

Convolutional Networks for Co-Optimization of IVR and Embedded Inductor for 2.5D Packaging

Students: Hakki M. Torun, Huan Yu Faculty: Madhavan Swaminathan

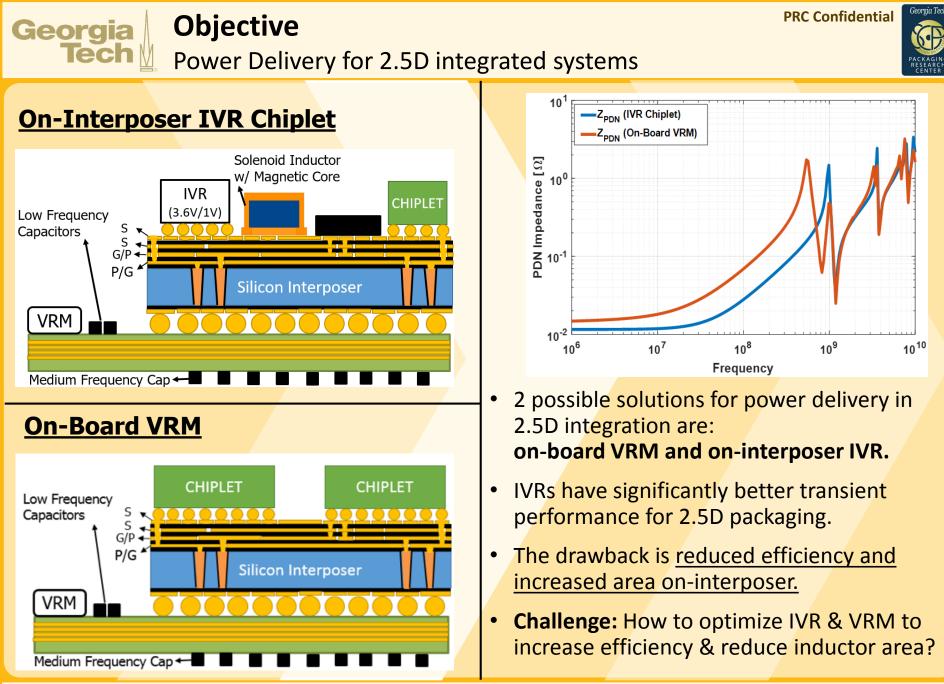
Industry Advisory Board (IAB) November 2019

Georgia Acknowledgements

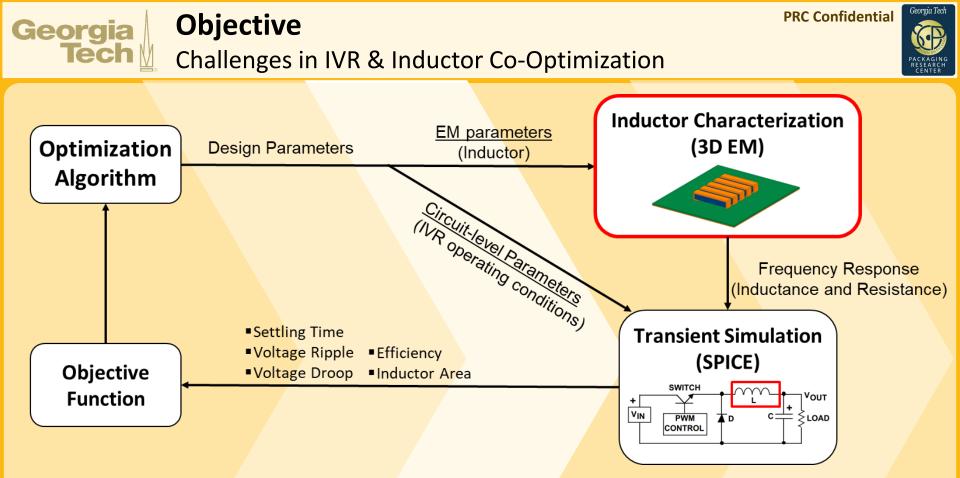
This work was funded in part by:

