" glass panel for supply chain and end user interest.
- These samples will be fabricated all the way through metallization and reliability

 \Box Resolution: 0.8 – 0.9 μ m Line?

□ Reproducibility

□ Yield

Dielectric material

Resist

Glass Substrate

End User

MATERIALS

Sputter

Cat

Projection Stepper

PRC Confidential

Georgia Tech

Results: Reliability of Fine Pitch Traces

Design: 3 μ m width/ 4 μ m space Fabricated: 4.5 μ m width/ 2.5 μ m space (min space ~ 1.5 μ m)

Design: 4 μ m width/ 6 μ m space Fabricated: 5.5 μ m width/ 4.5 μ m space (min space ~ 3 μ m)

Leakage Measurements inside a Glove Box before and after bHAST (130 °C, 85 % RH, 100 hrs, 5 V)

Chandra, Emanuel, Mohan

3 µm space

PRC Confidential

Georgia Tech

CENTER

Results: Reliability of 2 µm RDL and Below

1.5 µm space

ECM failure in 1.5 µm space polymer RDL (0.6 wt.% moisture absorption)

4 um L/S solon / Sum L/S

- ✓ Copper particles in between polymer dielectrics ECM failure
- ✓ As spacing decreases to 2 µm and below, there is a need for a barrier to protect the migration of copper traces

Chandra, Emanuel, Mohan

Thermal Modeling

Layer	Thickness (μm)	Thermal Conductivity (W/mK)	Specific Heat (J/K.Kg)	Mass Density (KG/m ³)
Case/Lid	150	350	385	8690
TIM (Case to die)	50	3	1000	2900
GPU/HBM	500	148	705	2329
Solder	-	50	234	7400
Underfill	-	0.28	915	1790
ILD	-	0.6	915	1790
Copper	-	400	385	8960
Glass Core (Glass Interposer)	540	1.1	480	2500
Silicon Core (Si Interposer)	500	148	705	2329
FCBGA Pkg (Si Interposer)	721	Кх=30.4 Ку=0.38	600	1850
РСВ	1000	Kx=27.4 Ky=0.35	600	1850

Boundary Conditions

Ambient Temperature	40 °C	
Forced Convection – Case 1: Air	100 W/m ² K	
Forced Convection – Case 1: Liquid	1000 W/m ² K	

Simplification of thermal model: Impact of BGA and PCB is simplified as \mathbf{H}_{eff} (Only assuming forced air convection for PCB-side)

(Zhang.Y, et al. "Thermal Evaluation of 2.5-D Integration Using Bridge-Chip Technology: Challenges and Opportunities," IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol 7, No. 7, July 2017).

Results (Preliminary) : Thermal Modeling

Package Geometries

Temperature Maps

- Thermal performance of interposers similar to other geometries <u>as long as</u> the external thermal management is sufficient
 - Surface area of the lid/case used as a heat spreader in the model, plays an important role in heat exchange
 - □ Impact of the forced convection > thermal conductivity of the substrate
- Thermal isolation of the HBM is expected to be better in Glass which can be seen in the temperature map
 - □ HBM reaches 85[°]C faster in Glass because of coupling through the TIM and Case. Thicker TIM/case with Glass may help avoid this problem
 - □ Modeling study including different thickness of TIM/case in Glass may help further understanding

PRC Confidential

Georgia Tech

KAGING

PRC Confidential

Results (Preliminary): Thermal Modeling

Impact of cooling solution is more important than substrate material
Large body size Interposers: Glass with ready availability at Panel scales and lower cost

Interposer Size: Opportunities and Challenges

- Al systems require Large Interposers (> 1200 sq. mm)
- Great potential to increase the Glass interposer size
 - Glass has advantages over other materials in terms of Cost, and ready availability of Large Panels

PRC Confidential

Challenges:

- Materials
- Lithography
- □ Yield of L/S on Large Panels
- Reliability

70 mm × 100 mm test structures on 150-µm-thick glass with a single exposure

Ushio UX-44101: NA lower than 0.16. The resolution for the stepper is 2 μ m. Maximum Exposure region in Single Shot: 100 mm × 100 mm

- John H. Lau, "Overview and Outlook for Heterogeneous Integrations," Chip Scale Review, 34-40, Sep-Oct, 2019.
- F. Liu, et al. "Low-Cost 1-µm Photolithography Technologies for Large-Body- Size, Low-Resistance Panel-Based RDL" IEEE Trans. On Components, Pkg and Manufacturing Technology, Vol. 9, No. 7, p 1426-1433, July 2019.

PRC Confidential

Results: Glass Panel Embedded (GPE) Package with Sheet type Molding Compound (SMC)

Advantages of the GPE Package

□ Thin glass core: 100 mm x 100 mm x 60 µm thickness

Chip Embedding: Small form factor & Low transmission Line Loss

Robust PKG: Sheet type Epoxy Molding Compound

GPE with One chip

PRC Confidential

Georgia Tech

Results: Glass Panel Embedded (GPE) Package with Sheet type Molding Compound

Materials 100mm

100mm

Glass core by Schott Glass size :100 x 100mm² x 60µmt Cavity size: 7.4 x 7.4 mm² Via size :170-220μmφ

Chip by Global Foundry Chip Size :7.2 x 7.2 mm² x 90 μ mt

Glass Carrier by AGC Glass Thickness: 1.1mm

Temporary adhesion by Nitto Thermal release type: 170, 200 °C

SMC by Nagase ChemteX Sheet thickness: 20-40µmt

`				
	0.1mm	7.2mm _{0.} ∶	<u>1mm</u> <220µn	nt 60μm

SMC was filled into a gap between Glass and Chip w/o void

RDL and Conductive Through Via

First demonstration of Glass Panel Embedded Package with 4" x 4" x 60 µm thick glass

Ogura et al. IMAPS, Boston, September 30 - October 3, 2019.

Georgia Institute of Technology

Schedule

15

Georgia Tech

Summary

- Received the 12" wafer samples exposed at Canon: Crosssectional SEM work in progress
- Thermal modeling suggests that Glass can have good thermal performance with good external thermal management.
- Larger GIPs has the potential to become the interposer choice for AI systems
- □ Glass Panel Embedded Package with 4" x 4" x 60 µm thick glass has been demonstrated for the first time.