

Design and Demonstration of 2.5D Glass Interposer BGA package with 2 μm ML RDL

Students- Pratik Nimbalkar, Omkar Gupte, Siddharth Ravichandran, Shreya Dwarakanath, Bartlet DeProspo, Rui Zhang

Faculty- Prof. Swaminathan, Prof. Tummala, Dr. Mohan Kathaperumal, Dr. Fuhan Liu, Dr. Vanessa Smet

Industry Partners: Atsushi Kubo (TOK), Takenori Kakutani (Taiyo), Nobuo Ogura (Nagase), Murata, Ajinomoto, Corning, Disco, Schott, AMAT, Atotech, SKC, Samtec, Intel, Evatec, Canon

Goals and Objectives

Enabling Basic Technology Targets (2018-2020)

Parameter Objective **Prior Art (Silicon Interposer)** Materials Low-k dielectrics: $k \sim 3$ SiO₂: k ~ 3.8-4.0 **Double Sided SAP** Wafer Scale BEOL Process Interconnect 225 IOs/mm/layer (Low R and 250-400 IOs/mm/layer (High R IO density C) and C) Bump pitch (Chip 35 um (TCB) 45 um (TCB) level) Body Size (Board 40 mm x 50 mm (Mass 28 mm x 36 mm (Mass Reflow) Reflow) Level) Advanced Direct Cu plated Thermal Std. Heat Sink heat sink Low (Panel-Scale Processes) High (Wafer-scale processes) **Relative Cost** Large Body Size Feasible Small Body Size feasible Board Level Reliability **Direct Board Attach** Need Organic Package substrate

- RDL interconnects approaching BEOL RDL with lower R and C
- Fine pitch chip-level interconnect
- **Direct attachment** to board
- Low-cost large body size substrate

Industry Advisory Board (IAB) November 2019

Georgia

Georgia Tech

Prior Work

 High R and C RDL interconnects
Board Level Reliability (combined with thick organic substrate)
High Cost for Large Body Size

C. Lee et al., "An Overview of the Development of a GPU with integrated HBM on Silicon Interposer", ECTC, 2016, 1439.

- High R and C RDL and Long interconnects
- Board Level Reliability (combined with thick organic substrate)
- Large Body Size Feasible

R. Mahajan et al., "Embedded Multi-Die Interconnect Bridge (EMIB) – A High Density, High Bandwidth Packaging Interconnect", ECTC, 2016, 557.

 Low R and C RDL interconnects
Z-height (thick organic core)
Large Body Size Feasible
of fine pitch Metal Layers (RDL yield/cost) > 4

K. Oi et al., "Development of New 2.5D Package with Novel Integrated Organic Interposer Substrate with Ultra-fine Wiring and High Density Bumps", ECTC, 2016, 557.

Industry Advisory Board (IAB) November 2019

Georgia Tech

Technical Approach

Processes Panel-Scale Semi-Additive Process

 Surface Planarization for High Yield RDL formation

End Point Seed Etch Detection

 \triangleright

Materials

- **Ultra-Thin, Low D_k Dielectrics**
 - Panel Processable
 - Low CTE, Low Modulus, High Elongation to Break

Reliability

> RDL Reliability

- Fine pitch traces and u-vias
- Multi-Layer RDL Reliability on Glass
- > Interconnect
 - Chip Level interconnects at 35 um pitch
 - Board Level with 7 ppm/K CTE Glass core

Assembly

- Chip-level interconnect
 - TCB Cu pillar
- Board-level interconnect
 - Large body 30 mm x 40 mm SMT

Low Cost

- Low Cost, Panel Scale Processes
- Large Body Size Substrates

Interconnects

Low R, Low C 2 um Multi-Layer RDL with 50 ohms impedance matching

Thermal

Advanced Direct Cu plated heat sinks

Industry Advisory Board (IAB) November 2019

TGV map for 6"x6" glass panel

TGV map for single interposer

- 100 μm TGVs with pitch varying from 200-500 μm
- Optimized through via filing for vias down to 50 μm diameter and 300 μm substrate (6:1 aspect ratio)
- Study of metallization of TGVs to be done