- NSF I/UCRC Center for Advanced Electronics Through Machine Learning (CAEML)
- DARPA CHIPS

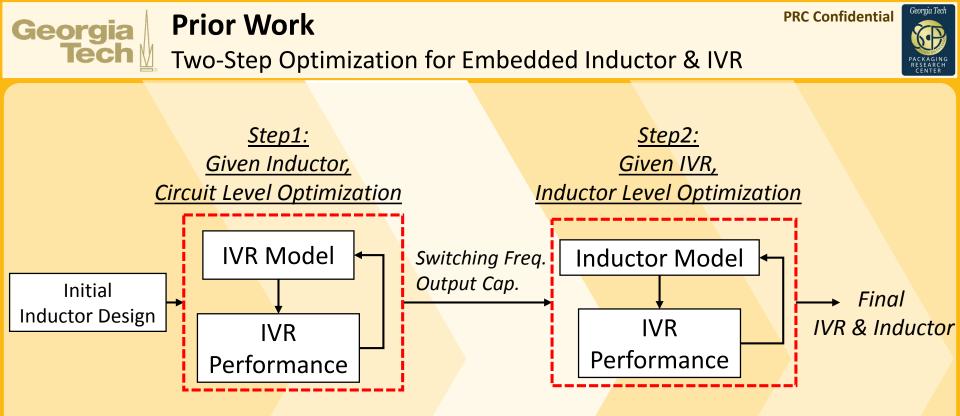
Liaisons: Prof. Sung-Kyu Lim (GT), Prof. Saibal Mukhopadhyay (GT)



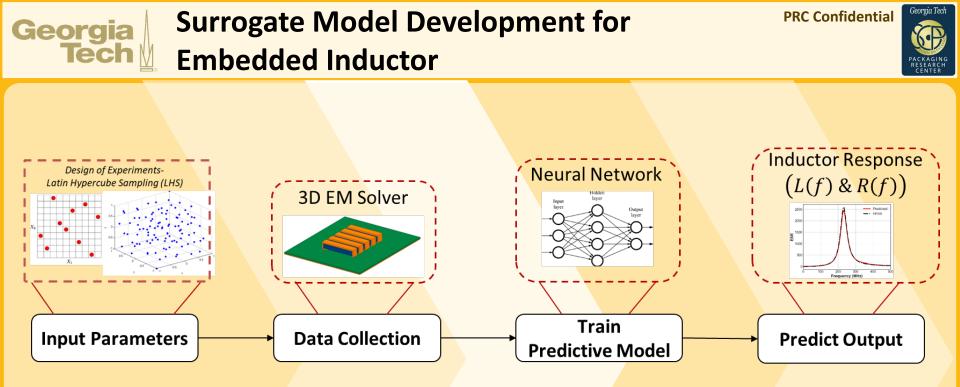
Industry Advisory Board (IAB) November 2019



- Inductor design trade-offs can not be determined without IVR operating conditions.
- IVR operating conditions can not be determined without inductor characteristics.
- <u>Co-Optimization is required</u>, but generally avoided due to optimization complexity.
 - Simulation = EM Characterization + Transient Analysis.
- <u>Bottleneck in optimization is CPU intensive 3D EM simulations.</u>



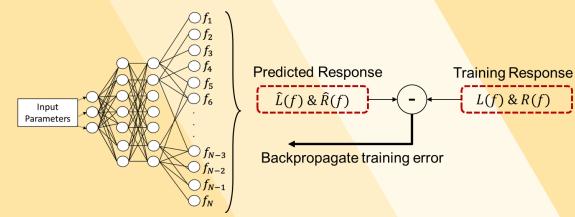
- Inductor design trade-offs can not be determined without IVR operating conditions.
- IVR operating conditions can not be determined without inductor characteristics.
 - Different inductors can perform better with different IVR parameters.
- Two-Step optimization then becomes sub-optimal.
- Co-optimization is required, but usually avoided due to complexity.

