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Power Delivery for 2.5D integrated systems

• 2 possible solutions for power delivery in 
2.5D integration are: 
on-board VRM and on-interposer IVR.

• IVRs have significantly better transient 
performance for 2.5D packaging.

• The drawback is reduced efficiency and 
increased area on-interposer.

• Challenge: How to optimize IVR & VRM to 
increase efficiency & reduce inductor area?

On-Board VRM

On-Interposer IVR Chiplet
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Challenges in IVR & Inductor Co-Optimization

• Inductor design trade-offs can not be determined without IVR operating conditions.

• IVR operating conditions can not be determined without inductor characteristics.

• Co-Optimization is required, but generally avoided due to optimization complexity.
 Simulation = EM Characterization + Transient Analysis.

• Bottleneck in optimization is CPU intensive 3D EM simulations.
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Two-Step Optimization for Embedded Inductor & IVR

Initial 
Inductor Design

IVR Model

IVR 
Performance

Step1:
Given Inductor, 

Circuit Level Optimization

Switching Freq.
Output Cap.

Inductor Model

IVR 
Performance

Step2:
Given IVR, 

Inductor Level Optimization

Final 
IVR & Inductor

 Inductor design trade-offs can not be determined without IVR operating conditions.

 IVR operating conditions can not be determined without inductor characteristics.

• Different inductors can perform better with different IVR parameters.

 Two-Step optimization then becomes sub-optimal.

 Co-optimization is required, but usually avoided due to complexity.
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Embedded Inductor

 Moderate amount of data is collected from the actual 3D EM solver.
 The data is then used to train a predictive model.

• Learning-based models are preferred for being universal approximators.
 Trained model can then be used in any optimization loop very efficiently.

• Replace EM simulation with the trained model!
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Building Learning-based Model

Conventional Fully-Connected Neural Network (FC-NN)

Proposed Spectral Transposed Convolutional Networks (S-TCNN)

 FC-NN is one of the most 
commonly used approach 
to predict freq. responses.

 # of learnable parameters 
increase exponentially 
when # freq. points 
increase.

 Proposed S-TCNN exploits 
spatial correlation in the 
frequency axis.

 Design parameters are 
passed through FC layers.

 The latent space is then 
passed through 1D 
transposed convolutional 
layers to construct 
predicted freq. response.Proposed Loss Function: 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1

𝑁𝑁
∑𝑛𝑛=1𝑁𝑁 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 (𝑦𝑦𝑛𝑛,𝑘𝑘 − �𝑦𝑦𝑛𝑛,𝑘𝑘)
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 Solenoid inductor with NiZn magnetic core is considered.
 Integrated alongside the chiplets on interposer.

 8 parameters define the geometry of the inductor.
 Inductance and resistance between 10 MHz and 500 MHz at 200 freq. points.
 1000 data points based on Latin Hypercube Sampling (800 training, 200 test)
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• S-TCNN is compared to regular FC-NN
• 10.8% improvement in predictive accuracy as 

compared to FC-NN with MSE loss.
• Proposed loss function increased accuracy of 

FC-NN by 5.1% and S-TCNN by 3.2%.
• Convergence of test error is also faster 
→ better generalization.

Results:
Performance of S-TCNN for Learning Inductance and Resistance 
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• Switching frequency (10-150 MHz) and output capacitance 
(50-150 nF) included as parameters of IVR.

• Total of 10 input parameters and 5 objectives.

• The floorplan is fixed and corresponding PDN parasitics are 
included in time-domain simulations.

• NSGA-II is used to generate Pareto Front.

Generating Pareto Front for IVR

Kim et al. “Architecture, Chip, and Package Co-design Flow for 
2.5D IC Design Enabling Heterogeneous IP Reuse”, DAC’19.
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• Each point in the Pareto front is optimal,
but prioritize different objectives.

• 105 Pareto optimal designs are generated.

• Optimal trade-offs can be seen from pair-wise plots 
and correlation matrix.

• Ex: Conversion efficiency and settling time; 
inductor area and efficiency & voltage ripple.

Results: 
5-dimensional Pareto Front
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• Co-Optimization is compared to a thorough Two-Step Optimization.

• Two designs are selected to prioritize performance (IVR1) and inductor area (IVR2).

• IVR2 have 51.6% reduced area with 40 ns faster settling time compared to Two-Step optimization.

• IVR1: 9.8% reduced area with 40.9% less voltage droop, 26.1% less settling time and 1.2% more efficiency.

• Other designs can also be selected from the generated Pareto front to prioritize other objectives.

Results: 
Comparison to Two-Step Optimization
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Timeline

Light blue: ML Model development and application to power delivery
Dark blue: New model development and apply to glass-interposer
Light Yellow: Current time window

Application to IVR & Embedded Inductor
ML Model Development

2019 2020
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1 – Development of S-TCNN

2 – Testing for Inductor Model

3 – IVR & Inductor Model

4 – IVR & Inductor Co-Optim.

5 – Comparison to Prior Art

6 – Building Confidence Intervals

7 – Test of New Model

8 – Comparison to S-TCNN

9 – Inductor Model on Glass Interp.

10- Test New Model for Glass Interp.
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Summary

 Introduced Spectral Transposed Convolutional Networks (S-TCNN) to predict frequency 
responses.

 First use of convolutional networks to handle frequency responses in EDA.
 Transposed convolutional layers are shown to be effective to upsample design parameters to 

their corresponding freq. domain characteristics.
 Proposed a new loss function to increase generalization capability of neural networks.

 Both for S-TCNN and regular fully-connected nets.
 Overall, S-TCNN showed 10.8% better predictive accuracy compared to conventional models 

in EDA.
 Used the derived model for IVR & inductor co-optimization, and achieved up to:

 51.5% reduced inductor area
 40.9% reduced voltage droop
 26.1% reduced settling time

compared to Two-Step Optimization.

H. M. Torun et al., 
“A Spectral Convolutional Net for 
Co-Optimization of Integrated 
Voltage Regulators and Embedded 
Inductors”, ICCAD’19
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