Industry Advisory Board (IAB) November 2019

Photo-Imageable Dielectric for fine line RDL

- Novel photo-dielectric for high resolution
- Good balance between low CTE and high resolution
- With low % elongation to break and smaller tensile strength, the goal is to maintain via taper angles between 64°-90°
- Low roughness thus optimization of sputtering needed for better adhesion and reliability

Conditions-

Georgia

1) Plasma Treatment:

- Ar plasma- 8.5 mins
- O2 plasma- 2 mins
- 2) Pre-bake: 125°C for 30mins in vacuum
- 3) Sputtering chamber pressure: 10E-6 Torr

Lead: Kenny K (Taiyo), Pratik

		Via T	op: 3 ur	n	Properties	Uni	t P	DM
	<				Tg (@TMA)	(deş	z.C) 18	80 - 185
				1	CTE alpha 1	(ppi	m) 3 0	0-35
DM		Plate	d Copper	PDM	Elastic Modu	lus (GP	'a) 3 .	5 - 4.0
	PDIVI				Tensile Stren	gth (MI	Pa) 9	0 - 95
	Via	Bott	.om: 2 u	m	Elongation	(%)	5.	5 - 6.0
		<	>		Dk (10GHz)		3.	.3
					Df(10GHz)		0.	.019
WD	mag t	11: 9/20/2011) HV 0. 17	2_m	Water absorp	tion (%)	0.	.84
	I and (Creme)				Average- 14 Minimum- 1 Maximum- 2	.2 N/cm .3.1 N/cm 14.9 N/cm		
		-	0	1	2	3	4	5

Position (Centimeters)

Industry Advisory Board (IAB) November 2019

ML-RDL residual stress analysis

Lead: Pratik

Schematic stack up of dummy ML RDL

- A thicker dielectric provides more stress relaxation as compared to thin dielectric
- For a dielectric having lower tensile modulus, stress is lower upto formation of the first metal layer
- As the number of metal layers goes on increasing, the stress starts levelling out

Industry Advisory Board (IAB) November 2019

Lead: Pratik (Fabrication) Omkar (BGA Balling) Disco (Dicing)

Objective: Understand challenges and optimize the dicing conditions for glass BGA package with no over mold

- Test Three Different Glass CTEs (3.4, 7.8 and 9 ppm/K) replicating Mechanical TV
 - 300 μm thick glass with dielectric stacks
 - Only top and bottom metal layers
 - Fabrication completed

Industry Advisory Board (IAB) November 2019

Georgia

Georgia Results: Mechanical Test Vehicle -Board-Level Reliability

Lead: Pratik (Fa<mark>brication)</mark> Vanessa (Assembly)

- ✓ Test three different glass CTEs (3.4, 7.8 and 9 ppm/K) for board-level reliability
 - 300 µm
 - No TGVs

- Electrical routing structures to test board-level interconnections post thermal cycling reliability

Results: Prior Work

Reliability modeling for 2.5D glass interposer with 4 ML symmetric RDL stack-up

Georgia Tech

Glass CTE (ppm/K)	Package size (mm)	BGA diameter (um)	BGA pitch	Package thickness (um)	Nf (Coffin Manson)	Nf (Engelmaier Wild)			
3.4	40 x 30	350	650	300	106	104			
9	40 x 30	350	650	300	918	1389			
9	40 x 30	350	650	100	1162	1844			
9.8	40 x 30	350	650	300	1099	1724			
9	50 x 40	350	650	300	928	1408			
9	60 x 50	350	650	300	1097	1721			
9	50 x 40	500	800	300	1395	2295			
7.8	50 x 40	500	800	300	1283	2076			
3.4	50 x 40	500	800	300	520	703			
Industry Advisory Board (IAB) November 2019 Georgia Institute of Technology									

Summary

- **TGV des**ign is complete
- Optimized sputtering conditions for improved adhesion and reliability of RDL
- Dicing test vehicle fabrication has been completed and panel sent to Disco for dicing test on 10/30/2019
- Mechanical test vehicle fabrication is ongoing
- Thermomechanical modeling: packages with 8 ML asymmetric stack-up and high CTE glass core (7.8 and 9 ppm/K) expected to pass 1000 thermal cycles

Schedule