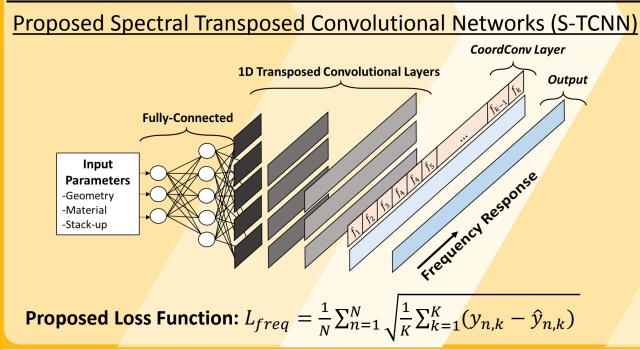


- Moderate amount of data is collected from the actual 3D EM solver.
- The data is then used to train a predictive model.
 - Learning-based models are preferred for being universal approximators.
- Trained model can then be used in any optimization loop very efficiently.
 - <u>Replace EM simulation with the trained model!</u>

Proposed Approach Georgia Tech **Building Learning-based Model**

Conventional Fully-Connected Neural Network (FC-NN)





Industry Advisory Board (IAB) November 2019

Georgia Institute of Technology

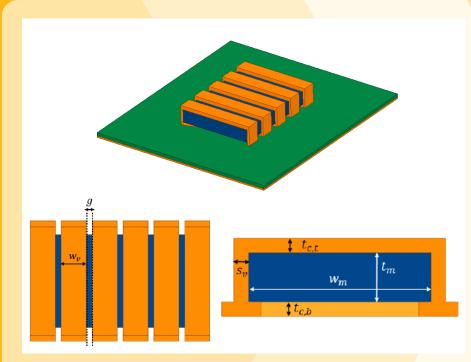
L(f) & R(f)

- FC-NN is one of the most commonly used approach to predict freq. responses.
- # of learnable parameters increase exponentially when # freq. points increase.
- Proposed S-TCNN exploits spatial correlation in the frequency axis.
- Design parameters are passed through FC layers.
- The latent space is then passed through 1D transposed convolutional layers to construct predicted freq. response.

PRC Confidential

Georgia Teci

Model for On-Interposer Solenoid Inductor with Magnetic Core

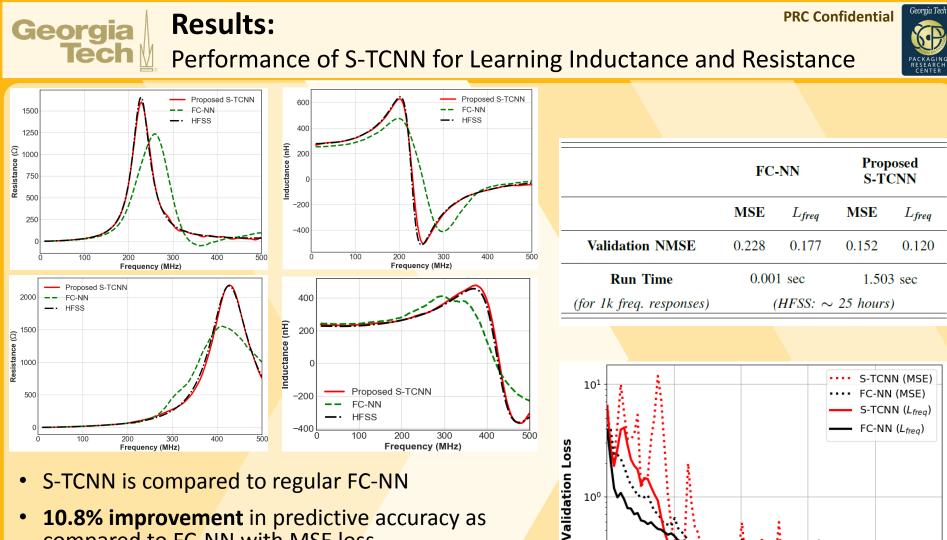


Parameter		Unit	Min	Max
Gap between windings	g	mil	2	20
Number of windings	Ν		3	13
Size of via	Sv	μ m	50	103
Copper Trace Width	Wc	mil	2	20
Copper Thickness Bottom	t _{c,b}	μ m	35	170
Copper Thickness Top	t _{c,t}	μ m	35	170
Magnetic Core Thickness	t _d	μ m	50	650
Magnetic Core Width	w _d	μ m	50	350

