

Advanced Panel RDL Technologies for High Performance Computing (HPC) Applications

Faculty: Dr. Mohan Kathaperumal Dr. Fuhan Liu Prof. Tummala Prof. Swaminathan **Students:** Bartlet DeProspo, Siddharth Ravichandran, Pratik Nimbalkar, Shreya Dwarakanath, Rui Zhang, Omkar Gupte, Hakki Torun

Outline

- □ Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- **Comparison with Prior Art**
- □ Schedule
- **G** Summary

Goals and Objectives

□ Modeling, Design and Demonstration of 1µm Low RC Panel RDL Technology for HPC

	Parameters	Si BEOL RDL	Current Panel RDL	Proposed RDL	
Modeling	Aspect Ratio	• 1-2	• 1-2	>4	
	 Conductor Width/Spacing 	0.8/0.8 µm	6/6 µm	1/1 µm	
Design	 Single-Ended Impedance (Z_o in Ω) 	• 47	• 55	• 50	
	 Data Rate Per Channel (Gbps) 	• 2	• 2-5	>10	
Materials • (Photoresist)	 Thickness Chemical Composition Exposure Mechanism Type Substrate Compatibility 	 Ultra-thin <1 µm Chemically Amplified Polarization Liquid PR Wafer 	 Thick >10 µm Non-Chemically Amplified Polymerization Dry Film PR Panel 	 Thin < 7 μm Chemically-Amplified Polarization Dry-film PR Panel 	
Tools (Lithography)	NADOF	 >0.28 ±1.88 μm 	 <0.13 ±10 μm 	 0.18 – 0.24 ±4.2 μm 	
Processes	 RDL Formation Metallization	Dual DamascenePVD Seed	SAPElectroless Seed	Advanced SAPPVD Seed	

Georgia Institute of Technology

Prior Work

Explored the difference between Liquid and Dry films specifically around performance on rough dielectric surfaces

- Demonstrated planarized multi-layer SAP with 4 μm diameter microvias
- Demonstrated 2 μm microvias in no filler dielectrics and nano-sized filler dielectrics
- Worked with AMAT to develop a new highly selective wet chemistry for seed layer etch

Technical Approach

PRC Confidential

Materials

- > Ultra-Thin, Low D_k Dielectrics
 - Panel Processable
 - Low CTE, Low Modulus, High Elongation to Break

Processes

- Panel-Scale Semi-Additive Process
 - Surface Planarization for High Yield RDL formation
 - End Point Seed Etch Detection/

Interconnects

Low R, Low C 2 um Multi-Layer RDL with 50 ohms impedance matching

Assembly

- > Chip-level interconnect
 - TCB Cu pillar
- Board-level interconnect
 - Large body 30 mm x 40 mm SMT

Thermal

Advanced Direct Cu plated heat sinks

- Low Cost, Panel Scale Processes
- Large Body Size Substrates

Reliability

- RDL Reliability
 - Fine pitch traces and u-vias
 - Multi-Layer RDL Reliability on Glass
- > Interconnect
 - Chip Level interconnects at 35 um pitch
 - Board Level with 7 ppm/K CTE Glass core

Nov. 7-8, 2019

PRC Confidential

Results & Key Accomplishments

Optimal I/O Density Design Rules for Maximum Data Rate per Channel – Hakki Torun

IO Density	Optimal Width/Spacing/Aspect Ratio	Max Data Rate per Line	Achievable Aggregated Bandwidth
166 IO/mm/layer	1μm/10μm/1.2	18.9 Gbps	3.14 Tbps/mm/layer
222 IO/mm/layer	0.5µm/8µm/3.6	15.6 Gbps	3.46 Tbps/mm/layer
333 IO/mm/layer	0.5µm/5µm/4.2	14.8 Gbps	4.93 Tbps/mm/layer
666 IO/mm/layer	0.5µm/2µm/3.0	2.4 Gbps	1.59 Tbps/mm/layer

Georgia Tech PACKAGING PACKAGING RESEARCH CENTER

PRC Confidential

Georgia Tech

Results: Seed Layer Reflectivity Study

Cu @ 1200 J/m²

Cu @ 1600 J/m²

Cu @ 2000 J/m²

Cr @ 1200 J/m²

Cr @ 1600 J/m²

Cr @ 2000 J/m²

Ag: 1200 J/m²

Ag @ 1600 J/m²

A @ 2000 J/m²

Copper Reflects at 45%, Chromium at 23% and Silver reflects above 95% at 365 nm

- Optimum dose increases with a reduction in reflectivity
- Optimum dose decreases with an increase in reflectivity

Results and Accomplishments: Provisional Patents

- Provisional Patent 1: SP SAP (Sidewall Protected SAP)
 - Chandra Nair, Bart DeProspo, Omkar Gupte, Rao Tummala
 - Wet chemical etching is extremely isotropic and attacks all portions of the RDL traces during seed layer removal. This disclosure is designed to induce an anisotropic aspect to this process for extending SAP to 1 μ m and beyond.
- Provisional Patent 2:SAV SAP (Self-Aligned Via SAP)
 - Bart DeProspo, Chandra Nair, Emanuel Surillo, Rao Tummala
 - Electronics packaging utilizes laser technology to define the layer to layer via connections. The resolutions of these technologies is beginning to reach their limitations and taper angles are extremely high and require large pads for scaling. This disclosure's main benefit is around using a PR To scale via resolution and also to try and remove the large pad structures.

Post Seed Etch of 5/5 μm L/S

PRC IAB Meeting

Results: SP – SAP First Process Demonstration

- Deposited 500 nm of parylene film onto the sidewall of copper traces using a CVD room temperature process
- The dielectric constant of parylene film is ~2.4 enabling low capacitance RDL
- As seen across the images there was no undercut of the trace during this process.
- Goal is to demonstrate this process in the future on line and space features that are ≤ 1µm CD working with partner companies.

PRC Confidential

PRC Confidential

Results: SAV – SAP First Process Demonstration

Georgia Tech Contraction PACKAGING RESEARCH CENTER

Strip Photo-imageable material and deposit dielectric

10

- Goal for this work is to induce some misalignment at GT and test the limit of this process
- Design work suggests that highest performance system isn't necessarily matched in terms of line and space

PRC Confidential

Nov. 7-8, 2019

Schedule

		2019		2020			2021		
		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
done	1 – High Performance RDL Design								
done	2 – Liquid vs Dry Film Difference								
progress	3 – Seed Layer Reflectivity Study								
progress	4 – Roughness Impact on Photoresist		<u> </u>						
	5 – Photoresist Modeling Work								
	6 – Seed Layer Roughness Modeling								
progress	7 – SP and SAV SAP Progress								
progress	8 – Large Panel 1um SAP Demo								
	9 – AMAT Seed Layer Etch Testing								
	10 – High Frequency Ti Impact Model								
	11 – High Frequency Ti Fab and Test								
	12 – Low DK Dielectric Integration								
	13 – Final 1 μm Demonstration								

Duration

Summary

 Completed Electrical Design work for high performance RDL design
 Courtesy of Hakki Torun

Fabricated and analyzed impact of seed layer reflectivity on photoresist performance

Filed provisional patent on new sidewall protected semi additive process