- Solenoid inductor with NiZn magnetic core is considered.
 - Integrated alongside the chiplets on interposer.
- 8 parameters define the geometry of the inductor.
- Inductance and resistance between 10 MHz and 500 MHz at 200 freq. points.
- 1000 data points based on Latin Hypercube Sampling (800 training, 200 test)

Georgia

Tech



- S-TCNN is compared to regular FC-NN •
- **10.8% improvement** in predictive accuracy as • compared to FC-NN with MSE loss.
- Proposed loss function increased accuracy of FC-NN by 5.1% and S-TCNN by 3.2%.
 - Convergence of test error is also faster. \rightarrow better generalization.

 10^{0}

 10^{-1} 0

100

200

Epochs

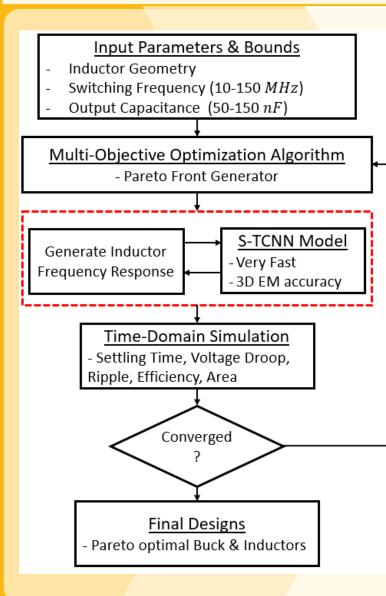
300

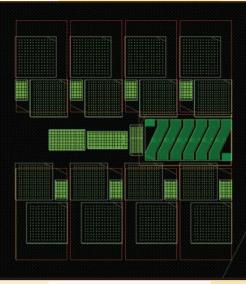
400

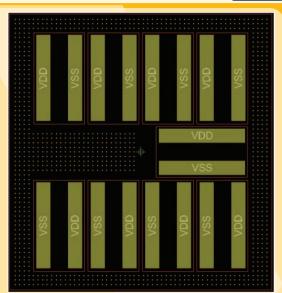
500

Georgia Generating Pareto Front for IVR

PRC Confidential







Kim et al. "Architecture, Chip, and Package Co-design Flow for 2.5D IC Design Enabling Heterogeneous IP Reuse", DAC'19.

- Switching frequency (10-150 MHz) and output capacitance (50-150 nF) included as parameters of IVR.
- Total of 10 input parameters and 5 objectives.
- The floorplan is fixed and corresponding PDN parasitics are included in time-domain simulations.
- NSGA-II is used to generate Pareto Front.

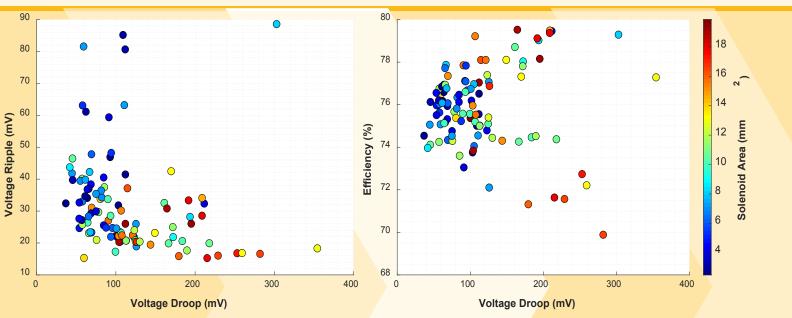
PRC Confidential

Georgia Tech

Results: 5-dimensional Pareto Front

Georgia

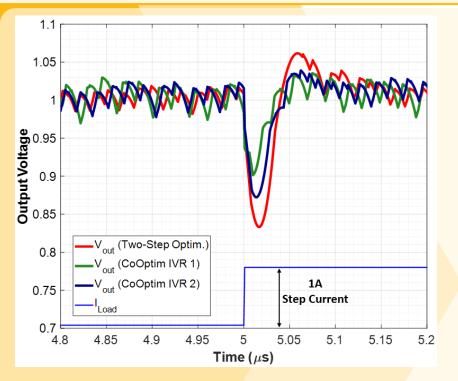
Tech



T _{set}	1.00	0.23	-0.19	0.38	0.09	0.8
V _{droop}	0.23	1.00	0.45	-0.30	0.07 -	0.6 0.4
V _{ripple}	-0. 19	0.45	1.00	-0.47	-0.37-	- 0.2 - 0
Eff.	0.38	-0.30	-0.47	1.00	0. 19 -	-0.2 -0.4
Ind. Area	0.09	0.07	-0.37	0.19	1.00	-0.6 -0.8
	T _{set}	V _{droop}	V _{ripple}	Eff.	Ind. Area	- 1

- Each point in the Pareto front is optimal, but prioritize different objectives.
- 105 Pareto optimal designs are generated.
- <u>Optimal trade-offs</u> can be seen from pair-wise plots and correlation matrix.
 - <u>Ex:</u> Conversion efficiency and settling time; inductor area and efficiency & voltage ripple.

Results: Comparison to Two-Step Optimization



	Two-StepCo-OptimizedOptimizationIVR 1		d Co-Optimized IVR 2			
Switching Freq.	125 MHz	100 MHz	115 MHz			
Capacitance	100 nF	115 nF	128 nF			
Inductance	29.8 nH	20.7 nH	23.8 nH			
ESR	3.63 Ω	1.01 Ω	1.12 Ω			
DC Resistance	10.5 mΩ	15.7 mΩ	30.2 mΩ			
Area	5.12 mm ²	4.64 mm ²	2.48 mm ²			
Efficiency	76.6 %	77.8 %	76.3 %			
Voltage Droop	167 mV	98.6 mV	127 mV			
Voltage Ripple	38.8 mV	49.3 mV	40.2 mV			
Settling Time	115 ns	80 ns	75 ns			

- Co-Optimization is compared to a thorough Two-Step Optimization.
- Two designs are selected to prioritize performance (IVR1) and inductor area (IVR2).
- IVR2 have <u>51.6%</u> reduced area with 40 ns faster settling time compared to Two-Step optimization.
- IVR1: <u>9.8% reduced area with 40.9% less voltage droop, 26.1% less settling time and 1.2% more efficiency.</u>
- Other designs can also be selected from the generated Pareto front to prioritize other objectives.

Georgia

Tech

PRC Confidential

	2019			2020				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1 – Development of S-TCNN								
2 – Testing for Inductor Model								
3 – IVR & Inductor Model								
4 – IVR & Inductor Co-Optim.								
5 – Comparison to Prior Art								
6 – Building Confidence Intervals								
7 – Test of New Model								
8 – Comparison to S-TCNN								
9 – Inductor Model on Glass Interp.								
10- Test New Model for Glass Interp.								

Light blue: ML Model development and application to power delivery Dark blue: New model development and apply to glass-interposer Light Yellow: Current time window Application to IVR & Embedded Inductor
 ML Model Development

Georgia Tech

Timeline

- Introduced Spectral Transposed Convolutional Networks (S-TCNN) to predict frequency responses.
 - First use of convolutional networks to handle frequency responses in EDA.
- Transposed convolutional layers are shown to be effective to upsample design parameters to their corresponding freq. domain characteristics.
- Proposed a new loss function to increase generalization capability of neural networks.
 - Both for S-TCNN and regular fully-connected nets.
- Overall, S-TCNN showed 10.8% better predictive accuracy compared to conventional models in EDA.
- Used the derived model for IVR & inductor co-optimization, and achieved up to:
 - 51.5% reduced inductor area

Summary

- 40.9% reduced voltage droop
- 26.1% reduced settling time

compared to Two-Step Optimization.

H. M. Torun et al.,
"A Spectral Convolutional Net for
Co-Optimization of Integrated
Voltage Regulators and Embedded
Inductors", ICCAD'19

Georgia